1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// The methods 'AvlTreeImpl::insert_worker' and 'AvlTreeImpl::delete_worker',
// and all supporting methods reachable from them, are derived from a public
// domain implementation by Georg Kraml. The public domain implementation in
// C was translated into Rust and the Rust translation was later translated
// into this C++ implementation.
//
// Unfortunately the relevant web site for the original C version is long
// gone, and can only be found on the Wayback Machine:
//
// https://web.archive.org/web/20010419134337/
// http://www.kraml.at/georg/avltree/index.html
//
// https://web.archive.org/web/20030926063347/
// http://www.kraml.at/georg/avltree/avlmonolithic.c
//
// https://web.archive.org/web/20030401124003/http://www.kraml.at/src/howto/
//
// The intermediate Rust translation can be found at
//
// https://github.com/bytecodealliance/regalloc.rs/blob/main/lib/src/avl_tree.rs
//
// For relicensing clearances, see Mozilla bugs 1620332 and 1769261:
//
// https://bugzilla.mozilla.org/show_bug.cgi?id=1620332
// https://bugzilla.mozilla.org/show_bug.cgi?id=1769261
//
// All other code in this file originates from Mozilla.
#ifndef ds_AvlTree_h
#define ds_AvlTree_h
#include "mozilla/Attributes.h"
#include "mozilla/Likely.h"
#include "mozilla/Maybe.h"
#include "ds/LifoAlloc.h"
namespace js {
////////////////////////////////////////////////////////////////////////
// //
// AvlTree implementation. For interface see `class AvlTree` below. //
// //
////////////////////////////////////////////////////////////////////////
// An AVL tree class, with private allocator and node-recycling. `T` is the
// class of elements in the tree. `C` must provide a method
//
// static int compare(const T&, const T&)
//
// to provide a total ordering on values `T` that are put into the tree,
// returning -1 for less-than, 0 for equal, and 1 for greater-than.
//
// `C::compare` does not have to be a total ordering for *all* values of `T`,
// but it must be so for the `T` values in the tree. Requests to insert
// duplicate `T` values, as determined equal by `C::compare`, are valid but
// will be ignored in this implementation class: the stored data is unchanged.
// The interface class `AvlTree` however will MOZ_CRASH() on such requests.
//
// `T` values stored in the tree will not be explicitly freed or destroyed.
//
// Some operations require (internally) building a stack of tree nodes from
// the root to some leaf. The maximum stack size, and hence the maximum tree
// depth, is currently bounded at 48. The max depth of an AVL tree is roughly
// 1.44 * log2(# nodes), so providing the tree-balancing machinery works
// correctly, the max number of nodes is at least 2^(48 / 1.44), somewhat over
// 2^33 (= 8 G). On a 32-bit target we'll run out of address space long
// before reaching that. On a 64-bit target, the minimum imaginable
// sizeof(Node) is 16 (for the two pointers), so a tree with 2^33 nodes would
// occupy at least 2^37 bytes, viz, around 137GB. So this seems unlikely to
// be a limitation.
//
// All stack-pushing operations are release-asserted to not overflow the stack.
template <class T, class C>
class AvlTreeImpl {
// This is the implementation of AVL trees. If you want to know how to use
// them in your code, don't read this; instead look below at the public
// interface, that is, `class AvlTree`.
//
// All of `AvlTreeImpl`, apart from the iterator code at the bottom, is
// protected. Public facilities are provided by child class `AvlTree`.
protected:
// Tree node tags.
enum class Tag : uint8_t {
Free, // Node not in use -- is on the freelist.
None, // Node in use. Neither subtree is deeper.
Left, // Node in use. The left subtree is deeper.
Right, // Node in use. The right subtree is deeper.
};
// Tree nodes. To save space we could omit ::tag and instead steal two bits
// from ::left and/or ::right, but it hardly seems worth the hassle.
struct Node {
Node* left;
Node* right;
Tag tag;
T item;
explicit Node(const T& item)
: left(nullptr), right(nullptr), tag(Tag::None), item(item) {}
};
// Once-per-tree components.
