1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
<!DOCTYPE HTML>
<html>
<head>
<title>Test for seamless loop of HTMLAudioElements</title>
<script src="/tests/SimpleTest/SimpleTest.js"></script>
<link rel="stylesheet" type="text/css" href="/tests/SimpleTest/test.css"/>
<script type="text/javascript" src="manifest.js"></script>
</head>
<body>
<canvas id="canvas" width="300" height="300"></canvas>
<script type="application/javascript">
/**
* This test is used to ensure every time we loop audio, the audio can loop
* seamlessly which means there won't have any silenece or noise between the
* end and the start.
*/
SimpleTest.waitForExplicitFinish();
// Set DEBUG to true to add a canvas with a little drawing of what is going
// on, and actually outputs the audio to the speakers.
var DEBUG = true;
var LOOPING_COUNT = 0;
var MAX_LOOPING_COUNT = 10;
var TONE_FREQUENCY = 440;
(async function testSeamlesslooping() {
info(`- create looping audio element -`);
let audio = createAudioElement();
info(`- start audio and analyze audio wave data to ensure looping audio without any silence or noise -`);
await playAudioAndStartAnalyzingWaveData(audio);
info(`- test seamless looping multiples times -`);
for (LOOPING_COUNT = 0; LOOPING_COUNT < MAX_LOOPING_COUNT; LOOPING_COUNT++) {
await once(audio, "seeked");
info(`- the round ${LOOPING_COUNT} of the seamless looping succeeds -`);
}
info(`- end of seamless looping test -`);
SimpleTest.finish();
})();
/**
* Test utility functions
*/
function createSrcBuffer() {
// Generate the sine in floats, then convert, for simplicity.
let channels = 1;
let sampleRate = 44100;
let buffer = new Float32Array(sampleRate * channels);
let phase = 0;
const TAU = 2 * Math.PI;
for (let i = 0; i < buffer.length; i++) {
// Adjust the gain a little so we're sure it's not going to clip. This is
// important because we're converting to 16bit integer right after, and
// clipping will clearly introduce a discontinuity that will be
// mischaracterized as a looping click.
buffer[i] = Math.sin(phase) * 0.99;
phase += TAU * TONE_FREQUENCY / 44100;
if (phase > 2 * TAU) {
phase -= TAU;
}
}
// Make a RIFF header, it's 23 bytes
let buf = new Int16Array(buffer.length + 23);
buf[0] = 0x4952;
buf[1] = 0x4646;
buf[2] = (2 * buffer.length + 15) & 0x0000ffff;
buf[3] = ((2 * buffer.length + 15) & 0xffff0000) >> 16;
buf[4] = 0x4157;
buf[5] = 0x4556;
buf[6] = 0x6d66;
buf[7] = 0x2074;
buf[8] = 0x0012;
buf[9] = 0x0000;
buf[10] = 0x0001;
buf[11] = 1;
buf[12] = 44100 & 0x0000ffff;
buf[13] = (44100 & 0xffff0000) >> 16;
buf[14] = (2 * channels * sampleRate) & 0x0000ffff;
buf[15] = ((2 * channels * sampleRate) & 0xffff0000) >> 16;
buf[16] = 0x0004;
buf[17] = 0x0010;
buf[18] = 0x0000;
buf[19] = 0x6164;
buf[20] = 0x6174;
buf[21] = (2 * buffer.length) & 0x0000ffff;
buf[22] = ((2 * buffer.length) & 0xffff0000) >> 16;
// convert to int16 and copy.
for (let i = 0; i < buffer.length; i++) {
buf[i + 23] = Math.round(buffer[i] * (1 << 15));
}
return buf;
}
function createAudioElement() {
/* global audio */
window.audio = document.createElement("audio");
audio.src = URL.createObjectURL(new Blob([createSrcBuffer()],
{ type: 'audio/wav' }));
audio.controls = true;
audio.loop = true;
document.body.appendChild(audio);
return audio;
}
async function playAudioAndStartAnalyzingWaveData(audio) {
createAudioWaveAnalyser(audio);
ok(await once(audio, "canplay").then(() => true, () => false),
`audio can start playing.`)
ok(await audio.play().then(() => true, () => false),
`audio started playing successfully.`);
}
function createAudioWaveAnalyser(source) {
/* global ac, analyser */
window.ac = new AudioContext();
window.analyser = ac.createAnalyser();
analyser.frequencyBuf = new Float32Array(analyser.frequencyBinCount);
analyser.smoothingTimeConstant = 0;
analyser.fftSize = 2048; // 1024 bins
let sourceNode = ac.createMediaElementSource(source);
sourceNode.connect(analyser);
if (DEBUG) {
analyser.connect(ac.destination);
analyser.timeDomainBuf = new Float32Array(analyser.frequencyBinCount);
let cvs = document.querySelector("canvas");
analyser.c = cvs.getContext("2d");
analyser.w = cvs.width;
analyser.h = cvs.height;
}
analyser.notifyAnalysis = () => {
if (LOOPING_COUNT >= MAX_LOOPING_COUNT) {
return;
}
let {frequencyBuf} = analyser;
analyser.getFloatFrequencyData(frequencyBuf);
// Let things stabilize at the beginning. See bug 1441509.
if (LOOPING_COUNT > 1) {
analyser.doAnalysis(frequencyBuf, ac.sampleRate);
}
if (DEBUG) {
let {c, w, h, timeDomainBuf} = analyser;
c.clearRect(0, 0, w, h);
analyser.getFloatTimeDomainData(timeDomainBuf);
for (let i = 0; i < frequencyBuf.length; i++) {
c.fillRect(i, h, 1, -frequencyBuf[i] + analyser.minDecibels);
}
for (let i = 0; i < timeDomainBuf.length; i++) {
c.fillRect(i, h / 2, 1, -timeDomainBuf[i] * h / 2);
}
}
requestAnimationFrame(analyser.notifyAnalysis);
}
analyser.doAnalysis = (buf, ctxSampleRate) => {
// The size of an FFT is twice the number of bins in its output.
let fftSize = 2 * buf.length;
// first find a peak where we expect one.
let binIndexTone = 1 + Math.round(TONE_FREQUENCY * fftSize / ctxSampleRate);
ok(buf[binIndexTone] > -25,
`Could not find a peak: ${buf[binIndexTone]} db at ${TONE_FREQUENCY}Hz`);
// check that the energy some octaves higher is very low.
let binIndexOutsidePeak = 1 + Math.round(TONE_FREQUENCY * 4 * buf.length / ctxSampleRate);
ok(buf[binIndexOutsidePeak] < -110,
`Found unexpected high frequency content: ${buf[binIndexOutsidePeak]}db at ${TONE_FREQUENCY * 4}Hz`);
}
analyser.notifyAnalysis();
}
</script>
</pre>
</body>
</html>
|