1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
///////////////////////////////////////////////////////////////////////////////
// //
// Documentation. Code starts about 670 lines down from here. //
// //
///////////////////////////////////////////////////////////////////////////////
// [SMDOC] An overview of Ion's register allocator
//
// The intent of this documentation is to give maintainers a map with which to
// navigate the allocator. As further understanding is obtained, it should be
// added to this overview.
//
// Where possible, invariants are stated and are marked "(INVAR)". Many
// details are omitted because their workings are currently unknown. In
// particular, this overview doesn't explain how Intel-style "modify" (tied)
// operands are handled. Facts or invariants that are speculative -- believed
// to be true, but not verified at the time of writing -- are marked "(SPEC)".
//
// The various concepts are interdependent, so a single forwards reading of the
// following won't make much sense. Many concepts are explained only after
// they are mentioned.
//
// Where possible examples are shown. Without those the description is
// excessively abstract.
//
// Names of the form ::name mean BacktrackingAllocator::name.
//
// The description falls into two sections:
//
// * Section 1: A tour of the data structures
// * Section 2: The core allocation loop, and bundle splitting
//
// The allocator sometimes produces poor allocations, with excessive spilling
// and register-to-register moves (bugs 1752520, bug 1714280 bug 1746596).
// Work in bug 1752582 shows we can get better quality allocations from this
// framework without having to make any large (conceptual) changes, by having
// better splitting heuristics.
//
// At https://bugzilla.mozilla.org/show_bug.cgi?id=1758274#c17
// (https://bugzilla.mozilla.org/attachment.cgi?id=9288467) is a document
// written at the same time as these comments. It describes some improvements
// we could make to our splitting heuristics, particularly in the presence of
// loops and calls, and shows why the current implementation sometimes produces
// excessive spilling. It builds on the commentary in this SMDOC.
//
//
// Top level pipeline
// ~~~~~~~~~~~~~~~~~~
// There are three major phases in allocation. They run sequentially, at a
// per-function granularity.
//
// (1) Liveness analysis and bundle formation
// (2) Bundle allocation and last-chance allocation
// (3) Rewriting the function to create MoveGroups and to "install"
// the allocation
//
// The input language (LIR) is in SSA form, and phases (1) and (3) depend on
// that SSAness. Without it the allocator wouldn't work.
//
// The top level function is ::go. The phases are divided into functions as
// follows:
//
// (1) ::buildLivenessInfo, ::mergeAndQueueRegisters
// (2) ::processBundle, ::tryAllocatingRegistersForSpillBundles,
// ::pickStackSlots
// (3) ::createMoveGroupsFromLiveRangeTransitions, ::installAllocationsInLIR,
// ::populateSafepoints, ::annotateMoveGroups
//
// The code in this file is structured as much as possible in the same sequence
// as flow through the pipeline. Hence, top level function ::go is right at
// the end. Where a function depends on helper function(s), the helpers appear
// first.
//
//
// ========================================================================
// ==== ====
// ==== Section 1: A tour of the data structures ====
// ==== ====
// ========================================================================
//
// Here are the key data structures necessary for understanding what follows.
//
// Some basic data structures
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// CodePosition
// ------------
// A CodePosition is an unsigned 32-bit int that indicates an instruction index
// in the incoming LIR. Each LIR actually has two code positions, one to
// denote the "input" point (where, one might imagine, the operands are read,
// at least useAtStart ones) and the "output" point, where operands are
// written. Eg:
//
// Block 0 [successor 2] [successor 1]
// 2-3 WasmParameter [def v1<g>:r14]
// 4-5 WasmCall [use v1:F:r14]
// 6-7 WasmLoadTls [def v2<o>] [use v1:R]
// 8-9 WasmNullConstant [def v3<o>]
// 10-11 Compare [def v4<i>] [use v2:R] [use v3:A]
// 12-13 TestIAndBranch [use v4:R]
//
// So for example the WasmLoadTls insn has its input CodePosition as 6 and
// output point as 7. Input points are even numbered, output points are odd
// numbered. CodePositions 0 and 1 never appear, because LIR instruction IDs
// start at 1. Indeed, CodePosition 0 is assumed to be invalid and hence is
// used as a marker for "unusual conditions" in various places.
//
// Phi nodes exist in the instruction stream too. They always appear at the
// start of blocks (of course) (SPEC), but their start and end points are
// printed for the group as a whole. This is to emphasise that they are really
// parallel assignments and that printing them sequentially would misleadingly
// imply that they are executed sequentially. Example:
//
// Block 6 [successor 7] [successor 8]
// 56-59 Phi [def v19<o>] [use v2:A] [use v5:A] [use v13:A]
// 56-59 Phi [def v20<o>] [use v7:A] [use v14:A] [use v12:A]
// 60-61 WasmLoadSlot [def v21<o>] [use v1:R]
// 62-63 Compare [def v22<i>] [use v20:R] [use v21:A]
// 64-65 TestIAndBranch [use v22:R]
//
// See that both Phis are printed with limits 56-59, even though they are
// stored in the LIR array like regular LIRs and so have code points 56-57 and
// 58-59 in reality.
//
// The process of allocation adds MoveGroup LIRs to the function. Each
// incoming LIR has its own private list of MoveGroups (actually, 3 lists; two
// for moves that conceptually take place before the instruction, and one for
// moves after it). Hence the CodePositions for LIRs (the "62-63", etc, above)
// do not change as a result of allocation.
//
// Virtual registers (vregs) in LIR
// --------------------------------
// The MIR from which the LIR is derived, is standard SSA. That SSAness is
// carried through into the LIR (SPEC). In the examples here, LIR SSA names
// (virtual registers, a.k.a. vregs) are printed as "v<number>". v0 never
// appears and is presumed to be a special value, perhaps "invalid" (SPEC).
//
// The allocator core has a type VirtualRegister, but this is private to the
// allocator and not part of the LIR. It carries far more information than
// merely the name of the vreg. The allocator creates one VirtualRegister
// structure for each vreg in the LIR.
//
// LDefinition and LUse
// --------------------
// These are part of the incoming LIR. Each LIR instruction defines zero or
// more values, and contains one LDefinition for each defined value (SPEC).
// Each instruction has zero or more input operands, each of which has its own
// LUse (SPEC).
//
// Both LDefinition and LUse hold both a virtual register name and, in general,
// a real (physical) register identity. The incoming LIR has the real register
// fields unset, except in places where the incoming LIR has fixed register
// constraints (SPEC). Phase 3 of allocation will visit all of the
// LDefinitions and LUses so as to write into the real register fields the
// decisions made by the allocator. For LUses, this is done by overwriting the
// complete LUse with a different LAllocation, for example LStackSlot. That's
// possible because LUse is a child class of LAllocation.
//
// This action of reading and then later updating LDefinition/LUses is the core
// of the allocator's interface to the outside world.
//
// To make visiting of LDefinitions/LUses possible, the allocator doesn't work
// with LDefinition and LUse directly. Rather it has pointers to them
// (VirtualRegister::def_, UsePosition::use_). Hence Phase 3 can modify the
// LIR in-place.
//
// (INVARs, all SPEC):
//
// - The collective VirtualRegister::def_ values should be unique, and there
// should be a 1:1 mapping between the VirtualRegister::def_ values and the
// LDefinitions in the LIR. (So that the LIR LDefinition has exactly one
// VirtualRegister::def_ to track it). But only for the valid LDefinitions.
// If isBogusTemp() is true, the definition is invalid and doesn't have a
// vreg.
//
// - The same for uses: there must be a 1:1 correspondence between the
// CodePosition::use_ values and the LIR LUses.
//
// - The allocation process must preserve these 1:1 mappings. That implies
// (weaker) that the number of VirtualRegisters and of UsePositions must
// remain constant through allocation. (Eg: losing them would mean that some
// LIR def or use would necessarily not get annotated with its final
// allocation decision. Duplicating them would lead to the possibility of
// conflicting allocation decisions.)
//
// Other comments regarding LIR
// ----------------------------
// The incoming LIR is structured into basic blocks and a CFG, as one would
// expect. These (insns, block boundaries, block edges etc) are available
// through the BacktrackingAllocator object. They are important for Phases 1
// and 3 but not for Phase 2.
//
// Phase 3 "rewrites" the input LIR so as to "install" the final allocation.
// It has to insert MoveGroup instructions, but that isn't done by pushing them
// into the instruction array. Rather, each LIR has 3 auxiliary sets of
// MoveGroups (SPEC): two that "happen" conceptually before the LIR, and one
// that happens after it. The rewriter inserts MoveGroups into one of these 3
// sets, and later code generation phases presumably insert the sets (suitably
// translated) into the final machine code (SPEC).
//
//
// Key data structures: LiveRange, VirtualRegister and LiveBundle
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// These three have central roles in allocation. Of them, LiveRange is the
// most central. VirtualRegister is conceptually important throughout, but
// appears less frequently in the allocator code. LiveBundle is important only
// in Phase 2 (where it is central) and at the end of Phase 1, but plays no
// role in Phase 3.
//
// It's important to understand that LiveRange and VirtualRegister correspond
// to concepts visible in the incoming LIR, which is in SSA form. LiveBundle
// by comparison is related to neither the structure of LIR nor its SSA
// properties. Instead, LiveBundle is an essentially adminstrative structure
// used to accelerate allocation and to implement a crude form of
// move-coalescing.
//
// VirtualRegisters and LiveRanges are (almost) static throughout the process,
// because they reflect aspects of the incoming LIR, which does not change.
// LiveBundles by contrast come and go; they are created, but may be split up
// into new bundles, and old ones abandoned.
//
// Each LiveRange is a member of two different linked lists, chained through
// fields registerLink and bundleLink.
//
// A VirtualRegister (described in detail below) has a list of LiveRanges that
// it "owns". These are chained through LiveRange::registerLink.
//
// A LiveBundle (also described below) also has a list LiveRanges that it
// "owns", chained through LiveRange::bundleLink.
//
// Hence each LiveRange is "owned" by one VirtualRegister and one LiveBundle.
// LiveRanges may have their owning LiveBundle changed as a result of
// splitting. By contrast a LiveRange stays with its "owning" VirtualRegister
// for ever.
//
// A few LiveRanges have no VirtualRegister. This is used to implement
// register spilling for calls. Each physical register that's not preserved
// across a call has a small range that covers the call. It is
// ::buildLivenessInfo that adds these small ranges.
//
// Iterating over every VirtualRegister in the system is a common operation and
// is straightforward because (somewhat redundantly?) the LIRGraph knows the
// number of vregs, and more importantly because BacktrackingAllocator::vregs
// is a vector of all VirtualRegisters. By contrast iterating over every
// LiveBundle in the system is more complex because there is no top-level
// registry of them. It is still possible though. See ::dumpLiveRangesByVReg
// and ::dumpLiveRangesByBundle for example code.
//
// LiveRange
// ---------
// Fundamentally, a LiveRange (often written just "range") is a request for
// storage of a LIR vreg for some contiguous sequence of LIRs. A LiveRange
// generally covers only a fraction of a vreg's overall lifetime, so multiple
// LiveRanges are generally needed to cover the whole lifetime.
//
// A LiveRange contains (amongst other things):
//
// * the vreg for which it is for, as a VirtualRegister*
//
// * the range of CodePositions for which it is for, as a LiveRange::Range
//
// * auxiliary information:
//
// - a boolean that indicates whether this LiveRange defines a value for the
// vreg. If so, that definition is regarded as taking place at the first
// CodePoint of the range.
//
// - a linked list of uses of the vreg within this range. Each use is a pair
// of a CodePosition and an LUse*. (INVAR): the uses are maintained in
// increasing order of CodePosition. Multiple uses at the same
// CodePosition are permitted, since that is necessary to represent an LIR
// that uses the same vreg in more than one of its operand slots.
//
// Some important facts about LiveRanges are best illustrated with examples:
//
// v25 75-82 { 75_def:R 78_v25:A 82_v25:A }
//
// This LiveRange is for vreg v25. The value is defined at CodePosition 75,
// with the LIR requiring that it be in a register. It is used twice at
// positions 78 and 82, both with no constraints (A meaning "any"). The range
// runs from position 75 to 82 inclusive. Note however that LiveRange::Range
// uses non-inclusive range ends; hence its .to field would be 83, not 82.
//
// v26 84-85 { 85_v26:R }
//
// This LiveRange is for vreg v26. Here, there's only a single use of it at
// position 85. Presumably it is defined in some other LiveRange.
//
// v19 74-79 { }
//
// This LiveRange is for vreg v19. There is no def and no uses, so at first
// glance this seems redundant. But it isn't: it still expresses a request for
// storage for v19 across 74-79, because Phase 1 regards v19 as being live in
// this range (meaning: having a value that, if changed in this range, would
// cause the program to fail).
//
// Other points:
//
// * (INVAR) Each vreg/VirtualRegister has at least one LiveRange.
//
// * (INVAR) Exactly one LiveRange of a vreg gives a definition for the value.
// All other LiveRanges must consist only of uses (including zero uses, for a
// "flow-though" range as mentioned above). This requirement follows from
// the fact that LIR is in SSA form.
//
// * It follows from this, that the LiveRanges for a VirtualRegister must form
// a tree, where the parent-child relationship is "control flows directly
// from a parent LiveRange (anywhere in the LiveRange) to a child LiveRange
// (start)". The entire tree carries only one value. This is a use of
// SSAness in the allocator which is fundamental: without SSA input, this
// design would not work.
//
// The root node (LiveRange) in the tree must be one that defines the value,
// and all other nodes must only use or be flow-throughs for the value. It's
// OK for LiveRanges in the tree to overlap, providing that there is a unique
// root node -- otherwise it would be unclear which LiveRange provides the
// value.
//
// The function ::createMoveGroupsFromLiveRangeTransitions runs after all
// LiveBundles have been allocated. It visits each VirtualRegister tree in
// turn. For every parent->child edge in a tree, it creates a MoveGroup that
// copies the value from the parent into the child -- this is how the
// allocator decides where to put MoveGroups. There are various other
// details not described here.
//
// * It's important to understand that a LiveRange carries no meaning about
// control flow beyond that implied by the SSA (hence, dominance)
// relationship between a def and its uses. In particular, there's no
// implication that execution "flowing into" the start of the range implies
// that it will "flow out" of the end. Or that any particular use will or
// will not be executed.
//
// * (very SPEC) Indeed, even if a range has a def, there's no implication that
// a use later in the range will have been immediately preceded by execution
// of the def. It could be that the def is executed, flow jumps somewhere
// else, and later jumps back into the middle of the range, where there are
// then some uses.
//
// * Uses of a vreg by a phi node are not mentioned in the use list of a
// LiveRange. The reasons for this are unknown, but it is speculated that
// this is because we don't need to know about phi uses where we use the list
// of positions. See comments on VirtualRegister::usedByPhi_.
//
// * Similarly, a definition of a vreg by a phi node is not regarded as being a
// definition point (why not?), at least as the view of
// LiveRange::hasDefinition_.
//
// * LiveRanges that nevertheless include a phi-defined value have their first
// point set to the first of the block of phis, even if the var isn't defined
// by that specific phi. Eg:
//
// Block 6 [successor 7] [successor 8]
// 56-59 Phi [def v19<o>] [use v2:A] [use v5:A] [use v13:A]
// 56-59 Phi [def v20<o>] [use v7:A] [use v14:A] [use v12:A]
// 60-61 WasmLoadSlot [def v21<o>] [use v1:R]
// 62-63 Compare [def v22<i>] [use v20:R] [use v21:A]
//
// The relevant live range for v20 is
//
// v20 56-65 { 63_v20:R }
//
// Observe that it starts at 56, not 58.
//
// VirtualRegister
// ---------------
// Each VirtualRegister is associated with an SSA value created by the LIR.
// Fundamentally it is a container to hold all of the LiveRanges that together
// indicate where the value must be kept live. This is a linked list beginning
// at VirtualRegister::ranges_, and which, as described above, is chained
// through LiveRange::registerLink. The set of LiveRanges must logically form
// a tree, rooted at the LiveRange which defines the value.
//
// For adminstrative convenience, the linked list must contain the LiveRanges
// in order of increasing start point.
//
// There are various auxiliary fields, most importantly the LIR node and the
// associated LDefinition that define the value.
//
// It is OK, and quite common, for LiveRanges of a VirtualRegister to overlap.
// The effect will be that, in an overlapped area, there are two storage
// locations holding the value. This is OK -- although wasteful of storage
// resources -- because the SSAness means the value must be the same in both
// locations. Hence there's no questions like "which LiveRange holds the most
// up-to-date value?", since it's all just one value anyway.
//
// Note by contrast, it is *not* OK for the LiveRanges of a LiveBundle to
// overlap.
//
// LiveBundle
// ----------
// Similar to VirtualRegister, a LiveBundle is also, fundamentally, a container
// for a set of LiveRanges. The set is stored as a linked list, rooted at
// LiveBundle::ranges_ and chained through LiveRange::bundleLink.
//
// However, the similarity ends there:
//
// * The LiveRanges in a LiveBundle absolutely must not overlap. They must
// indicate disjoint sets of CodePositions, and must be stored in the list in
// order of increasing CodePosition. Because of the no-overlap requirement,
// these ranges form a total ordering regardless of whether one uses the
// LiveRange::Range::from_ or ::to_ fields for comparison.
//
// * The LiveRanges in a LiveBundle can otherwise be entirely arbitrary and
// unrelated. They can be from different VirtualRegisters and can have no
// particular mutual significance w.r.t. the SSAness or structure of the
// input LIR.
//
// LiveBundles are the fundamental unit of allocation. The allocator attempts
// to find a single storage location that will work for all LiveRanges in the
// bundle. That's why the ranges must not overlap. If no such location can be
// found, the allocator may decide to split the bundle into multiple smaller
// bundles. Each of those may be allocated independently.
//
// The other really important field is LiveBundle::alloc_, indicating the
// chosen storage location.
//
// Here's an example, for a LiveBundle before it has been allocated:
//
// LB2(parent=none v3 8-21 { 16_v3:A } ## v3 24-25 { 25_v3:F:xmm0 })
//
// LB merely indicates "LiveBundle", and the 2 is the debugId_ value (see
// below). This bundle has two LiveRanges
//
// v3 8-21 { 16_v3:A }
// v3 24-25 { 25_v3:F:xmm0 }
//
// both of which (coincidentally) are for the same VirtualRegister, v3.The
// second LiveRange has a fixed use in `xmm0`, whilst the first one doesn't
// care (A meaning "any location") so the allocator *could* choose `xmm0` for
// the bundle as a whole.