Node* root_;
Node* freeList_;
LifoAlloc* alloc_;
// As a modest but easy optimisation, ::allocateNode will allocate one node
// at the first call that sees an empty `freeList_`, two on the next such
// call and four on subsequent such calls. This has the effect of reducing
// the number of calls to the underlying allocator `alloc_` by a factor of 4
// for all but the smallest trees. It also helps pack more nodes into each
// cache line. The limit of 4 exists for three reasons:
//
// (1) It gains the majority (75%) of the available benefit from reducing
// the number of calls to `alloc_`, as the allocation size tends to
// infinity.
//
// (2) Similarly, 4 `struct Node`s will surely be greater than 128 bytes,
// hence there is minimal chance to use even fewer cache lines by increasing
// the group size further. In any case most machines have cache lines of
// size 64 bytes, not 128.
//
// (3) Most importantly, it limits the maximum potentially wasted space,
// which is the case where a request causes an allocation of N nodes, of
// which one is used immediately and the N-1 are put on the freelist, but
// then -- because the tree never grows larger -- are never used. Given
// that N=4 here, the worst case lossage is 3 nodes, which seems tolerable.
uint32_t nextAllocSize_; // 1, 2 or 4 only
// The expected maximum tree depth. See comments above.
static const size_t MAX_TREE_DEPTH = 48;
AvlTreeImpl(const AvlTreeImpl&) = delete;
AvlTreeImpl& operator=(const AvlTreeImpl&) = delete;
// ---- Preliminaries --------------------------------------- //
explicit AvlTreeImpl(LifoAlloc* alloc = nullptr)
: root_(nullptr), freeList_(nullptr), alloc_(alloc), nextAllocSize_(1) {}
void setAllocator(LifoAlloc* alloc) { alloc_ = alloc; }
// Put `node` onto the free list, for possible later reuse.
inline void addToFreeList(Node* node) {
node->left = freeList_;
node->right = nullptr; // for safety
node->tag = Tag::Free;
freeList_ = node;
}
// A safer version of `addToFreeList`.
inline void freeNode(Node* node) {
MOZ_ASSERT(node->tag != Tag::Free);
addToFreeList(node);
}
// This is the slow path for ::allocateNode below. Allocate 1, 2 or 4 nodes
// as a block, return the first one properly initialised, and put the rest
// on the freelist, in increasing order of address.
MOZ_NEVER_INLINE Node* allocateNodeOOL(const T& v) {
switch (nextAllocSize_) {
case 1: {
nextAllocSize_ = 2;
Node* node = alloc_->new_<Node>(v);
// `node` is either fully initialized, or nullptr on OOM.
return node;
}
case 2: {
nextAllocSize_ = 4;
Node* nodes = alloc_->newArrayUninitialized<Node>(2);
if (!nodes) {
return nullptr;
}
Node* node0 = &nodes[0];
addToFreeList(&nodes[1]);
new (node0) Node(v);
return node0;
}
case 4: {
Node* nodes = alloc_->newArrayUninitialized<Node>(4);
if (!nodes) {
return nullptr;
}
Node* node0 = &nodes[0];
addToFreeList(&nodes[3]);
addToFreeList(&nodes[2]);
addToFreeList(&nodes[1]);
new (node0) Node(v);
return node0;
}
default: {
MOZ_CRASH();
}
}
}
// Allocate a Node holding `v`, or return nullptr on OOM. All of the fields
// are initialized.
inline Node* allocateNode(const T& v) {
Node* node = freeList_;
if (MOZ_LIKELY(node)) {
MOZ_ASSERT(node->tag == Tag::Free);
freeList_ = node->left;
new (node) Node(v);
return node;
}
return allocateNodeOOL(v);
}
// These exist only transiently, to aid rebalancing. They indicate whether
// an insertion/deletion succeeded, whether subsequent rebalancing is
// needed.
