1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* A class used for intermediate representations of the -moz-transform property.
*/
#include "nsStyleTransformMatrix.h"
#include "nsLayoutUtils.h"
#include "nsPresContext.h"
#include "mozilla/MotionPathUtils.h"
#include "mozilla/ServoBindings.h"
#include "mozilla/StyleAnimationValue.h"
#include "mozilla/SVGUtils.h"
#include "gfxMatrix.h"
#include "gfxQuaternion.h"
using namespace mozilla;
using namespace mozilla::gfx;
namespace nsStyleTransformMatrix {
/* Note on floating point precision: The transform matrix is an array
* of single precision 'float's, and so are most of the input values
* we get from the style system, but intermediate calculations
* involving angles need to be done in 'double'.
*/
// Define UNIFIED_CONTINUATIONS here and in nsDisplayList.cpp
// to have the transform property try
// to transform content with continuations as one unified block instead of
// several smaller ones. This is currently disabled because it doesn't work
// correctly, since when the frames are initially being reflowed, their
// continuations all compute their bounding rects independently of each other
// and consequently get the wrong value.
//#define UNIFIED_CONTINUATIONS
void TransformReferenceBox::EnsureDimensionsAreCached() {
if (mIsCached) {
return;
}
MOZ_ASSERT(mFrame);
mIsCached = true;
if (mFrame->HasAnyStateBits(NS_FRAME_SVG_LAYOUT)) {
if (mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::FillBox) {
// Percentages in transforms resolve against the SVG bbox, and the
// transform is relative to the top-left of the SVG bbox.
nsRect bboxInAppUnits = nsLayoutUtils::ComputeGeometryBox(
const_cast<nsIFrame*>(mFrame), StyleGeometryBox::FillBox);
// The mRect of an SVG nsIFrame is its user space bounds *including*
// stroke and markers, whereas bboxInAppUnits is its user space bounds
// including fill only. We need to note the offset of the reference box
// from the frame's mRect in mX/mY.
mX = bboxInAppUnits.x - mFrame->GetPosition().x;
mY = bboxInAppUnits.y - mFrame->GetPosition().y;
mWidth = bboxInAppUnits.width;
mHeight = bboxInAppUnits.height;
} else {
// The value 'border-box' is treated as 'view-box' for SVG content.
MOZ_ASSERT(
mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::ViewBox ||
mFrame->StyleDisplay()->mTransformBox ==
StyleGeometryBox::BorderBox,
"Unexpected value for 'transform-box'");
// Percentages in transforms resolve against the width/height of the
// nearest viewport (or its viewBox if one is applied), and the
// transform is relative to {0,0} in current user space.
mX = -mFrame->GetPosition().x;
mY = -mFrame->GetPosition().y;
Size contextSize = SVGUtils::GetContextSize(mFrame);
mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width);
mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height);
}
return;
}
// If UNIFIED_CONTINUATIONS is not defined, this is simply the frame's
// bounding rectangle, translated to the origin. Otherwise, it is the
// smallest rectangle containing a frame and all of its continuations. For
// example, if there is a <span> element with several continuations split
// over several lines, this function will return the rectangle containing all
// of those continuations.
nsRect rect;
#ifndef UNIFIED_CONTINUATIONS
rect = mFrame->GetRect();
#else
// Iterate the continuation list, unioning together the bounding rects:
for (const nsIFrame* currFrame = mFrame->FirstContinuation();
currFrame != nullptr; currFrame = currFrame->GetNextContinuation()) {
// Get the frame rect in local coordinates, then translate back to the
// original coordinates:
rect.UnionRect(
result, nsRect(currFrame->GetOffsetTo(mFrame), currFrame->GetSize()));
}
#endif
mX = 0;
mY = 0;
mWidth = rect.Width();
mHeight = rect.Height();
}
void TransformReferenceBox::Init(const nsRect& aDimensions) {
MOZ_ASSERT(!mFrame && !mIsCached);
mX = aDimensions.x;
mY = aDimensions.y;
mWidth = aDimensions.width;
mHeight = aDimensions.height;
mIsCached = true;
}
float ProcessTranslatePart(
const LengthPercentage& aValue, TransformReferenceBox* aRefBox,
TransformReferenceBox::DimensionGetter aDimensionGetter) {
return aValue.ResolveToCSSPixelsWith([&] {
return aRefBox && !aRefBox->IsEmpty()
? CSSPixel::FromAppUnits((aRefBox->*aDimensionGetter)())
: CSSCoord(0);
});
}
/**
* Helper functions to process all the transformation function types.
*
* These take a matrix parameter to accumulate the current matrix.
*/
/* Helper function to process a matrix entry. */
static void ProcessMatrix(Matrix4x4& aMatrix,
const StyleTransformOperation& aOp) {
const auto& matrix = aOp.AsMatrix();
gfxMatrix result;
result._11 = matrix.a;
result._12 = matrix.b;
result._21 = matrix.c;
result._22 = matrix.d;
result._31 = matrix.e;
result._32 = matrix.f;
aMatrix = result * aMatrix;
}
static void ProcessMatrix3D(Matrix4x4& aMatrix,
const StyleTransformOperation& aOp) {
Matrix4x4 temp;
const auto& matrix = aOp.AsMatrix3D();
temp._11 = matrix.m11;
temp._12 = matrix.m12;
temp._13 = matrix.m13;
temp._14 = matrix.m14;
temp._21 = matrix.m21;
temp._22 = matrix.m22;
temp._23 = matrix.m23;
temp._24 = matrix.m24;
temp._31 = matrix.m31;
temp._32 = matrix.m32;
temp._33 = matrix.m33;
temp._34 = matrix.m34;
temp._41 = matrix.m41;
temp._42 = matrix.m42;
temp._43 = matrix.m43;
temp._44 = matrix.m44;
aMatrix = temp * aMatrix;
}
// For accumulation for transform functions, |aOne| corresponds to |aB| and
// |aTwo| corresponds to |aA| for StyleAnimationValue::Accumulate().