//
// One might ask: why bother with LiveBundle at all? After all, it would be
// possible to get correct allocations by allocating each LiveRange
// individually, then leaving ::createMoveGroupsFromLiveRangeTransitions to add
// MoveGroups to join up LiveRanges that form each SSA value tree (that is,
// LiveRanges belonging to each VirtualRegister).
//
// There are two reasons:
//
// (1) By putting multiple LiveRanges into each LiveBundle, we can end up with
// many fewer LiveBundles than LiveRanges. Since the cost of allocating a
// LiveBundle is substantially less than the cost of allocating each of its
// LiveRanges individually, the allocator will run faster.
//
// (2) It provides a crude form of move-coalescing. There are situations where
// it would be beneficial, although not mandatory, to have two LiveRanges
// assigned to the same storage unit. Most importantly: (a) LiveRanges
// that form all of the inputs, and the output, of a phi node. (b)
// LiveRanges for the output and first-operand values in the case where we
// are targetting Intel-style instructions.
//
// In such cases, if the bundle can be allocated as-is, then no extra moves
// are necessary. If not (and the bundle is split), then
// ::createMoveGroupsFromLiveRangeTransitions will later fix things up by
// inserting MoveGroups in the right places.
//
// Merging of LiveRanges into LiveBundles is done in Phase 1, by
// ::mergeAndQueueRegisters, after liveness analysis (which generates only
// LiveRanges).
//
// For the bundle mentioned above, viz
//
// LB2(parent=none v3 8-21 { 16_v3:A } ## v3 24-25 { 25_v3:F:xmm0 })
//
// the allocator did not in the end choose to allocate it to `xmm0`. Instead
// it was split into two bundles, LB6 (a "spill parent", or root node in the
// trees described above), and LB9, a leaf node, that points to its parent LB6:
//
// LB6(parent=none v3 8-21 %xmm1.s { 16_v3:A } ## v3 24-25 %xmm1.s { })
// LB9(parent=LB6 v3 24-25 %xmm0.s { 25_v3:F:rax })
//
// Note that both bundles now have an allocation, and that is printed,
// redundantly, for each LiveRange in the bundle -- hence the repeated
// `%xmm1.s` in the lines above. Since all LiveRanges in a LiveBundle must be
// allocated to the same storage location, we never expect to see output like
// this
//
// LB6(parent=none v3 8-21 %xmm1.s { 16_v3:A } ## v3 24-25 %xmm2.s { })
//
// and that is in any case impossible, since a LiveRange doesn't have an
// LAllocation field. Instead it has a pointer to its LiveBundle, and the
// LAllocation lives in the LiveBundle.
//
// For the resulting allocation (LB6 and LB9), all the LiveRanges are use-only
// or flow-through. There are no definitions. But they are all for the same
// VirtualReg, v3, so they all have the same value. An important question is
// where they "get their value from". The answer is that
// ::createMoveGroupsFromLiveRangeTransitions will have to insert suitable
// MoveGroups so that each LiveRange for v3 can "acquire" the value from a
// previously-executed LiveRange, except for the range that defines it. The
// defining LiveRange is not visible here; either it is in some other
// LiveBundle, not shown, or (more likely) the value is defined by a phi-node,
// in which case, as mentioned previously, it is not shown as having an
// explicit definition in any LiveRange.
//
// LiveBundles also have a `SpillSet* spill_` field (see below) and a
// `LiveBundle* spillParent_`. The latter is used to ensure that all bundles
// originating from an "original" bundle share the same spill slot. The
// `spillParent_` pointers can be thought of creating a 1-level tree, where
// each node points at its parent. Since the tree can be only 1-level, the
// following invariant (INVAR) must be maintained:
//
// * if a LiveBundle has a non-null spillParent_ field, then it is a leaf node,
// and no other LiveBundle can point at this one.
//
// * else (it has a null spillParent_ field) it is a root node, and so other
// LiveBundles may point at it.
//
// When compiled with JS_JITSPEW, LiveBundle has a 32-bit `debugId_` field.
// This is used only for debug printing, and makes it easier to see
// parent-child relationships induced by the `spillParent_` pointers.
//
// The "life cycle" of LiveBundles is described in Section 2 below.
//
//
// Secondary data structures: SpillSet, Requirement
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// SpillSet
// --------
// A SpillSet is a container for a set of LiveBundles that have been spilled,
// all of which are assigned the same spill slot. The set is represented as a
// vector of points to LiveBundles. SpillSet also contains the identity of the
// spill slot (its LAllocation).
//
// A LiveBundle, if it is to be spilled, has a pointer to the relevant
// SpillSet, and the SpillSet in turn has a pointer back to the LiveBundle in
// its vector thereof. So LiveBundles (that are to be spilled) and SpillSets
// point at each other.
//
// (SPEC) LiveBundles that are not to be spilled (or for which the decision has
// yet to be made, have their SpillSet pointers as null. (/SPEC)
//
// Requirement
// -----------
// Requirements are used transiently during the main allocation loop. It
// summarises the set of constraints on storage location (must be any register,
// must be this specific register, must be stack, etc) for a LiveBundle. This
// is so that the main allocation loop knows what kind of storage location it
// must choose in order to satisfy all of the defs and uses within the bundle.
//
// What Requirement provides is (a) a partially ordered set of locations, and
// (b) a constraint-merging method `merge`.
//
// Requirement needs a rewrite (and, in fact, that has already happened in
// un-landed code in bug 1758274) for the following reasons:
//
// * it's potentially buggy (bug 1761654), although that doesn't currently
// affect us, for reasons which are unclear.
//
// * the partially ordered set has a top point, meaning "no constraint", but it
// doesn't have a corresponding bottom point, meaning "impossible
// constraints". (So it's a partially ordered set, but not a lattice). This
// leads to awkward coding in some places, which would be simplified if there
// were an explicit way to indicate "impossible constraint".
//
//
// Some ASCII art
// ~~~~~~~~~~~~~~
//
// Here's some not-very-good ASCII art that tries to summarise the data
// structures that persist for the entire allocation of a function:
//
// BacktrackingAllocator
// |
// (vregs)
// |
// v
// |
// VirtualRegister -->--(ins)--> LNode
// | | `->--(def)--> LDefinition
// v ^
// | |
// (ranges) |
// | (vreg)
// `--v->--. | ,-->--v-->-------------->--v-->--. ,--NULL
// \ | / \ /
// LiveRange LiveRange LiveRange
// / | \ / \.
// ,--b->--' / `-->--b-->--' `--NULL
// | (bundle)
// ^ /
// | v
// (ranges) /
// | /
// LiveBundle --s-->- LiveBundle
// | \ / |
// | \ / |
// (spill) ^ ^ (spill)
// | \ / |
// v \ / ^
// | (list) |
// \ | /
// `--->---> SpillSet <--'
//
// --b-- LiveRange::bundleLink: links in the list of LiveRanges that belong to
// a LiveBundle
//
// --v-- LiveRange::registerLink: links in the list of LiveRanges that belong
// to a VirtualRegister
//
// --s-- LiveBundle::spillParent: a possible link to my "spill parent bundle"
//
//
// * LiveRange is in the center. Each LiveRange is a member of two different
// linked lists, the --b-- list and the --v-- list.
//
// * VirtualRegister has a pointer `ranges` that points to the start of its
// --v-- list of LiveRanges.
//
// * LiveBundle has a pointer `ranges` that points to the start of its --b--
// list of LiveRanges.
//
// * LiveRange points back at both its owning VirtualRegister (`vreg`) and its
// owning LiveBundle (`bundle`).
//
// * LiveBundle has a pointer --s-- `spillParent`, which may be null, to its
// conceptual "spill parent bundle", as discussed in detail above.
//
// * LiveBundle has a pointer `spill` to its SpillSet.
//
// * SpillSet has a vector `list` of pointers back to the LiveBundles that
// point at it.
//
// * VirtualRegister has pointers `ins` to the LNode that defines the value and
// `def` to the LDefinition within that LNode.
//
// * BacktrackingAllocator has a vector `vregs` of pointers to all the
// VirtualRegisters for the function. There is no equivalent top-level table
// of all the LiveBundles for the function.
//
// Note that none of these pointers are "owning" in the C++-storage-management
// sense. Rather, everything is stored in single arena which is freed when
// compilation of the function is complete. For this reason,
// BacktrackingAllocator.{h,cpp} is almost completely free of the usual C++
// storage-management artefacts one would normally expect to see.
//
//
// ========================================================================
// ==== ====
// ==== Section 2: The core allocation loop, and bundle splitting ====
// ==== ====
// ========================================================================
//
// Phase 1 of the allocator (described at the start of this SMDOC) computes
// live ranges, merges them into bundles, and places the bundles in a priority
// queue ::allocationQueue, ordered by what ::computePriority computes.
//
//
// The allocation loops
// ~~~~~~~~~~~~~~~~~~~~
// The core of the allocation machinery consists of two loops followed by a
// call to ::pickStackSlots. The latter is uninteresting. The two loops live
// in ::go and are documented in detail there.
//
//
// Bundle splitting
// ~~~~~~~~~~~~~~~~
// If the first of the two abovementioned loops cannot find a register for a
// bundle, either directly or as a result of evicting conflicting bundles, then
// it will have to either split or spill the bundle. The entry point to the
// split/spill subsystem is ::chooseBundleSplit. See comments there.
///////////////////////////////////////////////////////////////////////////////
// //
// End of documentation //
// //
///////////////////////////////////////////////////////////////////////////////
#include "jit/BacktrackingAllocator.h"
#include <algorithm>
#include "jit/BitSet.h"
#include "jit/CompileInfo.h"
#include "js/Printf.h"
using namespace js;
using namespace js::jit;
using mozilla::DebugOnly;
// This is a big, complex file. Code is grouped into various sections, each
// preceded by a box comment. Sections not marked as "Misc helpers" are
// pretty much the top level flow, and are presented roughly in the same order
// in which the allocation pipeline operates. BacktrackingAllocator::go,
// right at the end of the file, is a good starting point.
///////////////////////////////////////////////////////////////////////////////
// //
// Misc helpers: linked-list management //
// //
///////////////////////////////////////////////////////////////////////////////
static inline bool SortBefore(UsePosition* a, UsePosition* b) {
return a->pos <= b->pos;
}
static inline bool SortBefore(LiveRange::BundleLink* a,
LiveRange::BundleLink* b) {
LiveRange* rangea = LiveRange::get(a);
LiveRange* rangeb = LiveRange::get(b);
MOZ_ASSERT(!rangea->intersects(rangeb));
return rangea->from() < rangeb->from();
}
static inline bool SortBefore(LiveRange::RegisterLink* a,
LiveRange::RegisterLink* b) {
return LiveRange::get(a)->from() <= LiveRange::get(b)->from();
}
template <typename T>
static inline void InsertSortedList(InlineForwardList<T>& list, T* value) {
if (list.empty()) {
list.pushFront(value);
return;
}
if (SortBefore(list.back(), value)) {
list.pushBack(value);
return;
}
T* prev = nullptr;
for (InlineForwardListIterator<T> iter = list.begin(); iter; iter++) {
if (SortBefore(value, *iter)) {
break;
}
prev = *iter;
}
if (prev) {
list.insertAfter(prev, value);
} else {
list.pushFront(value);
}
}
///////////////////////////////////////////////////////////////////////////////
// //
// Misc helpers: methods for class SpillSet //
// //
///////////////////////////////////////////////////////////////////////////////
void SpillSet::setAllocation(LAllocation alloc) {
for (size_t i = 0; i < numSpilledBundles(); i++) {
spilledBundle(i)->setAllocation(alloc);
}
}
///////////////////////////////////////////////////////////////////////////////
// //
// Misc helpers: methods for class LiveRange //
// //
///////////////////////////////////////////////////////////////////////////////
static size_t SpillWeightFromUsePolicy(LUse::Policy policy) {
switch (policy) {
case LUse::ANY:
return 1000;
case LUse::REGISTER:
case LUse::FIXED:
return 2000;
default:
return 0;
}
}
inline void LiveRange::noteAddedUse(UsePosition* use) {
LUse::Policy policy = use->usePolicy();
usesSpillWeight_ += SpillWeightFromUsePolicy(policy);
if (policy == LUse::FIXED) {
++numFixedUses_;
}
}
inline void LiveRange::noteRemovedUse(UsePosition* use) {
LUse::Policy policy = use->usePolicy();
usesSpillWeight_ -= SpillWeightFromUsePolicy(policy);
if (policy == LUse::FIXED) {
--numFixedUses_;
}
MOZ_ASSERT_IF(!hasUses(), !usesSpillWeight_ && !numFixedUses_);
}
void LiveRange::addUse(UsePosition* use) {
MOZ_ASSERT(covers(use->pos));
InsertSortedList(uses_, use);
noteAddedUse(use);
}
UsePosition* LiveRange::popUse() {
UsePosition* ret = uses_.popFront();
noteRemovedUse(ret);
return ret;
}
void LiveRange::tryToMoveDefAndUsesInto(LiveRange* other) {
MOZ_ASSERT(&other->vreg() == &vreg());
MOZ_ASSERT(this != other);
// Move over all uses which fit in |other|'s boundaries.
for (UsePositionIterator iter = usesBegin(); iter;) {
UsePosition* use = *iter;
if (other->covers(use->pos)) {
uses_.removeAndIncrement(iter);
noteRemovedUse(use);
other->addUse(use);
} else {
iter++;
}
}
// Distribute the definition to |other| as well, if possible.
if (hasDefinition() && from() == other->from()) {
other->setHasDefinition();
}
}
bool LiveRange::contains(LiveRange* other) const {
return from() <= other->from() && to() >= other->to();
}
void LiveRange::intersect(LiveRange* other, Range* pre, Range* inside,
Range* post) const {
MOZ_ASSERT(pre->empty() && inside->empty() && post->empty());
CodePosition innerFrom = from();
if (from() < other->from()) {
if (to() < other->from()) {
*pre = range_;
return;
}
*pre = Range(from(), other->from());
innerFrom = other->from();
}
CodePosition innerTo = to();
if (to() > other->to()) {
if (from() >= other->to()) {
*post = range_;
return;
}
*post = Range(other->to(), to());
innerTo = other->to();
}
if (innerFrom != innerTo) {
*inside = Range(innerFrom, innerTo);
}
}
bool LiveRange::intersects(LiveRange* other) const {
Range pre, inside, post;
intersect(other, &pre, &inside, &post);
return !inside.empty();
}
///////////////////////////////////////////////////////////////////////////////
// //
// Misc helpers: methods for class LiveBundle //
// //
///////////////////////////////////////////////////////////////////////////////
#ifdef DEBUG
size_t LiveBundle::numRanges() const {
size_t count = 0;
for (LiveRange::BundleLinkIterator iter = rangesBegin(); iter; iter++) {
count++;
}
return count;
}
#endif
LiveRange* LiveBundle::rangeFor(CodePosition pos) const {
for (LiveRange::BundleLinkIterator iter = rangesBegin(); iter; iter++) {
LiveRange* range = LiveRange::get(*iter);
if (range->covers(pos)) {
return range;
}
}
return nullptr;
}
void LiveBundle::addRange(LiveRange* range) {
MOZ_ASSERT(!range->bundle());
range->setBundle(this);
InsertSortedList(ranges_, &range->bundleLink);
}
bool LiveBundle::addRange(TempAllocator& alloc, VirtualRegister* vreg,
CodePosition from, CodePosition to) {
LiveRange* range = LiveRange::FallibleNew(alloc, vreg, from, to);
if (!range) {
return false;
}
addRange(range);
return true;
}
bool LiveBundle::addRangeAndDistributeUses(TempAllocator& alloc,
LiveRange* oldRange,
CodePosition from, CodePosition to) {
LiveRange* range = LiveRange::FallibleNew(alloc, &oldRange->vreg(), from, to);
if (!range) {
return false;
}
addRange(range);
oldRange->tryToMoveDefAndUsesInto(range);
return true;
}
LiveRange* LiveBundle::popFirstRange() {
LiveRange::BundleLinkIterator iter = rangesBegin();
if (!iter) {
return nullptr;
}
LiveRange* range = LiveRange::get(*iter);
ranges_.removeAt(iter);
range->setBundle(nullptr);
return range;
}
void LiveBundle::removeRange(LiveRange* range) {
for (LiveRange::BundleLinkIterator iter = rangesBegin(); iter; iter++) {
LiveRange* existing = LiveRange::get(*iter);
if (existing == range) {
ranges_.removeAt(iter);
return;
}
}
MOZ_CRASH();
}
///////////////////////////////////////////////////////////////////////////////
// //
// Misc helpers: methods for class VirtualRegister //
// //
///////////////////////////////////////////////////////////////////////////////
bool VirtualRegister::addInitialRange(TempAllocator& alloc, CodePosition from,
CodePosition to, size_t* numRanges) {
MOZ_ASSERT(from < to);
// Mark [from,to) as a live range for this register during the initial
// liveness analysis, coalescing with any existing overlapping ranges.
// On some pathological graphs there might be a huge number of different
// live ranges. Allow non-overlapping live range to be merged if the
// number of ranges exceeds the cap below.
static const size_t CoalesceLimit = 100000;
LiveRange* prev = nullptr;
LiveRange* merged = nullptr;
for (LiveRange::RegisterLinkIterator iter(rangesBegin()); iter;) {
LiveRange* existing = LiveRange::get(*iter);
if (from > existing->to() && *numRanges < CoalesceLimit) {
// The new range should go after this one.
prev = existing;
iter++;
continue;
}
if (to.next() < existing->from()) {
// The new range should go before this one.
break;
}
if (!merged) {
// This is the first old range we've found that overlaps the new
// range. Extend this one to cover its union with the new range.
merged = existing;
if (from < existing->from()) {
existing->setFrom(from);
}
if (to > existing->to()) {
existing->setTo(to);
}
// Continue searching to see if any other old ranges can be
// coalesced with the new merged range.
iter++;
continue;
}
// Coalesce this range into the previous range we merged into.