enum class Result { Error, OK, Balance };
using NodeAndResult = std::pair<Node*, Result>;
// Standard AVL single-rotate-left
Node* rotate_left(Node* old_root) {
Node* new_root = old_root->right;
old_root->right = new_root->left;
new_root->left = old_root;
return new_root;
}
// Standard AVL single-rotate-right
Node* rotate_right(Node* old_root) {
Node* new_root = old_root->left;
old_root->left = new_root->right;
new_root->right = old_root;
return new_root;
}
// ---- Helpers for insertion ------------------------------- //
// `leftgrown`: a helper function for `insert_worker`
//
// Parameters:
//
// root Root of a tree. This node's left subtree has just grown due to
// item insertion; its "tag" flag needs adjustment, and the local
// tree (the subtree of which this node is the root node) may have
// become unbalanced.
//
// Return values:
//
// The new root of the subtree, plus either:
//
// OK The local tree could be rebalanced or was balanced from the
// start. The caller, insert_worker, may assume the entire tree
// is valid.
// or
// Balance The local tree was balanced, but has grown in height.
// Do not assume the entire tree is valid.
//
// This function has been split into two pieces: `leftgrown`, which is small
// and hot, and is marked always-inline, and `leftgrown_left`, which handles
// a more complex and less frequent case, and is marked never-inline. The
// intent is to have the common case always inlined without having to deal
// with the extra register pressure from inlining the less frequent code.
// The dual function `rightgrown` is split similarly.
MOZ_NEVER_INLINE Node* leftgrown_left(Node* root) {
if (root->left->tag == Tag::Left) {
root->tag = Tag::None;
root->left->tag = Tag::None;
root = rotate_right(root);
} else {
switch (root->left->right->tag) {
case Tag::Left:
root->tag = Tag::Right;
root->left->tag = Tag::None;
break;
case Tag::Right:
root->tag = Tag::None;
root->left->tag = Tag::Left;
break;
case Tag::None:
root->tag = Tag::None;
root->left->tag = Tag::None;
break;
case Tag::Free:
default:
MOZ_CRASH();
}
root->left->right->tag = Tag::None;
root->left = rotate_left(root->left);
root = rotate_right(root);
}
return root;
}
inline NodeAndResult leftgrown(Node* root) {
switch (root->tag) {
case Tag::Left:
return NodeAndResult(leftgrown_left(root), Result::OK);
case Tag::Right:
root->tag = Tag::None;
return NodeAndResult(root, Result::OK);
case Tag::None:
root->tag = Tag::Left;
return NodeAndResult(root, Result::Balance);
case Tag::Free:
default:
break;
}
MOZ_CRASH();
}
// `rightgrown`: a helper function for `insert_worker`. See `leftgrown` for
// details.
MOZ_NEVER_INLINE Node* rightgrown_right(Node* root) {
if (root->right->tag == Tag::Right) {
root->tag = Tag::None;
root->right->tag = Tag::None;
root = rotate_left(root);
} else {
switch (root->right->left->tag) {
case Tag::Right:
root->tag = Tag::Left;
root->right->tag = Tag::None;
break;
case Tag::Left:
root->tag = Tag::None;
root->right->tag = Tag::Right;
break;
case Tag::None:
root->tag = Tag::None;
root->right->tag = Tag::None;
break;
case Tag::Free:
default:
MOZ_CRASH();
}
root->right->left->tag = Tag::None;
root->right = rotate_right(root->right);
root = rotate_left(root);
}
return root;
}
inline NodeAndResult rightgrown(Node* root) {
switch (root->tag) {
case Tag::Left:
root->tag = Tag::None;
return NodeAndResult(root, Result::OK);
case Tag::Right:
return NodeAndResult(rightgrown_right(root), Result::OK);
case Tag::None:
root->tag = Tag::Right;
return NodeAndResult(root, Result::Balance);
case Tag::Free:
default:
break;
}
MOZ_CRASH();
}
// ---- Insertion ------------------------------------------- //
// Worker for insertion. Allocates a node for `v` and inserts it into the
// tree. Returns: nullptr for OOM; (Node*)1 if `v` is a duplicate (per
// `C::compare`), in which case the tree is unchanged; otherwise (successful
// insertion) the new root. In the latter case, the new `item` field is
// initialised from `v`.