MOZ_ASSERT(existing->from() >= merged->from());
if (existing->to() > merged->to()) {
merged->setTo(existing->to());
}
MOZ_ASSERT(!existing->hasDefinition());
existing->tryToMoveDefAndUsesInto(merged);
MOZ_ASSERT(!existing->hasUses());
ranges_.removeAndIncrement(iter);
}
if (!merged) {
// The new range does not overlap any existing range for the vreg.
LiveRange* range = LiveRange::FallibleNew(alloc, this, from, to);
if (!range) {
return false;
}
if (prev) {
ranges_.insertAfter(&prev->registerLink, &range->registerLink);
} else {
ranges_.pushFront(&range->registerLink);
}
(*numRanges)++;
}
return true;
}
void VirtualRegister::addInitialUse(UsePosition* use) {
LiveRange::get(*rangesBegin())->addUse(use);
}
void VirtualRegister::setInitialDefinition(CodePosition from) {
LiveRange* first = LiveRange::get(*rangesBegin());
MOZ_ASSERT(from >= first->from());
first->setFrom(from);
first->setHasDefinition();
}
LiveRange* VirtualRegister::rangeFor(CodePosition pos,
bool preferRegister /* = false */) const {
LiveRange* found = nullptr;
for (LiveRange::RegisterLinkIterator iter = rangesBegin(); iter; iter++) {
LiveRange* range = LiveRange::get(*iter);
if (range->covers(pos)) {
if (!preferRegister || range->bundle()->allocation().isRegister()) {
return range;
}
if (!found) {
found = range;
}
}
}
return found;
}
void VirtualRegister::addRange(LiveRange* range) {
InsertSortedList(ranges_, &range->registerLink);
}
void VirtualRegister::removeRange(LiveRange* range) {
for (LiveRange::RegisterLinkIterator iter = rangesBegin(); iter; iter++) {
LiveRange* existing = LiveRange::get(*iter);
if (existing == range) {
ranges_.removeAt(iter);
return;
}
}
MOZ_CRASH();
}
///////////////////////////////////////////////////////////////////////////////
// //
// Misc helpers: queries about uses //
// //
///////////////////////////////////////////////////////////////////////////////
static inline LDefinition* FindReusingDefOrTemp(LNode* node,
LAllocation* alloc) {
if (node->isPhi()) {
MOZ_ASSERT(node->toPhi()->numDefs() == 1);
MOZ_ASSERT(node->toPhi()->getDef(0)->policy() !=
LDefinition::MUST_REUSE_INPUT);
return nullptr;
}
LInstruction* ins = node->toInstruction();
for (size_t i = 0; i < ins->numDefs(); i++) {
LDefinition* def = ins->getDef(i);
if (def->policy() == LDefinition::MUST_REUSE_INPUT &&
ins->getOperand(def->getReusedInput()) == alloc) {
return def;
}
}
for (size_t i = 0; i < ins->numTemps(); i++) {
LDefinition* def = ins->getTemp(i);
if (def->policy() == LDefinition::MUST_REUSE_INPUT &&
ins->getOperand(def->getReusedInput()) == alloc) {
return def;
}
}
return nullptr;
}
bool BacktrackingAllocator::isReusedInput(LUse* use, LNode* ins,
bool considerCopy) {
if (LDefinition* def = FindReusingDefOrTemp(ins, use)) {
return considerCopy || !vregs[def->virtualRegister()].mustCopyInput();
}
return false;
}
bool BacktrackingAllocator::isRegisterUse(UsePosition* use, LNode* ins,
bool considerCopy) {
switch (use->usePolicy()) {
case LUse::ANY:
return isReusedInput(use->use(), ins, considerCopy);
case LUse::REGISTER:
case LUse::FIXED:
return true;
default:
return false;
}
}
bool BacktrackingAllocator::isRegisterDefinition(LiveRange* range) {
if (!range->hasDefinition()) {
return false;
}
VirtualRegister& reg = range->vreg();
if (reg.ins()->isPhi()) {
return false;
}
if (reg.def()->policy() == LDefinition::FIXED &&
!reg.def()->output()->isRegister()) {
return false;
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Misc helpers: atomic LIR groups //
// //
///////////////////////////////////////////////////////////////////////////////
// The following groupings contain implicit (invisible to ::buildLivenessInfo)
// value flows, and therefore no split points may be requested inside them.
// This is an otherwise unstated part of the contract between LIR generation
// and the allocator.
//
// (1) (any insn) ; OsiPoint
//
// [Further group definitions and supporting code to come, pending rework
// of the wasm atomic-group situation.]
CodePosition RegisterAllocator::minimalDefEnd(LNode* ins) const {
// Compute the shortest interval that captures vregs defined by ins.
// Watch for instructions that are followed by an OSI point.
// If moves are introduced between the instruction and the OSI point then
// safepoint information for the instruction may be incorrect.
while (true) {
LNode* next = insData[ins->id() + 1];
if (!next->isOsiPoint()) {
break;
}
ins = next;
}
return outputOf(ins);
}
///////////////////////////////////////////////////////////////////////////////
// //
// Misc helpers: computation of bundle priorities and spill weights //
// //
///////////////////////////////////////////////////////////////////////////////
size_t BacktrackingAllocator::computePriority(LiveBundle* bundle) {
// The priority of a bundle is its total length, so that longer lived
// bundles will be processed before shorter ones (even if the longer ones
// have a low spill weight). See processBundle().
size_t lifetimeTotal = 0;
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
lifetimeTotal += range->to() - range->from();
}
return lifetimeTotal;
}
bool BacktrackingAllocator::minimalDef(LiveRange* range, LNode* ins) {
// Whether this is a minimal range capturing a definition at ins.
return (range->to() <= minimalDefEnd(ins).next()) &&
((!ins->isPhi() && range->from() == inputOf(ins)) ||
range->from() == outputOf(ins));
}
bool BacktrackingAllocator::minimalUse(LiveRange* range, UsePosition* use) {
// Whether this is a minimal range capturing |use|.
LNode* ins = insData[use->pos];
return (range->from() == inputOf(ins)) &&
(range->to() ==
(use->use()->usedAtStart() ? outputOf(ins) : outputOf(ins).next()));
}
bool BacktrackingAllocator::minimalBundle(LiveBundle* bundle, bool* pfixed) {
LiveRange::BundleLinkIterator iter = bundle->rangesBegin();
LiveRange* range = LiveRange::get(*iter);
if (!range->hasVreg()) {
*pfixed = true;
return true;
}
// If a bundle contains multiple ranges, splitAtAllRegisterUses will split
// each range into a separate bundle.
if (++iter) {
return false;
}
if (range->hasDefinition()) {
VirtualRegister& reg = range->vreg();
if (pfixed) {
*pfixed = reg.def()->policy() == LDefinition::FIXED &&
reg.def()->output()->isRegister();
}
return minimalDef(range, reg.ins());
}
bool fixed = false, minimal = false, multiple = false;
for (UsePositionIterator iter = range->usesBegin(); iter; iter++) {
if (iter != range->usesBegin()) {
multiple = true;
}
switch (iter->usePolicy()) {
case LUse::FIXED:
if (fixed) {
return false;
}
fixed = true;
if (minimalUse(range, *iter)) {
minimal = true;
}
break;
case LUse::REGISTER:
if (minimalUse(range, *iter)) {
minimal = true;
}
break;
default:
break;
}
}
// If a range contains a fixed use and at least one other use,
// splitAtAllRegisterUses will split each use into a different bundle.
if (multiple && fixed) {
minimal = false;
}
if (pfixed) {
*pfixed = fixed;
}
return minimal;
}
size_t BacktrackingAllocator::computeSpillWeight(LiveBundle* bundle) {
// Minimal bundles have an extremely high spill weight, to ensure they
// can evict any other bundles and be allocated to a register.
bool fixed;
if (minimalBundle(bundle, &fixed)) {
return fixed ? 2000000 : 1000000;
}
size_t usesTotal = 0;
fixed = false;
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (range->hasDefinition()) {
VirtualRegister& reg = range->vreg();
if (reg.def()->policy() == LDefinition::FIXED &&
reg.def()->output()->isRegister()) {
usesTotal += 2000;
fixed = true;
} else if (!reg.ins()->isPhi()) {
usesTotal += 2000;
}
}
usesTotal += range->usesSpillWeight();
if (range->numFixedUses() > 0) {
fixed = true;
}
}
// Bundles with fixed uses are given a higher spill weight, since they must
// be allocated to a specific register.
if (testbed && fixed) {
usesTotal *= 2;
}
// Compute spill weight as a use density, lowering the weight for long
// lived bundles with relatively few uses.
size_t lifetimeTotal = computePriority(bundle);
return lifetimeTotal ? usesTotal / lifetimeTotal : 0;
}
size_t BacktrackingAllocator::maximumSpillWeight(
const LiveBundleVector& bundles) {
size_t maxWeight = 0;
for (size_t i = 0; i < bundles.length(); i++) {
maxWeight = std::max(maxWeight, computeSpillWeight(bundles[i]));
}
return maxWeight;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Initialization of the allocator //
// //
///////////////////////////////////////////////////////////////////////////////
// This function pre-allocates and initializes as much global state as possible
// to avoid littering the algorithms with memory management cruft.
bool BacktrackingAllocator::init() {
if (!RegisterAllocator::init()) {
return false;
}
liveIn = mir->allocate<BitSet>(graph.numBlockIds());
if (!liveIn) {
return false;
}
size_t numVregs = graph.numVirtualRegisters();
if (!vregs.init(mir->alloc(), numVregs)) {
return false;
}
for (uint32_t i = 0; i < numVregs; i++) {
new (&vregs[i]) VirtualRegister();
}
// Build virtual register objects.
for (size_t i = 0; i < graph.numBlocks(); i++) {
if (mir->shouldCancel("Create data structures (main loop)")) {
return false;
}
LBlock* block = graph.getBlock(i);
for (LInstructionIterator ins = block->begin(); ins != block->end();
ins++) {
if (mir->shouldCancel("Create data structures (inner loop 1)")) {
return false;
}
for (size_t j = 0; j < ins->numDefs(); j++) {
LDefinition* def = ins->getDef(j);
if (def->isBogusTemp()) {
continue;
}
vreg(def).init(*ins, def, /* isTemp = */ false);
}
for (size_t j = 0; j < ins->numTemps(); j++) {
LDefinition* def = ins->getTemp(j);
if (def->isBogusTemp()) {
continue;
}
vreg(def).init(*ins, def, /* isTemp = */ true);
}
}
for (size_t j = 0; j < block->numPhis(); j++) {
LPhi* phi = block->getPhi(j);
LDefinition* def = phi->getDef(0);
vreg(def).init(phi, def, /* isTemp = */ false);
}
}
LiveRegisterSet remainingRegisters(allRegisters_.asLiveSet());
while (!remainingRegisters.emptyGeneral()) {
AnyRegister reg = AnyRegister(remainingRegisters.takeAnyGeneral());
registers[reg.code()].allocatable = true;
}
while (!remainingRegisters.emptyFloat()) {
AnyRegister reg =
AnyRegister(remainingRegisters.takeAnyFloat<RegTypeName::Any>());
registers[reg.code()].allocatable = true;
}
LifoAlloc* lifoAlloc = mir->alloc().lifoAlloc();
for (size_t i = 0; i < AnyRegister::Total; i++) {
registers[i].reg = AnyRegister::FromCode(i);
registers[i].allocations.setAllocator(lifoAlloc);
}
hotcode.setAllocator(lifoAlloc);
callRanges.setAllocator(lifoAlloc);
// Partition the graph into hot and cold sections, for helping to make
// splitting decisions. Since we don't have any profiling data this is a
// crapshoot, so just mark the bodies of inner loops as hot and everything
// else as cold.
LBlock* backedge = nullptr;
for (size_t i = 0; i < graph.numBlocks(); i++) {
LBlock* block = graph.getBlock(i);
// If we see a loop header, mark the backedge so we know when we have
// hit the end of the loop. Don't process the loop immediately, so that
// if there is an inner loop we will ignore the outer backedge.
if (block->mir()->isLoopHeader()) {
backedge = block->mir()->backedge()->lir();
}
if (block == backedge) {
LBlock* header = block->mir()->loopHeaderOfBackedge()->lir();
LiveRange* range = LiveRange::FallibleNew(
alloc(), nullptr, entryOf(header), exitOf(block).next());
if (!range || !hotcode.insert(range)) {
return false;
}
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Liveness analysis //
// //
///////////////////////////////////////////////////////////////////////////////
// Helper for ::buildLivenessInfo
bool BacktrackingAllocator::addInitialFixedRange(AnyRegister reg,
CodePosition from,
CodePosition to) {
LiveRange* range = LiveRange::FallibleNew(alloc(), nullptr, from, to);
return range && registers[reg.code()].allocations.insert(range);
}
// Helper for ::buildLivenessInfo
#ifdef DEBUG
// Returns true iff ins has a def/temp reusing the input allocation.
static bool IsInputReused(LInstruction* ins, LUse* use) {
for (size_t i = 0; i < ins->numDefs(); i++) {
if (ins->getDef(i)->policy() == LDefinition::MUST_REUSE_INPUT &&
ins->getOperand(ins->getDef(i)->getReusedInput())->toUse() == use) {
return true;
}
}
for (size_t i = 0; i < ins->numTemps(); i++) {
if (ins->getTemp(i)->policy() == LDefinition::MUST_REUSE_INPUT &&
ins->getOperand(ins->getTemp(i)->getReusedInput())->toUse() == use) {
return true;
}
}
return false;
}
#endif
/*
* This function builds up liveness ranges for all virtual registers
* defined in the function.
*
* The algorithm is based on the one published in:
*
* Wimmer, Christian, and Michael Franz. "Linear Scan Register Allocation on
* SSA Form." Proceedings of the International Symposium on Code Generation
* and Optimization. Toronto, Ontario, Canada, ACM. 2010. 170-79. PDF.
*
* The algorithm operates on blocks ordered such that dominators of a block
* are before the block itself, and such that all blocks of a loop are
* contiguous. It proceeds backwards over the instructions in this order,
* marking registers live at their uses, ending their live ranges at
* definitions, and recording which registers are live at the top of every
* block. To deal with loop backedges, registers live at the beginning of
* a loop gain a range covering the entire loop.
*/
bool BacktrackingAllocator::buildLivenessInfo() {
JitSpew(JitSpew_RegAlloc, "Beginning liveness analysis");
Vector<MBasicBlock*, 1, SystemAllocPolicy> loopWorkList;
BitSet loopDone(graph.numBlockIds());
if (!loopDone.init(alloc())) {
return false;
}
size_t numRanges = 0;
for (size_t i = graph.numBlocks(); i > 0; i--) {
if (mir->shouldCancel("Build Liveness Info (main loop)")) {
return false;
}
LBlock* block = graph.getBlock(i - 1);
MBasicBlock* mblock = block->mir();
BitSet& live = liveIn[mblock->id()];
new (&live) BitSet(graph.numVirtualRegisters());
if (!live.init(alloc())) {
return false;
}
// Propagate liveIn from our successors to us.
for (size_t i = 0; i < mblock->lastIns()->numSuccessors(); i++) {
MBasicBlock* successor = mblock->lastIns()->getSuccessor(i);
// Skip backedges, as we fix them up at the loop header.
if (mblock->id() < successor->id()) {
live.insertAll(liveIn[successor->id()]);
}
}
// Add successor phis.
if (mblock->successorWithPhis()) {
LBlock* phiSuccessor = mblock->successorWithPhis()->lir();
for (unsigned int j = 0; j < phiSuccessor->numPhis(); j++) {
LPhi* phi = phiSuccessor->getPhi(j);
LAllocation* use = phi->getOperand(mblock->positionInPhiSuccessor());
uint32_t reg = use->toUse()->virtualRegister();
live.insert(reg);
vreg(use).setUsedByPhi();
}
}
// Registers are assumed alive for the entire block, a define shortens
// the range to the point of definition.
for (BitSet::Iterator liveRegId(live); liveRegId; ++liveRegId) {
if (!vregs[*liveRegId].addInitialRange(alloc(), entryOf(block),
exitOf(block).next(), &numRanges))
return false;
}
// Shorten the front end of ranges for live variables to their point of
// definition, if found.
for (LInstructionReverseIterator ins = block->rbegin();
ins != block->rend(); ins++) {
// Calls may clobber registers, so force a spill and reload around the
// callsite.
if (ins->isCall()) {
for (AnyRegisterIterator iter(allRegisters_.asLiveSet()); iter.more();
++iter) {
bool found = false;
for (size_t i = 0; i < ins->numDefs(); i++) {
if (ins->getDef(i)->isFixed() &&
ins->getDef(i)->output()->aliases(LAllocation(*iter))) {
found = true;
break;
}
}
// If this register doesn't have an explicit def above, mark
// it as clobbered by the call unless it is actually
// call-preserved.
if (!found && !ins->isCallPreserved(*iter)) {
if (!addInitialFixedRange(*iter, outputOf(*ins),
outputOf(*ins).next())) {
return false;
}
}
}
CallRange* callRange = new (alloc().fallible())
CallRange(outputOf(*ins), outputOf(*ins).next());
if (!callRange) {
return false;
}
callRangesList.pushFront(callRange);
if (!callRanges.insert(callRange)) {
return false;
}
}
for (size_t i = 0; i < ins->numDefs(); i++) {
LDefinition* def = ins->getDef(i);
if (def->isBogusTemp()) {
continue;
}
CodePosition from = outputOf(*ins);
if (def->policy() == LDefinition::MUST_REUSE_INPUT) {
// MUST_REUSE_INPUT is implemented by allocating an output
// register and moving the input to it. Register hints are
// used to avoid unnecessary moves. We give the input an
// LUse::ANY policy to avoid allocating a register for the
// input.
LUse* inputUse = ins->getOperand(def->getReusedInput())->toUse();
MOZ_ASSERT(inputUse->policy() == LUse::REGISTER);
MOZ_ASSERT(inputUse->usedAtStart());
*inputUse = LUse(inputUse->virtualRegister(), LUse::ANY,
/* usedAtStart = */ true);
}
if (!vreg(def).addInitialRange(alloc(), from, from.next(),
&numRanges)) {
return false;
}
vreg(def).setInitialDefinition(from);
live.remove(def->virtualRegister());
}
for (size_t i = 0; i < ins->numTemps(); i++) {
LDefinition* temp = ins->getTemp(i);
if (temp->isBogusTemp()) {
continue;
}
// Normally temps are considered to cover both the input
// and output of the associated instruction. In some cases
// though we want to use a fixed register as both an input
// and clobbered register in the instruction, so watch for
// this and shorten the temp to cover only the output.