Node* insert_worker(const T& v) {
// Insertion is a two pass process. In the first pass, we descend from
// the root, looking for the place in the tree where the new node will go,
// and at the same time storing the sequence of visited nodes in a stack.
// In the second phase we re-ascend the tree, as guided by the stack,
// rebalancing as we go.
//
// Note, we start from `root_`, but that isn't updated at the end. Instead
// the new value is returned to the caller, which has to do the update.
Node* stack[MAX_TREE_DEPTH];
size_t stackPtr = 0; // points to next available slot
#define STACK_ENTRY_SET_IS_LEFT(_nodePtr) \
((Node*)(uintptr_t(_nodePtr) | uintptr_t(1)))
#define STACK_ENTRY_GET_IS_LEFT(_ent) ((bool)(uintptr_t(_ent) & uintptr_t(1)))
#define STACK_ENTRY_GET_NODE(_ent) ((Node*)(uintptr_t(_ent) & ~uintptr_t(1)))
// In the first phase, walk down the tree to find the place where the new
// node should be inserted, recording our path in `stack`. This loop has
// a factor-of-2 unrolling (the loop body contains two logical iterations)
// in order to reduce the overall cost of the stack-overflow check at the
// bottom.
Node* node = root_;
while (true) {
// First logical iteration
if (!node) {
break;
}
int cmpRes1 = C::compare(v, node->item);
if (cmpRes1 < 0) {
stack[stackPtr++] = STACK_ENTRY_SET_IS_LEFT(node);
node = node->left;
} else if (cmpRes1 > 0) {
stack[stackPtr++] = node;
node = node->right;
} else {
// `v` is already in the tree. Inform the caller, and don't change
// the tree.
return (Node*)(uintptr_t(1));
}
// Second logical iteration
if (!node) {
break;
}
int cmpRes2 = C::compare(v, node->item);
if (cmpRes2 < 0) {
stack[stackPtr++] = STACK_ENTRY_SET_IS_LEFT(node);
node = node->left;
} else if (cmpRes2 > 0) {
stack[stackPtr++] = node;
node = node->right;
} else {
return (Node*)(uintptr_t(1));
}
// We're going around again. Ensure there are at least two available
// stack slots.
MOZ_RELEASE_ASSERT(stackPtr < MAX_TREE_DEPTH - 2);
}
MOZ_ASSERT(!node);
// Now allocate the new node.
Node* new_node = allocateNode(v);
if (!new_node) {
return nullptr; // OOM
}
// And unwind the stack, back to the root, rebalancing as we go. Once get
// to a place where the new subtree doesn't need to be rebalanced, we can
// stop this upward scan, because no nodes above it will need to be
// rebalanced either.
Node* curr_node = new_node;
Result curr_node_action = Result::Balance;
while (stackPtr > 0) {
Node* parent_node_tagged = stack[--stackPtr];
Node* parent_node = STACK_ENTRY_GET_NODE(parent_node_tagged);
if (STACK_ENTRY_GET_IS_LEFT(parent_node_tagged)) {
parent_node->left = curr_node;
if (curr_node_action == Result::Balance) {
auto pair = leftgrown(parent_node);
curr_node = pair.first;
curr_node_action = pair.second;
} else {
curr_node = parent_node;
break;
}
} else {
parent_node->right = curr_node;
if (curr_node_action == Result::Balance) {
auto pair = rightgrown(parent_node);
curr_node = pair.first;
curr_node_action = pair.second;
} else {
curr_node = parent_node;
break;
}
}
}
if (stackPtr > 0) {
curr_node = STACK_ENTRY_GET_NODE(stack[0]);
}
MOZ_ASSERT(curr_node);
#undef STACK_ENTRY_SET_IS_LEFT
#undef STACK_ENTRY_GET_IS_LEFT
#undef STACK_ENTRY_GET_NODE
return curr_node;
}
// ---- Helpers for deletion -------------------------------- //
// `leftshrunk`: a helper function for `delete_worker` and `findlowest`
//
// Parameters:
//
// n Pointer to a node. The node's left subtree has just shrunk due to
// item removal; its "skew" flag needs adjustment, and the local tree
// (the subtree of which this node is the root node) may have become
// unbalanced.
//
// Return values:
//
// (jseward: apparently some node, but what is it?), plus either:
//
// OK The parent activation of the delete activation that called
// this function may assume the entire tree is valid.
//
// Balance Do not assume the entire tree is valid.
NodeAndResult leftshrunk(Node* n) {
switch (n->tag) {
case Tag::Left: {
n->tag = Tag::None;
return NodeAndResult(n, Result::Balance);
}
case Tag::Right: {
if (n->right->tag == Tag::Right) {
n->tag = Tag::None;
n->right->tag = Tag::None;
n = rotate_left(n);
return NodeAndResult(n, Result::Balance);
} else if (n->right->tag == Tag::None) {
n->tag = Tag::Right;
n->right->tag = Tag::Left;
n = rotate_left(n);
return NodeAndResult(n, Result::OK);
} else {
switch (n->right->left->tag) {
case Tag::Left:
n->tag = Tag::None;
n->right->tag = Tag::Right;
break;
case Tag::Right:
n->tag = Tag::Left;
n->right->tag = Tag::None;
break;
case Tag::None:
n->tag = Tag::None;
n->right->tag = Tag::None;
break;
case Tag::Free:
default:
MOZ_CRASH();
}
n->right->left->tag = Tag::None;
n->right = rotate_right(n->right);
;
n = rotate_left(n);
return NodeAndResult(n, Result::Balance);
}
/*NOTREACHED*/ MOZ_CRASH();
}
case Tag::None: {
n->tag = Tag::Right;
return NodeAndResult(n, Result::OK);
}
case Tag::Free:
default: {
MOZ_CRASH();
}
}
MOZ_CRASH();
}
// rightshrunk: a helper function for `delete` and `findhighest`. See
// `leftshrunk` for details.
NodeAndResult rightshrunk(Node* n) {
switch (n->tag) {
case Tag::Right: {
n->tag = Tag::None;
return NodeAndResult(n, Result::Balance);
}
case Tag::Left: {
if (n->left->tag == Tag::Left) {
n->tag = Tag::None;
n->left->tag = Tag::None;
n = rotate_right(n);
return NodeAndResult(n, Result::Balance);
} else if (n->left->tag == Tag::None) {
n->tag = Tag::Left;
n->left->tag = Tag::Right;
n = rotate_right(n);
return NodeAndResult(n, Result::OK);
} else {
switch (n->left->right->tag) {
case Tag::Left:
n->tag = Tag::Right;
n->left->tag = Tag::None;
break;
case Tag::Right:
n->tag = Tag::None;
n->left->tag = Tag::Left;
break;
case Tag::None:
n->tag = Tag::None;
n->left->tag = Tag::None;
break;
case Tag::Free:
default:
MOZ_CRASH();
}
n->left->right->tag = Tag::None;
n->left = rotate_left(n->left);
n = rotate_right(n);
return NodeAndResult(n, Result::Balance);
}
/*NOTREACHED*/ MOZ_CRASH();
}
case Tag::None: {
n->tag = Tag::Left;
return NodeAndResult(n, Result::OK);
}
case Tag::Free:
default: {
MOZ_CRASH();
}
}
MOZ_CRASH();
}
// `findhighest`: helper function for `delete_worker`. It replaces a node
// with a subtree's greatest (per C::compare) item.
//
// Parameters:
//
// target Pointer to node to be replaced.
//
// n Address of pointer to subtree.
//
// Return value:
//
// Nothing The target node could not be replaced because the subtree
// provided was empty.