CodePosition from = inputOf(*ins);
if (temp->policy() == LDefinition::FIXED) {
AnyRegister reg = temp->output()->toRegister();
for (LInstruction::InputIterator alloc(**ins); alloc.more();
alloc.next()) {
if (alloc->isUse()) {
LUse* use = alloc->toUse();
if (use->isFixedRegister()) {
if (GetFixedRegister(vreg(use).def(), use) == reg) {
from = outputOf(*ins);
}
}
}
}
}
// * For non-call instructions, temps cover both the input and output,
// so temps never alias uses (even at-start uses) or defs.
// * For call instructions, temps only cover the input (the output is
// used for the force-spill ranges added above). This means temps
// still don't alias uses but they can alias the (fixed) defs. For now
// we conservatively require temps to have a fixed register for call
// instructions to prevent a footgun.
MOZ_ASSERT_IF(ins->isCall(), temp->policy() == LDefinition::FIXED);
CodePosition to =
ins->isCall() ? outputOf(*ins) : outputOf(*ins).next();
if (!vreg(temp).addInitialRange(alloc(), from, to, &numRanges)) {
return false;
}
vreg(temp).setInitialDefinition(from);
}
DebugOnly<bool> hasUseRegister = false;
DebugOnly<bool> hasUseRegisterAtStart = false;
for (LInstruction::InputIterator inputAlloc(**ins); inputAlloc.more();
inputAlloc.next()) {
if (inputAlloc->isUse()) {
LUse* use = inputAlloc->toUse();
// Call uses should always be at-start, since calls use all
// registers.
MOZ_ASSERT_IF(ins->isCall() && !inputAlloc.isSnapshotInput(),
use->usedAtStart());
#ifdef DEBUG
// If there are both useRegisterAtStart(x) and useRegister(y)
// uses, we may assign the same register to both operands
// (bug 772830). Don't allow this for now.
if (use->policy() == LUse::REGISTER) {
if (use->usedAtStart()) {
if (!IsInputReused(*ins, use)) {
hasUseRegisterAtStart = true;
}
} else {
hasUseRegister = true;
}
}
MOZ_ASSERT(!(hasUseRegister && hasUseRegisterAtStart));
#endif
// Don't treat RECOVERED_INPUT uses as keeping the vreg alive.
if (use->policy() == LUse::RECOVERED_INPUT) {
continue;
}
CodePosition to = use->usedAtStart() ? inputOf(*ins) : outputOf(*ins);
if (use->isFixedRegister()) {
LAllocation reg(AnyRegister::FromCode(use->registerCode()));
for (size_t i = 0; i < ins->numDefs(); i++) {
LDefinition* def = ins->getDef(i);
if (def->policy() == LDefinition::FIXED &&
*def->output() == reg) {
to = inputOf(*ins);
}
}
}
if (!vreg(use).addInitialRange(alloc(), entryOf(block), to.next(),
&numRanges)) {
return false;
}
UsePosition* usePosition =
new (alloc().fallible()) UsePosition(use, to);
if (!usePosition) {
return false;
}
vreg(use).addInitialUse(usePosition);
live.insert(use->virtualRegister());
}
}
}
// Phis have simultaneous assignment semantics at block begin, so at
// the beginning of the block we can be sure that liveIn does not
// contain any phi outputs.
for (unsigned int i = 0; i < block->numPhis(); i++) {
LDefinition* def = block->getPhi(i)->getDef(0);
if (live.contains(def->virtualRegister())) {
live.remove(def->virtualRegister());
} else {
// This is a dead phi, so add a dummy range over all phis. This
// can go away if we have an earlier dead code elimination pass.
CodePosition entryPos = entryOf(block);
if (!vreg(def).addInitialRange(alloc(), entryPos, entryPos.next(),
&numRanges)) {
return false;
}
}
}
if (mblock->isLoopHeader()) {
// A divergence from the published algorithm is required here, as
// our block order does not guarantee that blocks of a loop are
// contiguous. As a result, a single live range spanning the
// loop is not possible. Additionally, we require liveIn in a later
// pass for resolution, so that must also be fixed up here.
MBasicBlock* loopBlock = mblock->backedge();
while (true) {
// Blocks must already have been visited to have a liveIn set.
MOZ_ASSERT(loopBlock->id() >= mblock->id());
// Add a range for this entire loop block
CodePosition from = entryOf(loopBlock->lir());
CodePosition to = exitOf(loopBlock->lir()).next();
for (BitSet::Iterator liveRegId(live); liveRegId; ++liveRegId) {
if (!vregs[*liveRegId].addInitialRange(alloc(), from, to,
&numRanges)) {
return false;
}
}
// Fix up the liveIn set.
liveIn[loopBlock->id()].insertAll(live);
// Make sure we don't visit this node again
loopDone.insert(loopBlock->id());
// If this is the loop header, any predecessors are either the
// backedge or out of the loop, so skip any predecessors of
// this block
if (loopBlock != mblock) {
for (size_t i = 0; i < loopBlock->numPredecessors(); i++) {
MBasicBlock* pred = loopBlock->getPredecessor(i);
if (loopDone.contains(pred->id())) {
continue;
}
if (!loopWorkList.append(pred)) {
return false;
}
}
}
// Terminate loop if out of work.
if (loopWorkList.empty()) {
break;
}
// Grab the next block off the work list, skipping any OSR block.
MBasicBlock* osrBlock = graph.mir().osrBlock();
while (!loopWorkList.empty()) {
loopBlock = loopWorkList.popCopy();
if (loopBlock != osrBlock) {
break;
}
}
// If end is reached without finding a non-OSR block, then no more work
// items were found.
if (loopBlock == osrBlock) {
MOZ_ASSERT(loopWorkList.empty());
break;
}
}
// Clear the done set for other loops
loopDone.clear();
}
MOZ_ASSERT_IF(!mblock->numPredecessors(), live.empty());
}
JitSpew(JitSpew_RegAlloc, "Completed liveness analysis");
return true;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Merging and queueing of LiveRange groups //
// //
///////////////////////////////////////////////////////////////////////////////
// Helper for ::tryMergeBundles
static bool IsArgumentSlotDefinition(LDefinition* def) {
return def->policy() == LDefinition::FIXED && def->output()->isArgument();
}
// Helper for ::tryMergeBundles
static bool IsThisSlotDefinition(LDefinition* def) {
return IsArgumentSlotDefinition(def) &&
def->output()->toArgument()->index() <
THIS_FRAME_ARGSLOT + sizeof(Value);
}
// Helper for ::tryMergeBundles
static bool HasStackPolicy(LDefinition* def) {
return def->policy() == LDefinition::STACK;
}
// Helper for ::tryMergeBundles
static bool CanMergeTypesInBundle(LDefinition::Type a, LDefinition::Type b) {
// Fast path for the common case.
if (a == b) {
return true;
}
// Only merge if the sizes match, so that we don't get confused about the
// width of spill slots.
return StackSlotAllocator::width(a) == StackSlotAllocator::width(b);
}
// Helper for ::tryMergeReusedRegister
bool BacktrackingAllocator::tryMergeBundles(LiveBundle* bundle0,
LiveBundle* bundle1) {
// See if bundle0 and bundle1 can be merged together.
if (bundle0 == bundle1) {
return true;
}
// Get a representative virtual register from each bundle.
VirtualRegister& reg0 = bundle0->firstRange()->vreg();
VirtualRegister& reg1 = bundle1->firstRange()->vreg();
MOZ_ASSERT(CanMergeTypesInBundle(reg0.type(), reg1.type()));
MOZ_ASSERT(reg0.isCompatible(reg1));
// Registers which might spill to the frame's |this| slot can only be
// grouped with other such registers. The frame's |this| slot must always
// hold the |this| value, as required by JitFrame tracing and by the Ion
// constructor calling convention.
if (IsThisSlotDefinition(reg0.def()) || IsThisSlotDefinition(reg1.def())) {
if (*reg0.def()->output() != *reg1.def()->output()) {
return true;
}
}
// Registers which might spill to the frame's argument slots can only be
// grouped with other such registers if the frame might access those
// arguments through a lazy arguments object or rest parameter.
if (IsArgumentSlotDefinition(reg0.def()) ||
IsArgumentSlotDefinition(reg1.def())) {
if (graph.mir().entryBlock()->info().mayReadFrameArgsDirectly()) {
if (*reg0.def()->output() != *reg1.def()->output()) {
return true;
}
}
}
// When we make a call to a WebAssembly function that returns multiple
// results, some of those results can go on the stack. The callee is passed a
// pointer to this stack area, which is represented as having policy
// LDefinition::STACK (with type LDefinition::STACKRESULTS). Individual
// results alias parts of the stack area with a value-appropriate type, but
// policy LDefinition::STACK. This aliasing between allocations makes it
// unsound to merge anything with a LDefinition::STACK policy.
if (HasStackPolicy(reg0.def()) || HasStackPolicy(reg1.def())) {
return true;
}
// Limit the number of times we compare ranges if there are many ranges in
// one of the bundles, to avoid quadratic behavior.
static const size_t MAX_RANGES = 200;
// Make sure that ranges in the bundles do not overlap.
LiveRange::BundleLinkIterator iter0 = bundle0->rangesBegin(),
iter1 = bundle1->rangesBegin();
size_t count = 0;
while (iter0 && iter1) {
if (++count >= MAX_RANGES) {
return true;
}
LiveRange* range0 = LiveRange::get(*iter0);
LiveRange* range1 = LiveRange::get(*iter1);
if (range0->from() >= range1->to()) {
iter1++;
} else if (range1->from() >= range0->to()) {
iter0++;
} else {
return true;
}
}
// Move all ranges from bundle1 into bundle0.
while (LiveRange* range = bundle1->popFirstRange()) {
bundle0->addRange(range);
}
return true;
}
// Helper for ::mergeAndQueueRegisters
void BacktrackingAllocator::allocateStackDefinition(VirtualRegister& reg) {
LInstruction* ins = reg.ins()->toInstruction();
if (reg.def()->type() == LDefinition::STACKRESULTS) {
LStackArea alloc(ins->toInstruction());
stackSlotAllocator.allocateStackArea(&alloc);
reg.def()->setOutput(alloc);
} else {
// Because the definitions are visited in order, the area has been allocated
// before we reach this result, so we know the operand is an LStackArea.
const LUse* use = ins->getOperand(0)->toUse();
VirtualRegister& area = vregs[use->virtualRegister()];
const LStackArea* areaAlloc = area.def()->output()->toStackArea();
reg.def()->setOutput(areaAlloc->resultAlloc(ins, reg.def()));
}
}
// Helper for ::mergeAndQueueRegisters
bool BacktrackingAllocator::tryMergeReusedRegister(VirtualRegister& def,
VirtualRegister& input) {
// def is a vreg which reuses input for its output physical register. Try
// to merge ranges for def with those of input if possible, as avoiding
// copies before def's instruction is crucial for generated code quality
// (MUST_REUSE_INPUT is used for all arithmetic on x86/x64).
if (def.rangeFor(inputOf(def.ins()))) {
MOZ_ASSERT(def.isTemp());
def.setMustCopyInput();
return true;
}
if (!CanMergeTypesInBundle(def.type(), input.type())) {
def.setMustCopyInput();
return true;
}
LiveRange* inputRange = input.rangeFor(outputOf(def.ins()));
if (!inputRange) {
// The input is not live after the instruction, either in a safepoint
// for the instruction or in subsequent code. The input and output
// can thus be in the same group.
return tryMergeBundles(def.firstBundle(), input.firstBundle());
}
// Avoid merging in very large live ranges as merging has non-linear
// complexity. The cutoff value is hard to gauge. 1M was chosen because it
// is "large" and yet usefully caps compile time on AutoCad-for-the-web to
// something reasonable on a 2017-era desktop system.
const uint32_t RANGE_SIZE_CUTOFF = 1000000;
if (inputRange->to() - inputRange->from() > RANGE_SIZE_CUTOFF) {
def.setMustCopyInput();
return true;
}
// The input is live afterwards, either in future instructions or in a
// safepoint for the reusing instruction. This is impossible to satisfy
// without copying the input.
//
// It may or may not be better to split the input into two bundles at the
// point of the definition, which may permit merging. One case where it is
// definitely better to split is if the input never has any register uses
// after the instruction. Handle this splitting eagerly.
LBlock* block = def.ins()->block();
// The input's lifetime must end within the same block as the definition,
// otherwise it could live on in phis elsewhere.
if (inputRange != input.lastRange() || inputRange->to() > exitOf(block)) {
def.setMustCopyInput();
return true;
}
// If we already split the input for some other register, don't make a
// third bundle.
if (inputRange->bundle() != input.firstRange()->bundle()) {
def.setMustCopyInput();
return true;
}
// If the input will start out in memory then adding a separate bundle for
// memory uses after the def won't help.
if (input.def()->isFixed() && !input.def()->output()->isRegister()) {
def.setMustCopyInput();
return true;
}
// The input cannot have register or reused uses after the definition.
for (UsePositionIterator iter = inputRange->usesBegin(); iter; iter++) {
if (iter->pos <= inputOf(def.ins())) {
continue;
}
LUse* use = iter->use();
if (FindReusingDefOrTemp(insData[iter->pos], use)) {
def.setMustCopyInput();
return true;
}
if (iter->usePolicy() != LUse::ANY &&
iter->usePolicy() != LUse::KEEPALIVE) {
def.setMustCopyInput();
return true;
}
}
LiveRange* preRange = LiveRange::FallibleNew(
alloc(), &input, inputRange->from(), outputOf(def.ins()));
if (!preRange) {
return false;
}
// The new range starts at reg's input position, which means it overlaps
// with the old range at one position. This is what we want, because we
// need to copy the input before the instruction.
LiveRange* postRange = LiveRange::FallibleNew(
alloc(), &input, inputOf(def.ins()), inputRange->to());
if (!postRange) {
return false;
}
inputRange->tryToMoveDefAndUsesInto(preRange);
inputRange->tryToMoveDefAndUsesInto(postRange);
MOZ_ASSERT(!inputRange->hasUses());
JitSpewIfEnabled(JitSpew_RegAlloc,
" splitting reused input at %u to try to help grouping",
inputOf(def.ins()).bits());
LiveBundle* firstBundle = inputRange->bundle();
input.removeRange(inputRange);
input.addRange(preRange);
input.addRange(postRange);
firstBundle->removeRange(inputRange);
firstBundle->addRange(preRange);
// The new range goes in a separate bundle, where it will be spilled during
// allocation.
LiveBundle* secondBundle = LiveBundle::FallibleNew(alloc(), nullptr, nullptr);
if (!secondBundle) {
return false;
}
secondBundle->addRange(postRange);
return tryMergeBundles(def.firstBundle(), input.firstBundle());
}
bool BacktrackingAllocator::mergeAndQueueRegisters() {
MOZ_ASSERT(!vregs[0u].hasRanges());
// Create a bundle for each register containing all its ranges.
for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
VirtualRegister& reg = vregs[i];
if (!reg.hasRanges()) {
continue;
}
LiveBundle* bundle = LiveBundle::FallibleNew(alloc(), nullptr, nullptr);
if (!bundle) {
return false;
}
for (LiveRange::RegisterLinkIterator iter = reg.rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
bundle->addRange(range);
}
}
// If there is an OSR block, merge parameters in that block with the
// corresponding parameters in the initial block.
if (MBasicBlock* osr = graph.mir().osrBlock()) {
size_t original = 1;
for (LInstructionIterator iter = osr->lir()->begin();
iter != osr->lir()->end(); iter++) {
if (iter->isParameter()) {
for (size_t i = 0; i < iter->numDefs(); i++) {
DebugOnly<bool> found = false;
VirtualRegister& paramVreg = vreg(iter->getDef(i));
for (; original < paramVreg.vreg(); original++) {
VirtualRegister& originalVreg = vregs[original];
if (*originalVreg.def()->output() == *iter->getDef(i)->output()) {
MOZ_ASSERT(originalVreg.ins()->isParameter());
if (!tryMergeBundles(originalVreg.firstBundle(),
paramVreg.firstBundle())) {
return false;
}
found = true;
break;
}
}
MOZ_ASSERT(found);
}
}
}
}
// Try to merge registers with their reused inputs.
for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
VirtualRegister& reg = vregs[i];
if (!reg.hasRanges()) {
continue;
}
if (reg.def()->policy() == LDefinition::MUST_REUSE_INPUT) {
LUse* use = reg.ins()
->toInstruction()
->getOperand(reg.def()->getReusedInput())
->toUse();
if (!tryMergeReusedRegister(reg, vreg(use))) {
return false;
}
}
}
// Try to merge phis with their inputs.
for (size_t i = 0; i < graph.numBlocks(); i++) {
LBlock* block = graph.getBlock(i);
for (size_t j = 0; j < block->numPhis(); j++) {
LPhi* phi = block->getPhi(j);
VirtualRegister& outputVreg = vreg(phi->getDef(0));
for (size_t k = 0, kend = phi->numOperands(); k < kend; k++) {
VirtualRegister& inputVreg = vreg(phi->getOperand(k)->toUse());
if (!tryMergeBundles(inputVreg.firstBundle(),
outputVreg.firstBundle())) {
return false;
}
}
}
}
// Add all bundles to the allocation queue, and create spill sets for them.
for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
VirtualRegister& reg = vregs[i];
// Eagerly allocate stack result areas and their component stack results.
if (reg.def() && reg.def()->policy() == LDefinition::STACK) {
allocateStackDefinition(reg);
}
for (LiveRange::RegisterLinkIterator iter = reg.rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
LiveBundle* bundle = range->bundle();
if (range == bundle->firstRange()) {
if (!alloc().ensureBallast()) {
return false;
}
SpillSet* spill = SpillSet::New(alloc());
if (!spill) {
return false;
}
bundle->setSpillSet(spill);
size_t priority = computePriority(bundle);
if (!allocationQueue.insert(QueueItem(bundle, priority))) {
return false;
}
}
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Code for the splitting/spilling subsystem begins here. //
// //
// The code that follows is structured in the following sequence: //
// //
// (1) Routines that are helpers for ::splitAt. //
// (2) ::splitAt itself, which implements splitting decisions. //
// (3) heuristic routines (eg ::splitAcrossCalls), which decide where //
// splits should be made. They then call ::splitAt to perform the //
// chosen split. //
// (4) The top level driver, ::chooseBundleSplit. //
// //
// There are further comments on ::splitAt and ::chooseBundleSplit below. //
// //
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// //
// Implementation of splitting decisions, but not the making of those //
// decisions: various helper functions //
// //
///////////////////////////////////////////////////////////////////////////////
bool BacktrackingAllocator::updateVirtualRegisterListsThenRequeueBundles(
LiveBundle* bundle, const LiveBundleVector& newBundles) {
#ifdef DEBUG
if (newBundles.length() == 1) {
LiveBundle* newBundle = newBundles[0];
if (newBundle->numRanges() == bundle->numRanges() &&
computePriority(newBundle) == computePriority(bundle)) {
bool different = false;
LiveRange::BundleLinkIterator oldRanges = bundle->rangesBegin();
LiveRange::BundleLinkIterator newRanges = newBundle->rangesBegin();
while (oldRanges) {
LiveRange* oldRange = LiveRange::get(*oldRanges);
LiveRange* newRange = LiveRange::get(*newRanges);
if (oldRange->from() != newRange->from() ||
oldRange->to() != newRange->to()) {
different = true;
break;
}
oldRanges++;
newRanges++;
}
// This is likely to trigger an infinite loop in register allocation. This
// can be the result of invalid register constraints, making regalloc
// impossible; consider relaxing those.
MOZ_ASSERT(different,
"Split results in the same bundle with the same priority");
}
}
#endif
if (JitSpewEnabled(JitSpew_RegAlloc)) {
JitSpew(JitSpew_RegAlloc, " .. into:");
for (size_t i = 0; i < newBundles.length(); i++) {
JitSpew(JitSpew_RegAlloc, " %s", newBundles[i]->toString().get());
}
}
// Remove all ranges in the old bundle from their register's list.
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
range->vreg().removeRange(range);
}
// Add all ranges in the new bundles to their register's list.
for (size_t i = 0; i < newBundles.length(); i++) {
LiveBundle* newBundle = newBundles[i];
for (LiveRange::BundleLinkIterator iter = newBundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
range->vreg().addRange(range);
}
}
// Queue the new bundles for register assignment.
for (size_t i = 0; i < newBundles.length(); i++) {
LiveBundle* newBundle = newBundles[i];
size_t priority = computePriority(newBundle);
if (!allocationQueue.insert(QueueItem(newBundle, priority))) {
return false;
}
}
return true;
}
// Helper for ::splitAt
// When splitting a bundle according to a list of split positions, return
// whether a use or range at |pos| should use a different bundle than the last
// position this was called for.
static bool UseNewBundle(const SplitPositionVector& splitPositions,
CodePosition pos, size_t* activeSplitPosition) {
if (splitPositions.empty()) {
// When the split positions are empty we are splitting at all uses.
return true;
}
if (*activeSplitPosition == splitPositions.length()) {
// We've advanced past all split positions.
return false;
}
if (splitPositions[*activeSplitPosition] > pos) {
// We haven't gotten to the next split position yet.
return false;
}
// We've advanced past the next split position, find the next one which we
// should split at.
while (*activeSplitPosition < splitPositions.length() &&
splitPositions[*activeSplitPosition] <= pos) {
(*activeSplitPosition)++;
}
return true;
}
// Helper for ::splitAt
static bool HasPrecedingRangeSharingVreg(LiveBundle* bundle, LiveRange* range) {
MOZ_ASSERT(range->bundle() == bundle);
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* prevRange = LiveRange::get(*iter);
if (prevRange == range) {
return false;
}
if (&prevRange->vreg() == &range->vreg()) {
return true;
}
}
MOZ_CRASH();
}
// Helper for ::splitAt
static bool HasFollowingRangeSharingVreg(LiveBundle* bundle, LiveRange* range) {
MOZ_ASSERT(range->bundle() == bundle);
bool foundRange = false;
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* prevRange = LiveRange::get(*iter);
if (foundRange && &prevRange->vreg() == &range->vreg()) {
return true;
}
if (prevRange == range) {
foundRange = true;
}
}
MOZ_ASSERT(foundRange);
return false;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Implementation of splitting decisions, but not the making of those //
// decisions: //
// ::splitAt //
// //
///////////////////////////////////////////////////////////////////////////////
// ::splitAt
// ---------
// It would be nice to be able to interpret ::splitAt as simply performing
// whatever split the heuristic routines decide on. Unfortunately it
// tries to "improve" on the initial locations, which as
// https://bugzilla.mozilla.org/show_bug.cgi?id=1758274#c17 shows, often
// leads to excessive spilling. So there is no clean distinction between
// policy (where to split, computed by the heuristic routines) and
// implementation (done by ::splitAt).
//
// ::splitAt -- creation of spill parent bundles
// ---------------------------------------------
// To understand what ::splitAt does, we must refer back to Section 1's
// description of LiveBundle::spillParent_.
//
// Initially (as created by Phase 1), all bundles have `spillParent_` being
// NULL. If ::splitAt is asked to split such a bundle, it will first create a
// "spill bundle" or "spill parent" bundle. This is a copy of the original,
// with two changes:
//
// * all register uses have been removed, so that only stack-compatible uses
// remain.
//
// * for all LiveRanges in the bundle that define a register, the start point
// of the range is moved one CodePosition forwards, thusly:
//
// from = minimalDefEnd(insData[from]).next();
//
// The reason for the latter relates to the idea described in Section 1, that
// all LiveRanges for any given VirtualRegister must form a tree rooted at the
// defining LiveRange. If the spill-bundle definition range start points are
// the same as those in the original bundle, then we will end up with two roots
// for the tree, and it is then unclear which one should supply "the value".
//
// Putting the spill-bundle start point one CodePosition further along causes
// the range containing the register def (after splitting) to still be the
// defining point. ::createMoveGroupsFromLiveRangeTransitions will observe the
// equivalent spill-bundle range starting one point later and add a MoveGroup
// to move the value into it. Since the spill bundle is intended to be stack
// resident, the effect is to force creation of the MoveGroup that will
// actually spill this value onto the stack.
//
// If the bundle provided to ::splitAt already has a spill parent, then
// ::splitAt doesn't create a new spill parent. This situation will happen
// when the bundle to be split was itself created by splitting. The effect is
// that *all* bundles created from an "original bundle" share the same spill
// parent, and hence they will share the same spill slot, which guarantees that
// all the spilled fragments of a VirtualRegister share the same spill slot,
// which means we'll never have to move a VirtualRegister between different
// spill slots during its lifetime.
//
// ::splitAt -- creation of other bundles
// --------------------------------------
// With the spill parent bundle question out of the way, ::splitAt then goes on
// to create the remaining new bundles, using near-incomprehensible logic
// steered by `UseNewBundle`.
//
// This supposedly splits the bundle at the positions given by the
// `SplitPositionVector` parameter to ::splitAt, putting them in a temporary
// vector `newBundles`. Whether it really splits at the requested positions or
// not is hard to say; more important is what happens next.
//
// ::splitAt -- "improvement" ("filtering") of the split bundles
// -------------------------------------------------------------
// ::splitAt now tries to reduce the length of the LiveRanges that make up the
// new bundles (not including the "spill parent"). I assume this is to remove
// sections of the bundles that carry no useful value (eg, extending after the
// last using a range), thereby removing the demand for registers in those
// parts. This does however mean that ::splitAt is no longer really splitting
// where the heuristic routines wanted, and that can lead to a big increase in
// spilling in loops, as
// https://bugzilla.mozilla.org/show_bug.cgi?id=1758274#c17 describes.
//
// ::splitAt -- meaning of the incoming `SplitPositionVector`
// ----------------------------------------------------------
// ::splitAt has one last mystery which is important to document. The split
// positions are specified as CodePositions, but this leads to ambiguity
// because, in a sequence of N (LIR) instructions, there are 2N valid
// CodePositions. For example:
//
// 6-7 WasmLoadTls [def v2<o>] [use v1:R]
// 8-9 WasmNullConstant [def v3<o>]
//
// Consider splitting the range for `v2`, which starts at CodePosition 7.
// What's the difference between saying "split it at 7" and "split it at 8" ?
// Not much really, since in both cases what we intend is for the range to be
// split in between the two instructions.
//
// Hence I believe the semantics is:
//
// * splitting at an even numbered CodePosition (eg, 8), which is an input-side
// position, means "split before the instruction containing this position".
//
// * splitting at an odd numbered CodePositin (eg, 7), which is an output-side
// position, means "split after the instruction containing this position".
//
// Hence in the example, we could specify either 7 or 8 to mean the same
// placement of the split. Well, almost true, but actually:
//
// (SPEC) specifying 8 means
//
// "split between these two insns, and any resulting MoveGroup goes in the
// list to be emitted before the start of the second insn"
//
// (SPEC) specifying 7 means
//
// "split between these two insns, and any resulting MoveGroup goes in the
// list to be emitted after the end of the first insn"
//
// In most cases we don't care on which "side of the valley" the MoveGroup ends
// up, in which case we can use either convention.
//
// (SPEC) I believe these semantics are implied by the logic in
// ::createMoveGroupsFromLiveRangeTransitions. They are certainly not
// documented anywhere in the code.
bool BacktrackingAllocator::splitAt(LiveBundle* bundle,
const SplitPositionVector& splitPositions) {
// Split the bundle at the given split points. Register uses which have no
// intervening split points are consolidated into the same bundle. If the
// list of split points is empty, then all register uses are placed in
// minimal bundles.
// splitPositions should be sorted.
for (size_t i = 1; i < splitPositions.length(); ++i) {
MOZ_ASSERT(splitPositions[i - 1] < splitPositions[i]);
}
// We don't need to create a new spill bundle if there already is one.
bool spillBundleIsNew = false;
LiveBundle* spillBundle = bundle->spillParent();
if (!spillBundle) {
spillBundle = LiveBundle::FallibleNew(alloc(), bundle->spillSet(), nullptr);
if (!spillBundle) {
return false;
}
spillBundleIsNew = true;
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
CodePosition from = range->from();
if (isRegisterDefinition(range)) {
from = minimalDefEnd(insData[from]).next();
}
if (from < range->to()) {
if (!spillBundle->addRange(alloc(), &range->vreg(), from,
range->to())) {
return false;
}
if (range->hasDefinition() && !isRegisterDefinition(range)) {
spillBundle->lastRange()->setHasDefinition();
}
}
}
}
LiveBundleVector newBundles;
// The bundle which ranges are currently being added to.
LiveBundle* activeBundle =
LiveBundle::FallibleNew(alloc(), bundle->spillSet(), spillBundle);
if (!activeBundle || !newBundles.append(activeBundle)) {
return false;
}
// State for use by UseNewBundle.
size_t activeSplitPosition = 0;
// Make new bundles according to the split positions, and distribute ranges
// and uses to them.
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (UseNewBundle(splitPositions, range->from(), &activeSplitPosition)) {
activeBundle =
LiveBundle::FallibleNew(alloc(), bundle->spillSet(), spillBundle);
if (!activeBundle || !newBundles.append(activeBundle)) {
return false;
}
}
LiveRange* activeRange = LiveRange::FallibleNew(alloc(), &range->vreg(),
range->from(), range->to());
if (!activeRange) {
return false;
}
activeBundle->addRange(activeRange);
if (isRegisterDefinition(range)) {
activeRange->setHasDefinition();
}
while (range->hasUses()) {
UsePosition* use = range->popUse();
LNode* ins = insData[use->pos];
// Any uses of a register that appear before its definition has
// finished must be associated with the range for that definition.
if (isRegisterDefinition(range) &&
use->pos <= minimalDefEnd(insData[range->from()])) {
activeRange->addUse(use);
} else if (isRegisterUse(use, ins)) {
// Place this register use into a different bundle from the
// last one if there are any split points between the two uses.
// UseNewBundle always returns true if we are splitting at all
// register uses, but we can still reuse the last range and
// bundle if they have uses at the same position, except when
// either use is fixed (the two uses might require incompatible
// registers.)
if (UseNewBundle(splitPositions, use->pos, &activeSplitPosition) &&
(!activeRange->hasUses() ||
activeRange->usesBegin()->pos != use->pos ||
activeRange->usesBegin()->usePolicy() == LUse::FIXED ||
use->usePolicy() == LUse::FIXED)) {
activeBundle =
LiveBundle::FallibleNew(alloc(), bundle->spillSet(), spillBundle);
if (!activeBundle || !newBundles.append(activeBundle)) {
return false;
}
activeRange = LiveRange::FallibleNew(alloc(), &range->vreg(),
range->from(), range->to());
if (!activeRange) {
return false;
}
activeBundle->addRange(activeRange);
}
activeRange->addUse(use);
} else {
MOZ_ASSERT(spillBundleIsNew);
spillBundle->rangeFor(use->pos)->addUse(use);
}
}
}
LiveBundleVector filteredBundles;
// Trim the ends of ranges in each new bundle when there are no other
// earlier or later ranges in the same bundle with the same vreg.
for (size_t i = 0; i < newBundles.length(); i++) {
LiveBundle* bundle = newBundles[i];
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;) {
LiveRange* range = LiveRange::get(*iter);
if (!range->hasDefinition()) {
if (!HasPrecedingRangeSharingVreg(bundle, range)) {
if (range->hasUses()) {
UsePosition* use = *range->usesBegin();
range->setFrom(inputOf(insData[use->pos]));
} else {
bundle->removeRangeAndIncrementIterator(iter);
continue;
}
}
}
if (!HasFollowingRangeSharingVreg(bundle, range)) {
if (range->hasUses()) {
UsePosition* use = range->lastUse();
range->setTo(use->pos.next());
} else if (range->hasDefinition()) {
range->setTo(minimalDefEnd(insData[range->from()]).next());
} else {
bundle->removeRangeAndIncrementIterator(iter);
continue;
}
}
iter++;
}
if (bundle->hasRanges() && !filteredBundles.append(bundle)) {
return false;
}
}
if (spillBundleIsNew && !filteredBundles.append(spillBundle)) {
return false;
}
return updateVirtualRegisterListsThenRequeueBundles(bundle, filteredBundles);
}
///////////////////////////////////////////////////////////////////////////////
// //
// Creation of splitting decisions, but not their implementation: //
// ::splitAcrossCalls //
// ::trySplitAcrossHotcode //
// ::trySplitAfterLastRegisterUse //
// ::trySplitBeforeFirstRegisterUse //
// //
///////////////////////////////////////////////////////////////////////////////
bool BacktrackingAllocator::splitAcrossCalls(LiveBundle* bundle) {
// Split the bundle to separate register uses and non-register uses and
// allow the vreg to be spilled across its range.
// Find the locations of all calls in the bundle's range.
SplitPositionVector callPositions;
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
CallRange searchRange(range->from(), range->to());
CallRange* callRange;
if (!callRanges.contains(&searchRange, &callRange)) {
// There are no calls inside this range.
continue;
}
MOZ_ASSERT(range->covers(callRange->range.from));
// The search above returns an arbitrary call within the range. Walk
// backwards to find the first call in the range.
for (CallRangeList::reverse_iterator riter =
callRangesList.rbegin(callRange);
riter != callRangesList.rend(); ++riter) {
CodePosition pos = riter->range.from;
if (range->covers(pos)) {
callRange = *riter;
} else {
break;
}
}
// Add all call positions within the range, by walking forwards.
for (CallRangeList::iterator iter = callRangesList.begin(callRange);
iter != callRangesList.end(); ++iter) {
CodePosition pos = iter->range.from;
if (!range->covers(pos)) {
break;
}
// Calls at the beginning of the range are ignored; there is no splitting
// to do.
if (range->covers(pos.previous())) {
MOZ_ASSERT_IF(callPositions.length(), pos > callPositions.back());
if (!callPositions.append(pos)) {
return false;
}
}
}
}
MOZ_ASSERT(callPositions.length());
#ifdef JS_JITSPEW
JitSpewStart(JitSpew_RegAlloc, " .. split across calls at ");
for (size_t i = 0; i < callPositions.length(); ++i) {
JitSpewCont(JitSpew_RegAlloc, "%s%u", i != 0 ? ", " : "",
callPositions[i].bits());
}
JitSpewFin(JitSpew_RegAlloc);
#endif
return splitAt(bundle, callPositions);
}
bool BacktrackingAllocator::trySplitAcrossHotcode(LiveBundle* bundle,
bool* success) {
// If this bundle has portions that are hot and portions that are cold,
// split it at the boundaries between hot and cold code.
LiveRange* hotRange = nullptr;
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (hotcode.contains(range, &hotRange)) {
break;
}
}
// Don't split if there is no hot code in the bundle.
if (!hotRange) {
JitSpew(JitSpew_RegAlloc, " .. bundle does not contain hot code");
return true;
}
// Don't split if there is no cold code in the bundle.
bool coldCode = false;
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (!hotRange->contains(range)) {
coldCode = true;
break;
}
}
if (!coldCode) {
JitSpew(JitSpew_RegAlloc, " .. bundle does not contain cold code");
return true;
}
JitSpewIfEnabled(JitSpew_RegAlloc, " .. split across hot range %s",
hotRange->toString().get());
// Tweak the splitting method when compiling wasm code to look at actual
// uses within the hot/cold code. This heuristic is in place as the below
// mechanism regresses several asm.js tests. Hopefully this will be fixed
// soon and this special case removed. See bug 948838.
if (compilingWasm()) {
SplitPositionVector splitPositions;
if (!splitPositions.append(hotRange->from()) ||
!splitPositions.append(hotRange->to())) {
return false;
}
*success = true;
return splitAt(bundle, splitPositions);
}
LiveBundle* hotBundle = LiveBundle::FallibleNew(alloc(), bundle->spillSet(),
bundle->spillParent());
if (!hotBundle) {
return false;
}
LiveBundle* preBundle = nullptr;
LiveBundle* postBundle = nullptr;
LiveBundle* coldBundle = nullptr;
if (testbed) {
coldBundle = LiveBundle::FallibleNew(alloc(), bundle->spillSet(),
bundle->spillParent());
if (!coldBundle) {
return false;
}
}
// Accumulate the ranges of hot and cold code in the bundle. Note that
// we are only comparing with the single hot range found, so the cold code
// may contain separate hot ranges.