//
// Some(Node*,Result) jseward: it's pretty unclear, but I *think* it
// is a pair that has the same meaning as the
// pair returned by `leftgrown`, as described above.
mozilla::Maybe<NodeAndResult> findhighest(Node* target, Node* n) {
if (n == nullptr) {
return mozilla::Nothing();
}
auto res = Result::Balance;
if (n->right != nullptr) {
auto fhi = findhighest(target, n->right);
if (fhi.isSome()) {
n->right = fhi.value().first;
res = fhi.value().second;
if (res == Result::Balance) {
auto pair = rightshrunk(n);
n = pair.first;
res = pair.second;
}
return mozilla::Some(NodeAndResult(n, res));
} else {
return mozilla::Nothing();
}
}
target->item = n->item;
Node* tmp = n;
n = n->left;
freeNode(tmp);
return mozilla::Some(NodeAndResult(n, res));
}
// `findhighest`: helper function for `delete_worker`. It replaces a node
// with a subtree's greatest (per C::compare) item. See `findhighest` for
// details.
mozilla::Maybe<NodeAndResult> findlowest(Node* target, Node* n) {
if (n == nullptr) {
return mozilla::Nothing();
}
Result res = Result::Balance;
if (n->left != nullptr) {
auto flo = findlowest(target, n->left);
if (flo.isSome()) {
n->left = flo.value().first;
res = flo.value().second;
if (res == Result::Balance) {
auto pair = leftshrunk(n);
n = pair.first;
res = pair.second;
}
return mozilla::Some(NodeAndResult(n, res));
} else {
return mozilla::Nothing();
}
}
target->item = n->item;
Node* tmp = n;
n = n->right;
freeNode(tmp);
return mozilla::Some(NodeAndResult(n, res));
}
// ---- Deletion -------------------------------------------- //
// Deletes the node matching `item` from an arbitrary subtree rooted at
// `node`. Returns the root of the new subtree (if any), a `Result` that
// indicates that either, the tree containing `node` does or does not need
// rebalancing (::Balance, ::OK) or that the item was not found (::Error).
NodeAndResult delete_worker(Node* node, const T& item) {
Result tmp = Result::Balance;
if (node == nullptr) {
return NodeAndResult(node, Result::Error);
}
int cmp_res = C::compare(item, node->item);
if (cmp_res < 0) {
auto pair1 = delete_worker(node->left, item);
node->left = pair1.first;
tmp = pair1.second;
if (tmp == Result::Balance) {
auto pair2 = leftshrunk(node);
node = pair2.first;
tmp = pair2.second;
}
return NodeAndResult(node, tmp);
} else if (cmp_res > 0) {
auto pair1 = delete_worker(node->right, item);
node->right = pair1.first;
tmp = pair1.second;
if (tmp == Result::Balance) {
auto pair2 = rightshrunk(node);
node = pair2.first;
tmp = pair2.second;
}
return NodeAndResult(node, tmp);
} else {
if (node->left != nullptr) {
auto fhi = findhighest(node, node->left);
if (fhi.isSome()) {
node->left = fhi.value().first;
tmp = fhi.value().second;
if (tmp == Result::Balance) {
auto pair = leftshrunk(node);
node = pair.first;
tmp = pair.second;
}
}
return NodeAndResult(node, tmp);
}
if (node->right != nullptr) {
auto flo = findlowest(node, node->right);
if (flo.isSome()) {
node->right = flo.value().first;
tmp = flo.value().second;
if (tmp == Result::Balance) {
auto pair = rightshrunk(node);
node = pair.first;
tmp = pair.second;
}
}
return NodeAndResult(node, tmp);
}
freeNode(node);
return NodeAndResult(nullptr, Result::Balance);
}
}
// ---- Lookup ---------------------------------------------- //
// Find the node matching `v`, or return nullptr if not found.
Node* find_worker(const T& v) const {
Node* node = root_;
while (node) {
int cmpRes = C::compare(v, node->item);
if (cmpRes < 0) {
node = node->left;
} else if (cmpRes > 0) {
node = node->right;
} else {
return node;
}
}
return nullptr;
}
// ---- Iteration ------------------------------------------- //
public:
// This provides iteration forwards over the tree. You can either iterate
// over the whole tree or specify a start point. To iterate over the whole
// tree:
//
// AvlTree<MyT,MyC> tree;
// .. put stuff into `tree` ..
//
// AvlTree<MyT,MyC>::Iter iter(&tree);
// while (iter.hasMore) {
// MyT item = iter.next();
// }
//
// Alternatively you can initialize the iterator with some value `startAt`,
// so that the first value you get is greater than or equal to `startAt`,
// per `MyC::compare`:
//
// AvlTree<MyT,MyC>::Iter iter(&tree, startAt);
//
// Starting the iterator at a particular value requires finding the value in
// the tree and recording the path to it. So it's nearly as cheap as a call
// to `AvlTree::contains` and you can use it as a plausible substitute for
// `::contains` if you want.
//
// Note that `class Iter` is quite large -- around 50 machine words -- so
// you might want to think twice before allocating instances on the heap.
class Iter {
const AvlTreeImpl<T, C>* tree_;
Node* stack_[MAX_TREE_DEPTH];
size_t stackPtr_;
// This sets up the iterator stack so that the first value it produces
// will be the smallest value that is greater than or equal to `v`. Note
// the structural similarity to ::find_worker above.
//
// The logic for pushing nodes on the stack looks strange at first. Once
// set up, the stack contains a root-to-some-node path, and the
// top-of-stack value is the next value the iterator will emit. If the
// stack becomes empty then the iteration is complete.
//
// It's not quite accurate to say that the stack contains a complete
// root-to-some-node path. Rather, the stack contains such a path, except
// it omits nodes at which the path goes to the right child. Eg:
//
// 5
// 3 8
// 1 4 7 9
//
// If the next item to be emitted is 4, then the stack will be [5, 4] and
// not [5, 3, 4], because at 3 we go right. This explains why the
// `cmpRes > 0` case in `setupIteratorStack` doesn't push an item on the
// stack. It also explains why the single-argument `Iter::Iter` below,
// which sets up for iteration starting at the lowest element, simply
// calls `visitLeftChildren` to do its work.
void setupIteratorStack(Node* node, const T& v) {
// Ensure stackPtr_ is cached in a register, since this function can be
// hot.
MOZ_ASSERT(stackPtr_ == 0);
size_t stackPtr = 0;
while (node) {
int cmpRes = C::compare(v, node->item);
if (cmpRes < 0) {
stack_[stackPtr++] = node;
MOZ_RELEASE_ASSERT(stackPtr < MAX_TREE_DEPTH);
node = node->left;
} else if (cmpRes > 0) {
node = node->right;
} else {
stack_[stackPtr++] = node;
MOZ_RELEASE_ASSERT(stackPtr < MAX_TREE_DEPTH);
break;
}
}
stackPtr_ = stackPtr;
}
void visitLeftChildren(Node* node) {
while (true) {
Node* left = node->left;
if (left == nullptr) {
break;
}
stack_[stackPtr_++] = left;
MOZ_RELEASE_ASSERT(stackPtr_ < MAX_TREE_DEPTH);
node = left;
}
}
public:
explicit Iter(const AvlTreeImpl<T, C>* tree) {
tree_ = tree;
stackPtr_ = 0;
if (tree->root_ != nullptr) {
stack_[stackPtr_++] = tree->root_;
MOZ_RELEASE_ASSERT(stackPtr_ < MAX_TREE_DEPTH);
visitLeftChildren(tree->root_);
}
}
Iter(const AvlTreeImpl<T, C>* tree, const T& startAt) {
tree_ = tree;
stackPtr_ = 0;
setupIteratorStack(tree_->root_, startAt);
}
bool hasMore() const { return stackPtr_ > 0; }
T next() {
MOZ_RELEASE_ASSERT(stackPtr_ > 0);
Node* ret = stack_[--stackPtr_];
Node* right = ret->right;
if (right != nullptr) {
stack_[stackPtr_++] = right;
MOZ_RELEASE_ASSERT(stackPtr_ < MAX_TREE_DEPTH);
visitLeftChildren(right);
}
return ret->item;
}
};
};
////////////////////////////////////////////////////////////////////////
// //
// AvlTree public interface, for SpiderMonkey. //
// //
////////////////////////////////////////////////////////////////////////
// This public interface is fairly limited and restrictive. If you need to
// add more functionality, consider copying code from `class AvlTreeTestIF` in
// js/src/jsapi-tests/testAvlTree.cpp rather than rolling your own. See
// comments there.