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
LiveRange::Range hot, coldPre, coldPost;
range->intersect(hotRange, &coldPre, &hot, &coldPost);
if (!hot.empty()) {
if (!hotBundle->addRangeAndDistributeUses(alloc(), range, hot.from,
hot.to)) {
return false;
}
}
if (!coldPre.empty()) {
if (testbed) {
if (!coldBundle->addRangeAndDistributeUses(alloc(), range, coldPre.from,
coldPre.to)) {
return false;
}
} else {
if (!preBundle) {
preBundle = LiveBundle::FallibleNew(alloc(), bundle->spillSet(),
bundle->spillParent());
if (!preBundle) {
return false;
}
}
if (!preBundle->addRangeAndDistributeUses(alloc(), range, coldPre.from,
coldPre.to)) {
return false;
}
}
}
if (!coldPost.empty()) {
if (testbed) {
if (!coldBundle->addRangeAndDistributeUses(
alloc(), range, coldPost.from, coldPost.to)) {
return false;
}
} else {
if (!postBundle) {
postBundle = LiveBundle::FallibleNew(alloc(), bundle->spillSet(),
bundle->spillParent());
if (!postBundle) {
return false;
}
}
if (!postBundle->addRangeAndDistributeUses(
alloc(), range, coldPost.from, coldPost.to)) {
return false;
}
}
}
}
MOZ_ASSERT(hotBundle->numRanges() != 0);
LiveBundleVector newBundles;
if (!newBundles.append(hotBundle)) {
return false;
}
if (testbed) {
MOZ_ASSERT(coldBundle->numRanges() != 0);
if (!newBundles.append(coldBundle)) {
return false;
}
} else {
MOZ_ASSERT(preBundle || postBundle);
if (preBundle && !newBundles.append(preBundle)) {
return false;
}
if (postBundle && !newBundles.append(postBundle)) {
return false;
}
}
*success = true;
return updateVirtualRegisterListsThenRequeueBundles(bundle, newBundles);
}
bool BacktrackingAllocator::trySplitAfterLastRegisterUse(LiveBundle* bundle,
LiveBundle* conflict,
bool* success) {
// If this bundle's later uses do not require it to be in a register,
// split it after the last use which does require a register. If conflict
// is specified, only consider register uses before the conflict starts.
CodePosition lastRegisterFrom, lastRegisterTo, lastUse;
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
// If the range defines a register, consider that a register use for
// our purposes here.
if (isRegisterDefinition(range)) {
CodePosition spillStart = minimalDefEnd(insData[range->from()]).next();
if (!conflict || spillStart < conflict->firstRange()->from()) {
lastUse = lastRegisterFrom = range->from();
lastRegisterTo = spillStart;
}
}
for (UsePositionIterator iter(range->usesBegin()); iter; iter++) {
LNode* ins = insData[iter->pos];
// Uses in the bundle should be sorted.
MOZ_ASSERT(iter->pos >= lastUse);
lastUse = inputOf(ins);
if (!conflict || outputOf(ins) < conflict->firstRange()->from()) {
if (isRegisterUse(*iter, ins, /* considerCopy = */ true)) {
lastRegisterFrom = inputOf(ins);
lastRegisterTo = iter->pos.next();
}
}
}
}
// Can't trim non-register uses off the end by splitting.
if (!lastRegisterFrom.bits()) {
JitSpew(JitSpew_RegAlloc, " .. bundle has no register uses");
return true;
}
if (lastUse < lastRegisterTo) {
JitSpew(JitSpew_RegAlloc, " .. bundle's last use is a register use");
return true;
}
JitSpewIfEnabled(JitSpew_RegAlloc, " .. split after last register use at %u",
lastRegisterTo.bits());
SplitPositionVector splitPositions;
if (!splitPositions.append(lastRegisterTo)) {
return false;
}
*success = true;
return splitAt(bundle, splitPositions);
}
bool BacktrackingAllocator::trySplitBeforeFirstRegisterUse(LiveBundle* bundle,
LiveBundle* conflict,
bool* success) {
// If this bundle's earlier uses do not require it to be in a register,
// split it before the first use which does require a register. If conflict
// is specified, only consider register uses after the conflict ends.
if (isRegisterDefinition(bundle->firstRange())) {
JitSpew(JitSpew_RegAlloc, " .. bundle is defined by a register");
return true;
}
if (!bundle->firstRange()->hasDefinition()) {
JitSpew(JitSpew_RegAlloc, " .. bundle does not have definition");
return true;
}
CodePosition firstRegisterFrom;
CodePosition conflictEnd;
if (conflict) {
for (LiveRange::BundleLinkIterator iter = conflict->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (range->to() > conflictEnd) {
conflictEnd = range->to();
}
}
}
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (!conflict || range->from() > conflictEnd) {
if (range->hasDefinition() && isRegisterDefinition(range)) {
firstRegisterFrom = range->from();
break;
}
}
for (UsePositionIterator iter(range->usesBegin()); iter; iter++) {
LNode* ins = insData[iter->pos];
if (!conflict || outputOf(ins) >= conflictEnd) {
if (isRegisterUse(*iter, ins, /* considerCopy = */ true)) {
firstRegisterFrom = inputOf(ins);
break;
}
}
}
if (firstRegisterFrom.bits()) {
break;
}
}
if (!firstRegisterFrom.bits()) {
// Can't trim non-register uses off the beginning by splitting.
JitSpew(JitSpew_RegAlloc, " bundle has no register uses");
return true;
}
JitSpewIfEnabled(JitSpew_RegAlloc,
" .. split before first register use at %u",
firstRegisterFrom.bits());
SplitPositionVector splitPositions;
if (!splitPositions.append(firstRegisterFrom)) {
return false;
}
*success = true;
return splitAt(bundle, splitPositions);
}
///////////////////////////////////////////////////////////////////////////////
// //
// The top level driver for the splitting machinery //
// //
///////////////////////////////////////////////////////////////////////////////
// ::chooseBundleSplit
// -------------------
// If the first allocation loop (in ::go) can't allocate a bundle, it hands it
// off to ::chooseBundleSplit, which is the "entry point" of the bundle-split
// machinery. This tries four heuristics in turn, to see if any can split the
// bundle:
//
// * ::trySplitAcrossHotcode
// * ::splitAcrossCalls (in some cases)
// * ::trySplitBeforeFirstRegisterUse
// * ::trySplitAfterLastRegisterUse
//
// These routines have similar structure: they try to decide on one or more
// CodePositions at which to split the bundle, using whatever heuristics they
// have to hand. If suitable CodePosition(s) are found, they are put into a
// `SplitPositionVector`, and the bundle and the vector are handed off to
// ::splitAt, which performs the split (at least in theory) at the chosen
// positions. It also arranges for the new bundles to be added to
// ::allocationQueue.
//
// ::trySplitAcrossHotcode has a special case for JS -- it modifies the
// bundle(s) itself, rather than using ::splitAt.
//
// If none of the heuristic routines apply, then ::splitAt is called with an
// empty vector of split points. This is interpreted to mean "split at all
// register uses". When combined with how ::splitAt works, the effect is to
// spill the bundle.
bool BacktrackingAllocator::chooseBundleSplit(LiveBundle* bundle, bool fixed,
LiveBundle* conflict) {
bool success = false;
JitSpew(JitSpew_RegAlloc, " Splitting %s ..", bundle->toString().get());
if (!trySplitAcrossHotcode(bundle, &success)) {
return false;
}
if (success) {
return true;
}
if (fixed) {
return splitAcrossCalls(bundle);
}
if (!trySplitBeforeFirstRegisterUse(bundle, conflict, &success)) {
return false;
}
if (success) {
return true;
}
if (!trySplitAfterLastRegisterUse(bundle, conflict, &success)) {
return false;
}
if (success) {
return true;
}
// Split at all register uses.
SplitPositionVector emptyPositions;
return splitAt(bundle, emptyPositions);
}
///////////////////////////////////////////////////////////////////////////////
// //
// Bundle allocation //
// //
///////////////////////////////////////////////////////////////////////////////
static const size_t MAX_ATTEMPTS = 2;
bool BacktrackingAllocator::computeRequirement(LiveBundle* bundle,
Requirement* requirement,
Requirement* hint) {
// Set any requirement or hint on bundle according to its definition and
// uses. Return false if there are conflicting requirements which will
// require the bundle to be split.
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
VirtualRegister& reg = range->vreg();
if (range->hasDefinition()) {
// Deal with any definition constraints/hints.
LDefinition::Policy policy = reg.def()->policy();
if (policy == LDefinition::FIXED || policy == LDefinition::STACK) {
// Fixed and stack policies get a FIXED requirement. (In the stack
// case, the allocation should have been performed already by
// mergeAndQueueRegisters.)
JitSpewIfEnabled(JitSpew_RegAlloc,
" Requirement %s, fixed by definition",
reg.def()->output()->toString().get());
if (!requirement->merge(Requirement(*reg.def()->output()))) {
return false;
}
} else if (reg.ins()->isPhi()) {
// Phis don't have any requirements, but they should prefer their
// input allocations. This is captured by the group hints above.
} else {
// Non-phis get a REGISTER requirement.
if (!requirement->merge(Requirement(Requirement::REGISTER))) {
return false;
}
}
}
// Search uses for requirements.
for (UsePositionIterator iter = range->usesBegin(); iter; iter++) {
LUse::Policy policy = iter->usePolicy();
if (policy == LUse::FIXED) {
AnyRegister required = GetFixedRegister(reg.def(), iter->use());
JitSpewIfEnabled(JitSpew_RegAlloc, " Requirement %s, due to use at %u",
required.name(), iter->pos.bits());
// If there are multiple fixed registers which the bundle is
// required to use, fail. The bundle will need to be split before
// it can be allocated.
if (!requirement->merge(Requirement(LAllocation(required)))) {
return false;
}
} else if (policy == LUse::REGISTER) {
if (!requirement->merge(Requirement(Requirement::REGISTER))) {
return false;
}
} else if (policy == LUse::ANY) {
// ANY differs from KEEPALIVE by actively preferring a register.
if (!hint->merge(Requirement(Requirement::REGISTER))) {
return false;
}
}
// The only case of STACK use policies is individual stack results using
// their containing stack result area, which is given a fixed allocation
// above.
MOZ_ASSERT_IF(policy == LUse::STACK,
requirement->kind() == Requirement::FIXED);
MOZ_ASSERT_IF(policy == LUse::STACK,
requirement->allocation().isStackArea());
}
}
return true;
}
bool BacktrackingAllocator::tryAllocateRegister(PhysicalRegister& r,
LiveBundle* bundle,
bool* success, bool* pfixed,
LiveBundleVector& conflicting) {
*success = false;
if (!r.allocatable) {
return true;
}
LiveBundleVector aliasedConflicting;
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
// All ranges in the bundle must be compatible with the physical register.
MOZ_ASSERT(range->vreg().isCompatible(r.reg));
for (size_t a = 0; a < r.reg.numAliased(); a++) {
PhysicalRegister& rAlias = registers[r.reg.aliased(a).code()];
LiveRange* existing;
if (!rAlias.allocations.contains(range, &existing)) {
continue;
}
if (existing->hasVreg()) {
MOZ_ASSERT(existing->bundle()->allocation().toRegister() == rAlias.reg);
bool duplicate = false;
for (size_t i = 0; i < aliasedConflicting.length(); i++) {
if (aliasedConflicting[i] == existing->bundle()) {
duplicate = true;
break;
}
}
if (!duplicate && !aliasedConflicting.append(existing->bundle())) {
return false;
}
} else {
JitSpewIfEnabled(JitSpew_RegAlloc, " %s collides with fixed use %s",
rAlias.reg.name(), existing->toString().get());
*pfixed = true;
return true;
}
}
}
if (!aliasedConflicting.empty()) {
// One or more aliased registers is allocated to another bundle
// overlapping this one. Keep track of the conflicting set, and in the
// case of multiple conflicting sets keep track of the set with the
// lowest maximum spill weight.
// The #ifdef guards against "unused variable 'existing'" bustage.
#ifdef JS_JITSPEW
if (JitSpewEnabled(JitSpew_RegAlloc)) {
if (aliasedConflicting.length() == 1) {
LiveBundle* existing = aliasedConflicting[0];
JitSpew(JitSpew_RegAlloc, " %s collides with %s [weight %zu]",
r.reg.name(), existing->toString().get(),
computeSpillWeight(existing));
} else {
JitSpew(JitSpew_RegAlloc, " %s collides with the following",
r.reg.name());
for (size_t i = 0; i < aliasedConflicting.length(); i++) {
LiveBundle* existing = aliasedConflicting[i];
JitSpew(JitSpew_RegAlloc, " %s [weight %zu]",
existing->toString().get(), computeSpillWeight(existing));
}
}
}
#endif
if (conflicting.empty()) {
conflicting = std::move(aliasedConflicting);
} else {
if (maximumSpillWeight(aliasedConflicting) <
maximumSpillWeight(conflicting)) {
conflicting = std::move(aliasedConflicting);
}
}
return true;
}
JitSpewIfEnabled(JitSpew_RegAlloc, " allocated to %s", r.reg.name());
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (!alloc().ensureBallast()) {
return false;
}
if (!r.allocations.insert(range)) {
return false;
}
}
bundle->setAllocation(LAllocation(r.reg));
*success = true;
return true;
}
bool BacktrackingAllocator::tryAllocateAnyRegister(
LiveBundle* bundle, bool* success, bool* pfixed,
LiveBundleVector& conflicting) {
// Search for any available register which the bundle can be allocated to.
LDefinition::Type type = bundle->firstRange()->vreg().type();
if (LDefinition::isFloatReg(type)) {
for (size_t i = AnyRegister::FirstFloatReg; i < AnyRegister::Total; i++) {
if (!LDefinition::isFloatRegCompatible(type, registers[i].reg.fpu())) {
continue;
}
if (!tryAllocateRegister(registers[i], bundle, success, pfixed,
conflicting)) {
return false;
}
if (*success) {
break;
}
}
return true;
}
for (size_t i = 0; i < AnyRegister::FirstFloatReg; i++) {
if (!tryAllocateRegister(registers[i], bundle, success, pfixed,
conflicting)) {
return false;
}
if (*success) {
break;
}
}
return true;
}
bool BacktrackingAllocator::evictBundle(LiveBundle* bundle) {
JitSpewIfEnabled(JitSpew_RegAlloc,
" Evicting %s [priority %zu] [weight %zu]",
bundle->toString().get(), computePriority(bundle),
computeSpillWeight(bundle));
AnyRegister reg(bundle->allocation().toRegister());
PhysicalRegister& physical = registers[reg.code()];
MOZ_ASSERT(physical.reg == reg && physical.allocatable);
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
physical.allocations.remove(range);
}
bundle->setAllocation(LAllocation());
size_t priority = computePriority(bundle);
return allocationQueue.insert(QueueItem(bundle, priority));
}
bool BacktrackingAllocator::tryAllocateFixed(LiveBundle* bundle,
Requirement requirement,
bool* success, bool* pfixed,
LiveBundleVector& conflicting) {
// Spill bundles which are required to be in a certain stack slot.
if (!requirement.allocation().isRegister()) {
JitSpew(JitSpew_RegAlloc, " stack allocation requirement");
bundle->setAllocation(requirement.allocation());
*success = true;
return true;
}
AnyRegister reg = requirement.allocation().toRegister();
return tryAllocateRegister(registers[reg.code()], bundle, success, pfixed,
conflicting);
}
bool BacktrackingAllocator::tryAllocateNonFixed(LiveBundle* bundle,
Requirement requirement,
Requirement hint, bool* success,
bool* pfixed,
LiveBundleVector& conflicting) {
// If we want, but do not require a bundle to be in a specific register,
// only look at that register for allocating and evict or spill if it is
// not available. Picking a separate register may be even worse than
// spilling, as it will still necessitate moves and will tie up more
// registers than if we spilled.
if (hint.kind() == Requirement::FIXED) {
AnyRegister reg = hint.allocation().toRegister();
if (!tryAllocateRegister(registers[reg.code()], bundle, success, pfixed,
conflicting)) {
return false;
}
if (*success) {
return true;
}
}
// Spill bundles which have no hint or register requirement.
if (requirement.kind() == Requirement::NONE &&
hint.kind() != Requirement::REGISTER) {
JitSpew(JitSpew_RegAlloc,
" postponed spill (no hint or register requirement)");
if (!spilledBundles.append(bundle)) {
return false;
}
*success = true;
return true;
}
if (conflicting.empty() || minimalBundle(bundle)) {
if (!tryAllocateAnyRegister(bundle, success, pfixed, conflicting)) {
return false;
}
if (*success) {
return true;
}
}
// Spill bundles which have no register requirement if they didn't get
// allocated.
if (requirement.kind() == Requirement::NONE) {
JitSpew(JitSpew_RegAlloc, " postponed spill (no register requirement)");
if (!spilledBundles.append(bundle)) {
return false;
}
*success = true;
return true;
}
// We failed to allocate this bundle.
MOZ_ASSERT(!*success);
return true;
}
bool BacktrackingAllocator::processBundle(MIRGenerator* mir,
LiveBundle* bundle) {
JitSpewIfEnabled(JitSpew_RegAlloc,
"Allocating %s [priority %zu] [weight %zu]",
bundle->toString().get(), computePriority(bundle),
computeSpillWeight(bundle));
// A bundle can be processed by doing any of the following:
//
// - Assigning the bundle a register. The bundle cannot overlap any other
// bundle allocated for that physical register.
//
// - Spilling the bundle, provided it has no register uses.
//
// - Splitting the bundle into two or more bundles which cover the original
// one. The new bundles are placed back onto the priority queue for later
// processing.
//
// - Evicting one or more existing allocated bundles, and then doing one
// of the above operations. Evicted bundles are placed back on the
// priority queue. Any evicted bundles must have a lower spill weight
// than the bundle being processed.
//
// As long as this structure is followed, termination is guaranteed.
// In general, we want to minimize the amount of bundle splitting (which
// generally necessitates spills), so allocate longer lived, lower weight
// bundles first and evict and split them later if they prevent allocation
// for higher weight bundles.
Requirement requirement, hint;
bool canAllocate = computeRequirement(bundle, &requirement, &hint);
bool fixed;
LiveBundleVector conflicting;
for (size_t attempt = 0;; attempt++) {
if (mir->shouldCancel("Backtracking Allocation (processBundle loop)")) {
return false;
}
if (canAllocate) {
bool success = false;
fixed = false;
conflicting.clear();
// Ok, let's try allocating for this bundle.
if (requirement.kind() == Requirement::FIXED) {
if (!tryAllocateFixed(bundle, requirement, &success, &fixed,
conflicting)) {
return false;
}
} else {
if (!tryAllocateNonFixed(bundle, requirement, hint, &success, &fixed,
conflicting)) {
return false;
}
}
// If that worked, we're done!
if (success) {
return true;
}
// If that didn't work, but we have one or more non-fixed bundles
// known to be conflicting, maybe we can evict them and try again.
if ((attempt < MAX_ATTEMPTS || minimalBundle(bundle)) && !fixed &&
!conflicting.empty() &&
maximumSpillWeight(conflicting) < computeSpillWeight(bundle)) {
for (size_t i = 0; i < conflicting.length(); i++) {
if (!evictBundle(conflicting[i])) {
return false;
}
}
continue;
}
}
// A minimal bundle cannot be split any further. If we try to split it
// it at this point we will just end up with the same bundle and will
// enter an infinite loop. Weights and the initial live ranges must
// be constructed so that any minimal bundle is allocatable.
MOZ_ASSERT(!minimalBundle(bundle));
LiveBundle* conflict = conflicting.empty() ? nullptr : conflicting[0];
return chooseBundleSplit(bundle, canAllocate && fixed, conflict);
}
}
// Helper for ::tryAllocatingRegistersForSpillBundles
bool BacktrackingAllocator::spill(LiveBundle* bundle) {
JitSpew(JitSpew_RegAlloc, " Spilling bundle");
MOZ_ASSERT(bundle->allocation().isBogus());
if (LiveBundle* spillParent = bundle->spillParent()) {
JitSpew(JitSpew_RegAlloc, " Using existing spill bundle");
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
LiveRange* parentRange = spillParent->rangeFor(range->from());
MOZ_ASSERT(parentRange->contains(range));
MOZ_ASSERT(&range->vreg() == &parentRange->vreg());
range->tryToMoveDefAndUsesInto(parentRange);
MOZ_ASSERT(!range->hasUses());
range->vreg().removeRange(range);
}
return true;
}
return bundle->spillSet()->addSpilledBundle(bundle);
}
bool BacktrackingAllocator::tryAllocatingRegistersForSpillBundles() {
for (auto it = spilledBundles.begin(); it != spilledBundles.end(); it++) {
LiveBundle* bundle = *it;
LiveBundleVector conflicting;
bool fixed = false;
bool success = false;
if (mir->shouldCancel("Backtracking Try Allocating Spilled Bundles")) {
return false;
}
JitSpewIfEnabled(JitSpew_RegAlloc, "Spill or allocate %s",
bundle->toString().get());
if (!tryAllocateAnyRegister(bundle, &success, &fixed, conflicting)) {
return false;
}
// If the bundle still has no register, spill the bundle.
if (!success && !spill(bundle)) {
return false;
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Rewriting of the LIR after bundle processing is done: //
// ::pickStackSlots //
// ::createMoveGroupsFromLiveRangeTransitions //
// ::installAllocationsInLIR //
// ::populateSafepoints //
// ::annotateMoveGroups //
// //
///////////////////////////////////////////////////////////////////////////////
// Helper for ::pickStackSlot
bool BacktrackingAllocator::insertAllRanges(LiveRangeSet& set,
LiveBundle* bundle) {
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (!alloc().ensureBallast()) {
return false;
}
if (!set.insert(range)) {
return false;
}
}
return true;
}
// Helper for ::pickStackSlots
bool BacktrackingAllocator::pickStackSlot(SpillSet* spillSet) {
// Look through all ranges that have been spilled in this set for a
// register definition which is fixed to a stack or argument slot. If we
// find one, use it for all bundles that have been spilled. tryMergeBundles
// makes sure this reuse is possible when an initial bundle contains ranges
// from multiple virtual registers.
for (size_t i = 0; i < spillSet->numSpilledBundles(); i++) {
LiveBundle* bundle = spillSet->spilledBundle(i);
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (range->hasDefinition()) {
LDefinition* def = range->vreg().def();
if (def->policy() == LDefinition::FIXED) {
MOZ_ASSERT(!def->output()->isRegister());
MOZ_ASSERT(!def->output()->isStackSlot());
spillSet->setAllocation(*def->output());
return true;
}
}
}
}
LDefinition::Type type =
spillSet->spilledBundle(0)->firstRange()->vreg().type();
SpillSlotList* slotList;
switch (StackSlotAllocator::width(type)) {
case 4:
slotList = &normalSlots;
break;
case 8:
slotList = &doubleSlots;
break;
case 16:
slotList = &quadSlots;
break;
default:
MOZ_CRASH("Bad width");
}
// Maximum number of existing spill slots we will look at before giving up
// and allocating a new slot.
static const size_t MAX_SEARCH_COUNT = 10;
size_t searches = 0;
SpillSlot* stop = nullptr;
while (!slotList->empty()) {
SpillSlot* spillSlot = *slotList->begin();
if (!stop) {
stop = spillSlot;
} else if (stop == spillSlot) {
// We looked through every slot in the list.
break;
}
bool success = true;
for (size_t i = 0; i < spillSet->numSpilledBundles(); i++) {
LiveBundle* bundle = spillSet->spilledBundle(i);
for (LiveRange::BundleLinkIterator iter = bundle->rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
LiveRange* existing;
if (spillSlot->allocated.contains(range, &existing)) {
success = false;
break;
}
}
if (!success) {
break;
}
}
if (success) {
// We can reuse this physical stack slot for the new bundles.
// Update the allocated ranges for the slot.
for (size_t i = 0; i < spillSet->numSpilledBundles(); i++) {
LiveBundle* bundle = spillSet->spilledBundle(i);
if (!insertAllRanges(spillSlot->allocated, bundle)) {
return false;
}
}
spillSet->setAllocation(spillSlot->alloc);
return true;
}
// On a miss, move the spill to the end of the list. This will cause us
// to make fewer attempts to allocate from slots with a large and
// highly contended range.
slotList->popFront();
slotList->pushBack(spillSlot);
if (++searches == MAX_SEARCH_COUNT) {
break;
}
}
// We need a new physical stack slot.
uint32_t stackSlot = stackSlotAllocator.allocateSlot(type);
SpillSlot* spillSlot =
new (alloc().fallible()) SpillSlot(stackSlot, alloc().lifoAlloc());
if (!spillSlot) {
return false;
}
for (size_t i = 0; i < spillSet->numSpilledBundles(); i++) {
LiveBundle* bundle = spillSet->spilledBundle(i);
if (!insertAllRanges(spillSlot->allocated, bundle)) {
return false;
}
}
spillSet->setAllocation(spillSlot->alloc);
slotList->pushFront(spillSlot);
return true;
}
bool BacktrackingAllocator::pickStackSlots() {
for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
VirtualRegister& reg = vregs[i];
if (mir->shouldCancel("Backtracking Pick Stack Slots")) {
return false;
}
for (LiveRange::RegisterLinkIterator iter = reg.rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
LiveBundle* bundle = range->bundle();
if (bundle->allocation().isBogus()) {
if (!pickStackSlot(bundle->spillSet())) {
return false;
}
MOZ_ASSERT(!bundle->allocation().isBogus());
}
}
}
return true;
}
// Helper for ::createMoveGroupsFromLiveRangeTransitions
bool BacktrackingAllocator::moveAtEdge(LBlock* predecessor, LBlock* successor,
LiveRange* from, LiveRange* to,
LDefinition::Type type) {
if (successor->mir()->numPredecessors() > 1) {
MOZ_ASSERT(predecessor->mir()->numSuccessors() == 1);
return moveAtExit(predecessor, from, to, type);
}
return moveAtEntry(successor, from, to, type);
}
// Helper for ::createMoveGroupsFromLiveRangeTransitions
bool BacktrackingAllocator::deadRange(LiveRange* range) {
// Check for direct uses of this range.
if (range->hasUses() || range->hasDefinition()) {
return false;
}
CodePosition start = range->from();
LNode* ins = insData[start];
if (start == entryOf(ins->block())) {
return false;
}
VirtualRegister& reg = range->vreg();
// Check if there are later ranges for this vreg.
LiveRange::RegisterLinkIterator iter = reg.rangesBegin(range);
for (iter++; iter; iter++) {
LiveRange* laterRange = LiveRange::get(*iter);
if (laterRange->from() > range->from()) {
return false;
}
}
// Check if this range ends at a loop backedge.
LNode* last = insData[range->to().previous()];
if (last->isGoto() &&
last->toGoto()->target()->id() < last->block()->mir()->id()) {
return false;
}
// Check if there are phis which this vreg flows to.
if (reg.usedByPhi()) {
return false;
}
return true;
}
bool BacktrackingAllocator::createMoveGroupsFromLiveRangeTransitions() {
// Add moves to handle changing assignments for vregs over their lifetime.
JitSpew(JitSpew_RegAlloc, "ResolveControlFlow: begin");
JitSpew(JitSpew_RegAlloc,
" ResolveControlFlow: adding MoveGroups within blocks");
// Look for places where a register's assignment changes in the middle of a
// basic block.
MOZ_ASSERT(!vregs[0u].hasRanges());
for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
VirtualRegister& reg = vregs[i];
if (mir->shouldCancel(
"Backtracking Resolve Control Flow (vreg outer loop)")) {
return false;
}
for (LiveRange::RegisterLinkIterator iter = reg.rangesBegin(); iter;) {
LiveRange* range = LiveRange::get(*iter);
if (mir->shouldCancel(
"Backtracking Resolve Control Flow (vreg inner loop)")) {
return false;
}
// Remove ranges which will never be used.
if (deadRange(range)) {
reg.removeRangeAndIncrement(iter);
continue;
}
// The range which defines the register does not have a predecessor
// to add moves from.
if (range->hasDefinition()) {
iter++;
continue;
}
// Ignore ranges that start at block boundaries. We will handle
// these in the next phase.
CodePosition start = range->from();
LNode* ins = insData[start];
if (start == entryOf(ins->block())) {
iter++;
continue;
}
// If we already saw a range which covers the start of this range
// and has the same allocation, we don't need an explicit move at
// the start of this range.
bool skip = false;
for (LiveRange::RegisterLinkIterator prevIter = reg.rangesBegin();
prevIter != iter; prevIter++) {
LiveRange* prevRange = LiveRange::get(*prevIter);
if (prevRange->covers(start) && prevRange->bundle()->allocation() ==
range->bundle()->allocation()) {
skip = true;
break;
}
}
if (skip) {
iter++;
continue;
}
if (!alloc().ensureBallast()) {
return false;
}
LiveRange* predecessorRange =
reg.rangeFor(start.previous(), /* preferRegister = */ true);
if (start.subpos() == CodePosition::INPUT) {
JitSpew(JitSpew_RegAlloc, " moveInput (%s) <- (%s)",
range->toString().get(), predecessorRange->toString().get());
if (!moveInput(ins->toInstruction(), predecessorRange, range,
reg.type())) {
return false;
}
} else {
JitSpew(JitSpew_RegAlloc, " (moveAfter)");
if (!moveAfter(ins->toInstruction(), predecessorRange, range,
reg.type())) {
return false;
}
}
iter++;
}
}
JitSpew(JitSpew_RegAlloc,
" ResolveControlFlow: adding MoveGroups for phi nodes");
for (size_t i = 0; i < graph.numBlocks(); i++) {
if (mir->shouldCancel("Backtracking Resolve Control Flow (block loop)")) {
return false;
}
LBlock* successor = graph.getBlock(i);
MBasicBlock* mSuccessor = successor->mir();
if (mSuccessor->numPredecessors() < 1) {
continue;
}
// Resolve phis to moves.
for (size_t j = 0; j < successor->numPhis(); j++) {
LPhi* phi = successor->getPhi(j);
MOZ_ASSERT(phi->numDefs() == 1);
LDefinition* def = phi->getDef(0);
VirtualRegister& reg = vreg(def);
LiveRange* to = reg.rangeFor(entryOf(successor));
MOZ_ASSERT(to);
for (size_t k = 0; k < mSuccessor->numPredecessors(); k++) {
LBlock* predecessor = mSuccessor->getPredecessor(k)->lir();
MOZ_ASSERT(predecessor->mir()->numSuccessors() == 1);
LAllocation* input = phi->getOperand(k);
LiveRange* from = vreg(input).rangeFor(exitOf(predecessor),
/* preferRegister = */ true);
MOZ_ASSERT(from);
if (!alloc().ensureBallast()) {
return false;
}
// Note: we have to use moveAtEdge both here and below (for edge
// resolution) to avoid conflicting moves. See bug 1493900.
JitSpew(JitSpew_RegAlloc, " (moveAtEdge#1)");
if (!moveAtEdge(predecessor, successor, from, to, def->type())) {
return false;
}
}
}
}
JitSpew(JitSpew_RegAlloc,
" ResolveControlFlow: adding MoveGroups to fix conflicted edges");
// Add moves to resolve graph edges with different allocations at their
// source and target.
for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
VirtualRegister& reg = vregs[i];
for (LiveRange::RegisterLinkIterator iter = reg.rangesBegin(); iter;
iter++) {
LiveRange* targetRange = LiveRange::get(*iter);
size_t firstBlockId = insData[targetRange->from()]->block()->mir()->id();
if (!targetRange->covers(entryOf(graph.getBlock(firstBlockId)))) {
firstBlockId++;
}
for (size_t id = firstBlockId; id < graph.numBlocks(); id++) {
LBlock* successor = graph.getBlock(id);
if (!targetRange->covers(entryOf(successor))) {
break;
}
BitSet& live = liveIn[id];
if (!live.contains(i)) {
continue;
}
for (size_t j = 0; j < successor->mir()->numPredecessors(); j++) {
LBlock* predecessor = successor->mir()->getPredecessor(j)->lir();
if (targetRange->covers(exitOf(predecessor))) {
continue;
}
if (!alloc().ensureBallast()) {
return false;
}
JitSpew(JitSpew_RegAlloc, " (moveAtEdge#2)");
LiveRange* from = reg.rangeFor(exitOf(predecessor), true);
if (!moveAtEdge(predecessor, successor, from, targetRange,
reg.type())) {
return false;
}
}
}
}
}
JitSpew(JitSpew_RegAlloc, "ResolveControlFlow: end");
return true;
}
// Helper for ::addLiveRegistersForRange
size_t BacktrackingAllocator::findFirstNonCallSafepoint(CodePosition from) {
size_t i = 0;
for (; i < graph.numNonCallSafepoints(); i++) {
const LInstruction* ins = graph.getNonCallSafepoint(i);
if (from <= inputOf(ins)) {
break;
}
}
return i;
}
// Helper for ::installAllocationsInLIR
void BacktrackingAllocator::addLiveRegistersForRange(VirtualRegister& reg,
LiveRange* range) {
// Fill in the live register sets for all non-call safepoints.
LAllocation a = range->bundle()->allocation();
if (!a.isRegister()) {
return;
}
// Don't add output registers to the safepoint.
CodePosition start = range->from();
if (range->hasDefinition() && !reg.isTemp()) {
#ifdef CHECK_OSIPOINT_REGISTERS
// We don't add the output register to the safepoint,
// but it still might get added as one of the inputs.
// So eagerly add this reg to the safepoint clobbered registers.
if (reg.ins()->isInstruction()) {
if (LSafepoint* safepoint = reg.ins()->toInstruction()->safepoint()) {
safepoint->addClobberedRegister(a.toRegister());
}
}
#endif
start = start.next();
}
size_t i = findFirstNonCallSafepoint(start);
for (; i < graph.numNonCallSafepoints(); i++) {
LInstruction* ins = graph.getNonCallSafepoint(i);
CodePosition pos = inputOf(ins);
// Safepoints are sorted, so we can shortcut out of this loop
// if we go out of range.
if (range->to() <= pos) {
break;
}
MOZ_ASSERT(range->covers(pos));
LSafepoint* safepoint = ins->safepoint();
safepoint->addLiveRegister(a.toRegister());
#ifdef CHECK_OSIPOINT_REGISTERS
if (reg.isTemp()) {
safepoint->addClobberedRegister(a.toRegister());
}
#endif
}
}
// Helper for ::installAllocationsInLIR
static inline size_t NumReusingDefs(LInstruction* ins) {
size_t num = 0;
for (size_t i = 0; i < ins->numDefs(); i++) {
LDefinition* def = ins->getDef(i);
if (def->policy() == LDefinition::MUST_REUSE_INPUT) {
num++;
}
}
return num;
}
bool BacktrackingAllocator::installAllocationsInLIR() {
JitSpew(JitSpew_RegAlloc, "Installing Allocations");
MOZ_ASSERT(!vregs[0u].hasRanges());
for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
VirtualRegister& reg = vregs[i];
if (mir->shouldCancel("Backtracking Install Allocations (main loop)")) {
return false;
}
for (LiveRange::RegisterLinkIterator iter = reg.rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
if (range->hasDefinition()) {
reg.def()->setOutput(range->bundle()->allocation());
if (reg.ins()->recoversInput()) {
LSnapshot* snapshot = reg.ins()->toInstruction()->snapshot();
for (size_t i = 0; i < snapshot->numEntries(); i++) {
LAllocation* entry = snapshot->getEntry(i);
if (entry->isUse() &&
entry->toUse()->policy() == LUse::RECOVERED_INPUT) {
*entry = *reg.def()->output();
}
}
}
}
for (UsePositionIterator iter(range->usesBegin()); iter; iter++) {
LAllocation* alloc = iter->use();
*alloc = range->bundle()->allocation();
// For any uses which feed into MUST_REUSE_INPUT definitions,
// add copies if the use and def have different allocations.