template <class T, class C>
class AvlTree : public AvlTreeImpl<T, C> {
// Shorthands for names in the implementation (parent) class.
using Impl = AvlTreeImpl<T, C>;
using ImplNode = typename AvlTreeImpl<T, C>::Node;
using ImplResult = typename AvlTreeImpl<T, C>::Result;
using ImplNodeAndResult = typename AvlTreeImpl<T, C>::NodeAndResult;
public:
explicit AvlTree(LifoAlloc* alloc = nullptr) : Impl(alloc) {}
// You'll need to tell the tree how to allocate nodes, either here or in
// `AvlTree::AvlTree`.
void setAllocator(LifoAlloc* alloc) { Impl::setAllocator(alloc); }
// Is the tree empty?
bool empty() const { return Impl::root_ == nullptr; }
// Insert `v` in the tree. Returns false to indicate OOM. `v` may not be
// equal to any existing value in the tree, per `C::compare`; if it is, this
// routine will MOZ_CRASH(). It would be trivial to change this to replace
// an existing value instead, if needed.
[[nodiscard]] bool insert(const T& v) {
ImplNode* new_root = Impl::insert_worker(v);
// Take out both unlikely cases with a single comparison.
if (MOZ_UNLIKELY(uintptr_t(new_root) <= uintptr_t(1))) {
// OOM (new_root == 0) or duplicate (new_root == 1)
if (!new_root) {
// OOM
return false;
}
// Duplicate; tree is unchanged.
MOZ_CRASH();
}
Impl::root_ = new_root;
return true;
}
// Remove `v` from the tree. `v` must actually be in the tree, per
// `C::compare`. If it is not, this routine will MOZ_CRASH().
// Superficially it looks like we could change it to return without doing
// anything in that case, if needed, except we'd need to first verify that
// `delete_worker` doesn't change the tree in that case.
void remove(const T& v) {
ImplNodeAndResult pair = Impl::delete_worker(Impl::root_, v);
ImplNode* new_root = pair.first;
ImplResult res = pair.second;
if (MOZ_UNLIKELY(res == ImplResult::Error)) {
// `v` isn't in the tree.
MOZ_CRASH();
} else {
Impl::root_ = new_root;
}
}
// Determine whether the tree contains `v` and if so return, in `res`, a
// copy of the stored version. Note that the determination is done using
// `C::compare` and you should consider carefully the consequences of
// passing in `v` for which `C::compare` indicates "equal" for more than one
// value in the tree. This is not invalid, but it does mean that you may be
// returned, via `res`, *any* of the values in the tree that `compare` deems
// equal to `v`, and which you get is arbitrary -- it depends on which is
// closest to the root.
bool contains(const T& v, T* res) const {
ImplNode* node = Impl::find_worker(v);
if (node) {
*res = node->item;
return true;
}
return false;
}
// Determine whether the tree contains `v` and if so return the address of
// the stored version. The comments on `::contains` about the meaning of
// `C::compare` apply here too.
T* maybeLookup(const T& v) {
ImplNode* node = Impl::find_worker(v);
if (node) {
return &(node->item);
}
return nullptr;
}
// AvlTree::Iter is also public; it's just pass-through from AvlTreeImpl.
// See documentation above on AvlTree::Iter on how to use it.
};
} /* namespace js */
#endif /* ds_AvlTree_h */
|