LNode* ins = insData[iter->pos];
if (LDefinition* def = FindReusingDefOrTemp(ins, alloc)) {
LiveRange* outputRange = vreg(def).rangeFor(outputOf(ins));
LAllocation res = outputRange->bundle()->allocation();
LAllocation sourceAlloc = range->bundle()->allocation();
if (res != *alloc) {
if (!this->alloc().ensureBallast()) {
return false;
}
if (NumReusingDefs(ins->toInstruction()) <= 1) {
LMoveGroup* group = getInputMoveGroup(ins->toInstruction());
if (!group->addAfter(sourceAlloc, res, reg.type())) {
return false;
}
} else {
LMoveGroup* group = getFixReuseMoveGroup(ins->toInstruction());
if (!group->add(sourceAlloc, res, reg.type())) {
return false;
}
}
*alloc = res;
}
}
}
addLiveRegistersForRange(reg, range);
}
}
graph.setLocalSlotsSize(stackSlotAllocator.stackHeight());
return true;
}
// Helper for ::populateSafepoints
size_t BacktrackingAllocator::findFirstSafepoint(CodePosition pos,
size_t startFrom) {
size_t i = startFrom;
for (; i < graph.numSafepoints(); i++) {
LInstruction* ins = graph.getSafepoint(i);
if (pos <= inputOf(ins)) {
break;
}
}
return i;
}
// Helper for ::populateSafepoints
static inline bool IsNunbox(VirtualRegister& reg) {
#ifdef JS_NUNBOX32
return reg.type() == LDefinition::TYPE || reg.type() == LDefinition::PAYLOAD;
#else
return false;
#endif
}
// Helper for ::populateSafepoints
static inline bool IsSlotsOrElements(VirtualRegister& reg) {
return reg.type() == LDefinition::SLOTS;
}
// Helper for ::populateSafepoints
static inline bool IsTraceable(VirtualRegister& reg) {
if (reg.type() == LDefinition::OBJECT) {
return true;
}
#ifdef JS_PUNBOX64
if (reg.type() == LDefinition::BOX) {
return true;
}
#endif
if (reg.type() == LDefinition::STACKRESULTS) {
MOZ_ASSERT(reg.def());
const LStackArea* alloc = reg.def()->output()->toStackArea();
for (auto iter = alloc->results(); iter; iter.next()) {
if (iter.isGcPointer()) {
return true;
}
}
}
return false;
}
bool BacktrackingAllocator::populateSafepoints() {
JitSpew(JitSpew_RegAlloc, "Populating Safepoints");
size_t firstSafepoint = 0;
MOZ_ASSERT(!vregs[0u].def());
for (uint32_t i = 1; i < graph.numVirtualRegisters(); i++) {
VirtualRegister& reg = vregs[i];
if (!reg.def() ||
(!IsTraceable(reg) && !IsSlotsOrElements(reg) && !IsNunbox(reg))) {
continue;
}
firstSafepoint = findFirstSafepoint(inputOf(reg.ins()), firstSafepoint);
if (firstSafepoint >= graph.numSafepoints()) {
break;
}
for (LiveRange::RegisterLinkIterator iter = reg.rangesBegin(); iter;
iter++) {
LiveRange* range = LiveRange::get(*iter);
for (size_t j = firstSafepoint; j < graph.numSafepoints(); j++) {
LInstruction* ins = graph.getSafepoint(j);
if (!range->covers(inputOf(ins))) {
if (inputOf(ins) >= range->to()) {
break;
}
continue;
}
// Include temps but not instruction outputs. Also make sure
// MUST_REUSE_INPUT is not used with gcthings or nunboxes, or
// we would have to add the input reg to this safepoint.
if (ins == reg.ins() && !reg.isTemp()) {
DebugOnly<LDefinition*> def = reg.def();
MOZ_ASSERT_IF(def->policy() == LDefinition::MUST_REUSE_INPUT,
def->type() == LDefinition::GENERAL ||
def->type() == LDefinition::INT32 ||
def->type() == LDefinition::FLOAT32 ||
def->type() == LDefinition::DOUBLE ||
def->type() == LDefinition::SIMD128);
continue;
}
LSafepoint* safepoint = ins->safepoint();
LAllocation a = range->bundle()->allocation();
if (a.isGeneralReg() && ins->isCall()) {
continue;
}
switch (reg.type()) {
case LDefinition::OBJECT:
if (!safepoint->addGcPointer(a)) {
return false;
}
break;
case LDefinition::SLOTS:
if (!safepoint->addSlotsOrElementsPointer(a)) {
return false;
}
break;
case LDefinition::STACKRESULTS: {
MOZ_ASSERT(a.isStackArea());
for (auto iter = a.toStackArea()->results(); iter; iter.next()) {
if (iter.isGcPointer()) {
if (!safepoint->addGcPointer(iter.alloc())) {
return false;
}
}
}
break;
}
#ifdef JS_NUNBOX32
case LDefinition::TYPE:
if (!safepoint->addNunboxType(i, a)) {
return false;
}
break;
case LDefinition::PAYLOAD:
if (!safepoint->addNunboxPayload(i, a)) {
return false;
}
break;
#else
case LDefinition::BOX:
if (!safepoint->addBoxedValue(a)) {
return false;
}
break;
#endif
default:
MOZ_CRASH("Bad register type");
}
}
}
}
return true;
}
bool BacktrackingAllocator::annotateMoveGroups() {
// Annotate move groups in the LIR graph with any register that is not
// allocated at that point and can be used as a scratch register. This is
// only required for x86, as other platforms always have scratch registers
// available for use.
#ifdef JS_CODEGEN_X86
LiveRange* range = LiveRange::FallibleNew(alloc(), nullptr, CodePosition(),
CodePosition().next());
if (!range) {
return false;
}
for (size_t i = 0; i < graph.numBlocks(); i++) {
if (mir->shouldCancel("Backtracking Annotate Move Groups")) {
return false;
}
LBlock* block = graph.getBlock(i);
LInstruction* last = nullptr;
for (LInstructionIterator iter = block->begin(); iter != block->end();
++iter) {
if (iter->isMoveGroup()) {
CodePosition from = last ? outputOf(last) : entryOf(block);
range->setTo(from.next());
range->setFrom(from);
for (size_t i = 0; i < AnyRegister::Total; i++) {
PhysicalRegister& reg = registers[i];
if (reg.reg.isFloat() || !reg.allocatable) {
continue;
}
// This register is unavailable for use if (a) it is in use
// by some live range immediately before the move group,
// or (b) it is an operand in one of the group's moves. The
// latter case handles live ranges which end immediately
// before the move group or start immediately after.
// For (b) we need to consider move groups immediately
// preceding or following this one.
if (iter->toMoveGroup()->uses(reg.reg.gpr())) {
continue;
}
bool found = false;
LInstructionIterator niter(iter);
for (niter++; niter != block->end(); niter++) {
if (niter->isMoveGroup()) {
if (niter->toMoveGroup()->uses(reg.reg.gpr())) {
found = true;
break;
}
} else {
break;
}
}
if (iter != block->begin()) {
LInstructionIterator riter(iter);
do {
riter--;
if (riter->isMoveGroup()) {
if (riter->toMoveGroup()->uses(reg.reg.gpr())) {
found = true;
break;
}
} else {
break;
}
} while (riter != block->begin());
}
LiveRange* existing;
if (found || reg.allocations.contains(range, &existing)) {
continue;
}
iter->toMoveGroup()->setScratchRegister(reg.reg.gpr());
break;
}
} else {
last = *iter;
}
}
}
#endif
return true;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Debug-printing support //
// //
///////////////////////////////////////////////////////////////////////////////
#ifdef JS_JITSPEW
UniqueChars LiveRange::toString() const {
AutoEnterOOMUnsafeRegion oomUnsafe;
UniqueChars buf = JS_smprintf("v%u %u-%u", hasVreg() ? vreg().vreg() : 0,
from().bits(), to().bits() - 1);
if (buf && bundle() && !bundle()->allocation().isBogus()) {
buf = JS_sprintf_append(std::move(buf), " %s",
bundle()->allocation().toString().get());
}
buf = JS_sprintf_append(std::move(buf), " {");
if (buf && hasDefinition()) {
buf = JS_sprintf_append(std::move(buf), " %u_def", from().bits());
if (hasVreg()) {
// If the definition has a fixed requirement, print it too.
const LDefinition* def = vreg().def();
LDefinition::Policy policy = def->policy();
if (policy == LDefinition::FIXED || policy == LDefinition::STACK) {
if (buf) {
buf = JS_sprintf_append(std::move(buf), ":F:%s",
def->output()->toString().get());
}
}
}
}
for (UsePositionIterator iter = usesBegin(); buf && iter; iter++) {
buf = JS_sprintf_append(std::move(buf), " %u_%s", iter->pos.bits(),
iter->use()->toString().get());
}
buf = JS_sprintf_append(std::move(buf), " }");
if (!buf) {
oomUnsafe.crash("LiveRange::toString()");
}
return buf;
}
UniqueChars LiveBundle::toString() const {
AutoEnterOOMUnsafeRegion oomUnsafe;
UniqueChars buf = JS_smprintf("LB%u(", debugId());
if (buf) {
if (spillParent()) {
buf = JS_sprintf_append(std::move(buf), "parent=LB%u",
spillParent()->debugId());
} else {
buf = JS_sprintf_append(std::move(buf), "parent=none");
}
}
for (LiveRange::BundleLinkIterator iter = rangesBegin(); buf && iter;
iter++) {
if (buf) {
buf = JS_sprintf_append(std::move(buf), "%s %s",
(iter == rangesBegin()) ? "" : " ##",
LiveRange::get(*iter)->toString().get());
}
}
if (buf) {
buf = JS_sprintf_append(std::move(buf), ")");
}
if (!buf) {
oomUnsafe.crash("LiveBundle::toString()");
}
return buf;
}
void BacktrackingAllocator::dumpLiveRangesByVReg(const char* who) {
MOZ_ASSERT(!vregs[0u].hasRanges());
JitSpewCont(JitSpew_RegAlloc, "\n");
JitSpew(JitSpew_RegAlloc, "Live ranges by virtual register (%s):", who);
for (uint32_t i = 1; i < graph.numVirtualRegisters(); i++) {
JitSpewHeader(JitSpew_RegAlloc);
JitSpewCont(JitSpew_RegAlloc, " ");
VirtualRegister& reg = vregs[i];
for (LiveRange::RegisterLinkIterator iter = reg.rangesBegin(); iter;
iter++) {
if (iter != reg.rangesBegin()) {
JitSpewCont(JitSpew_RegAlloc, " ## ");
}
JitSpewCont(JitSpew_RegAlloc, "%s",
LiveRange::get(*iter)->toString().get());
}
JitSpewCont(JitSpew_RegAlloc, "\n");
}
}
void BacktrackingAllocator::dumpLiveRangesByBundle(const char* who) {
MOZ_ASSERT(!vregs[0u].hasRanges());
JitSpewCont(JitSpew_RegAlloc, "\n");
JitSpew(JitSpew_RegAlloc, "Live ranges by bundle (%s):", who);
for (uint32_t i = 1; i < graph.numVirtualRegisters(); i++) {
VirtualRegister& reg = vregs[i];
for (LiveRange::RegisterLinkIterator baseIter = reg.rangesBegin(); baseIter;
baseIter++) {
LiveRange* range = LiveRange::get(*baseIter);
LiveBundle* bundle = range->bundle();
if (range == bundle->firstRange()) {
JitSpew(JitSpew_RegAlloc, " %s", bundle->toString().get());
}
}
}
}
void BacktrackingAllocator::dumpAllocations() {
JitSpew(JitSpew_RegAlloc, "Allocations:");
dumpLiveRangesByBundle("in dumpAllocations()");
JitSpewCont(JitSpew_RegAlloc, "\n");
JitSpew(JitSpew_RegAlloc, "Allocations by physical register:");
for (size_t i = 0; i < AnyRegister::Total; i++) {
if (registers[i].allocatable && !registers[i].allocations.empty()) {
JitSpewHeader(JitSpew_RegAlloc);
JitSpewCont(JitSpew_RegAlloc, " %s:", AnyRegister::FromCode(i).name());
bool first = true;
LiveRangeSet::Iter lrIter(®isters[i].allocations);
while (lrIter.hasMore()) {
LiveRange* range = lrIter.next();
if (first) {
first = false;
} else {
fprintf(stderr, " /");
}
fprintf(stderr, " %s", range->toString().get());
}
JitSpewCont(JitSpew_RegAlloc, "\n");
}
}
JitSpewCont(JitSpew_RegAlloc, "\n");
}
#endif // JS_JITSPEW
///////////////////////////////////////////////////////////////////////////////
// //
// Top level of the register allocation machinery //
// //
///////////////////////////////////////////////////////////////////////////////
bool BacktrackingAllocator::go() {
JitSpewCont(JitSpew_RegAlloc, "\n");
JitSpew(JitSpew_RegAlloc, "Beginning register allocation");
JitSpewCont(JitSpew_RegAlloc, "\n");
if (JitSpewEnabled(JitSpew_RegAlloc)) {
dumpInstructions("(Pre-allocation LIR)");
}
if (!init()) {
return false;
}
if (!buildLivenessInfo()) {
return false;
}
#ifdef JS_JITSPEW
if (JitSpewEnabled(JitSpew_RegAlloc)) {
dumpLiveRangesByVReg("after liveness analysis");
}
#endif
if (!allocationQueue.reserve(graph.numVirtualRegisters() * 3 / 2)) {
return false;
}
JitSpewCont(JitSpew_RegAlloc, "\n");
JitSpew(JitSpew_RegAlloc, "Beginning grouping and queueing registers");
if (!mergeAndQueueRegisters()) {
return false;
}
JitSpew(JitSpew_RegAlloc, "Completed grouping and queueing registers");
#ifdef JS_JITSPEW
if (JitSpewEnabled(JitSpew_RegAlloc)) {
dumpLiveRangesByBundle("after grouping/queueing regs");
}
#endif
// There now follow two allocation loops, which are really the heart of the
// allocator. First, the "main" allocation loop. This does almost all of
// the allocation work, by repeatedly pulling bundles out of
// ::allocationQueue and calling ::processBundle on it, until there are no
// bundles left in the queue. Note that ::processBundle can add new smaller
// bundles to the queue if it needs to split or spill a bundle.
//
// For each bundle in turn pulled out of ::allocationQueue, ::processBundle:
//
// * calls ::computeRequirement to discover the overall constraint for the
// bundle.
//
// * tries to find a register for it, by calling either ::tryAllocateFixed or
// ::tryAllocateNonFixed.
//
// * if that fails, but ::tryAllocateFixed / ::tryAllocateNonFixed indicate
// that there is some other bundle with lower spill weight that can be
// evicted, then that bundle is evicted (hence, put back into
// ::allocationQueue), and we try again.
//
// * at most MAX_ATTEMPTS may be made.
//
// * If that still fails to find a register, then the bundle is handed off to
// ::chooseBundleSplit. That will choose to either split the bundle,
// yielding multiple pieces which are put back into ::allocationQueue, or
// it will spill the bundle. Note that the same mechanism applies to both;
// there's no clear boundary between splitting and spilling, because
// spilling can be interpreted as an extreme form of splitting.
//
// ::processBundle and its callees contains much gnarly and logic which isn't
// easy to understand, particularly in the area of how eviction candidates
// are chosen. But it works well enough, and tinkering doesn't seem to
// improve the resulting allocations. More important is the splitting logic,
// because that controls where spill/reload instructions are placed.
//
// Eventually ::allocationQueue becomes empty, and each LiveBundle has either
// been allocated a register or is marked for spilling. In the latter case
// it will have been added to ::spilledBundles.
JitSpewCont(JitSpew_RegAlloc, "\n");
JitSpew(JitSpew_RegAlloc, "Beginning main allocation loop");
JitSpewCont(JitSpew_RegAlloc, "\n");
// Allocate, spill and split bundles until finished.
while (!allocationQueue.empty()) {
if (mir->shouldCancel("Backtracking Allocation")) {
return false;
}
QueueItem item = allocationQueue.removeHighest();
if (!processBundle(mir, item.bundle)) {
return false;
}
}
// And here's the second allocation loop (hidden inside
// ::tryAllocatingRegistersForSpillBundles). It makes one last attempt to
// find a register for each spill bundle. There's no attempt to free up
// registers by eviction. In at least 99% of cases this attempt fails, in
// which case the bundle is handed off to ::spill. The lucky remaining 1%
// get a register. Unfortunately this scheme interacts badly with the
// splitting strategy, leading to excessive register-to-register copying in
// some very simple cases. See bug 1752520.
//
// A modest but probably worthwhile amount of allocation time can be saved by
// making ::tryAllocatingRegistersForSpillBundles use specialised versions of
// ::tryAllocateAnyRegister and its callees, that don't bother to create sets
// of conflicting bundles. Creating those sets is expensive and, here,
// pointless, since we're not going to do any eviction based on them. This
// refinement is implemented in the un-landed patch at bug 1758274 comment
// 15.
JitSpewCont(JitSpew_RegAlloc, "\n");
JitSpew(JitSpew_RegAlloc,
"Main allocation loop complete; "
"beginning spill-bundle allocation loop");
JitSpewCont(JitSpew_RegAlloc, "\n");
if (!tryAllocatingRegistersForSpillBundles()) {
return false;
}
JitSpewCont(JitSpew_RegAlloc, "\n");
JitSpew(JitSpew_RegAlloc, "Spill-bundle allocation loop complete");
JitSpewCont(JitSpew_RegAlloc, "\n");
if (!pickStackSlots()) {
return false;
}
#ifdef JS_JITSPEW
if (JitSpewEnabled(JitSpew_RegAlloc)) {
dumpAllocations();
}
#endif
if (!createMoveGroupsFromLiveRangeTransitions()) {
return false;
}
if (!installAllocationsInLIR()) {
return false;
}
if (!populateSafepoints()) {
return false;
}
if (!annotateMoveGroups()) {
return false;
}
JitSpewCont(JitSpew_RegAlloc, "\n");
if (JitSpewEnabled(JitSpew_RegAlloc)) {
dumpInstructions("(Post-allocation LIR)");
}
JitSpew(JitSpew_RegAlloc, "Finished register allocation");
return true;
}
///////////////////////////////////////////////////////////////////////////////
// //
///////////////////////////////////////////////////////////////////////////////
|