class Accumulate {
public:
template <typename T>
static T operate(const T& aOne, const T& aTwo, double aCoeff) {
return aOne + aTwo * aCoeff;
}
static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo,
double aCoeff) {
return (aOne - Point4D(0, 0, 0, 1)) +
(aTwo - Point4D(0, 0, 0, 1)) * aCoeff + Point4D(0, 0, 0, 1);
}
static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo,
double aCoeff) {
// For scale, the identify element is 1, see AddTransformScale in
// StyleAnimationValue.cpp.
return (aOne - Point3D(1, 1, 1)) + (aTwo - Point3D(1, 1, 1)) * aCoeff +
Point3D(1, 1, 1);
}
static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
const gfxQuaternion& aTwo, double aCoeff) {
if (aCoeff == 0.0) {
return aOne.ToMatrix();
}
double theta = acos(mozilla::clamped(aTwo.w, -1.0, 1.0));
double scale = (theta != 0.0) ? 1.0 / sin(theta) : 0.0;
theta *= aCoeff;
scale *= sin(theta);
gfxQuaternion result = gfxQuaternion(scale * aTwo.x, scale * aTwo.y,
scale * aTwo.z, cos(theta)) *
aOne;
return result.ToMatrix();
}
static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
const Matrix4x4& aMatrix2,
double aProgress) {
return aMatrix1;
}
static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
const Matrix4x4& aMatrix2, double aCount) {
Matrix4x4 result;
Servo_MatrixTransform_Operate(MatrixTransformOperator::Accumulate,
&aMatrix1.components, &aMatrix2.components,
aCount, &result.components);
return result;
}
};
class Interpolate {
public:
template <typename T>
static T operate(const T& aOne, const T& aTwo, double aCoeff) {
return aOne + (aTwo - aOne) * aCoeff;
}
static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo,
double aCoeff) {
return aOne + (aTwo - aOne) * aCoeff;
}
static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo,
double aCoeff) {
return aOne + (aTwo - aOne) * aCoeff;
}
static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
const gfxQuaternion& aTwo, double aCoeff) {
return aOne.Slerp(aTwo, aCoeff).ToMatrix();
}
static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
const Matrix4x4& aMatrix2,
double aProgress) {
return aProgress < 0.5 ? aMatrix1 : aMatrix2;
}
static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
const Matrix4x4& aMatrix2, double aProgress) {
Matrix4x4 result;
Servo_MatrixTransform_Operate(MatrixTransformOperator::Interpolate,
&aMatrix1.components, &aMatrix2.components,
aProgress, &result.components);
return result;
}
};
template <typename Operator>
static void ProcessMatrixOperator(Matrix4x4& aMatrix,
const StyleTransform& aFrom,
const StyleTransform& aTo, float aProgress,
TransformReferenceBox& aRefBox) {
float appUnitPerCSSPixel = AppUnitsPerCSSPixel();
Matrix4x4 matrix1 = ReadTransforms(aFrom, aRefBox, appUnitPerCSSPixel);
Matrix4x4 matrix2 = ReadTransforms(aTo, aRefBox, appUnitPerCSSPixel);
aMatrix = Operator::operateByServo(matrix1, matrix2, aProgress) * aMatrix;
}
/* Helper function to process two matrices that we need to interpolate between
*/
void ProcessInterpolateMatrix(Matrix4x4& aMatrix,
const StyleTransformOperation& aOp,
TransformReferenceBox& aRefBox) {
const auto& args = aOp.AsInterpolateMatrix();
ProcessMatrixOperator<Interpolate>(aMatrix, args.from_list, args.to_list,
args.progress._0, aRefBox);
}
void ProcessAccumulateMatrix(Matrix4x4& aMatrix,
const StyleTransformOperation& aOp,
TransformReferenceBox& aRefBox) {
const auto& args = aOp.AsAccumulateMatrix();
ProcessMatrixOperator<Accumulate>(aMatrix, args.from_list, args.to_list,
args.count, aRefBox);
}
/* Helper function to process a translatex function. */
static void ProcessTranslateX(Matrix4x4& aMatrix,
const LengthPercentage& aLength,
TransformReferenceBox& aRefBox) {
Point3D temp;
temp.x =
ProcessTranslatePart(aLength, &aRefBox, &TransformReferenceBox::Width);
aMatrix.PreTranslate(temp);
}
/* Helper function to process a translatey function. */
static void ProcessTranslateY(Matrix4x4& aMatrix,
const LengthPercentage& aLength,
TransformReferenceBox& aRefBox) {
Point3D temp;
temp.y =
ProcessTranslatePart(aLength, &aRefBox, &TransformReferenceBox::Height);
aMatrix.PreTranslate(temp);
}
static void ProcessTranslateZ(Matrix4x4& aMatrix, const Length& aLength) {
Point3D temp;
temp.z = aLength.ToCSSPixels();
aMatrix.PreTranslate(temp);
}
/* Helper function to process a translate function. */
static void ProcessTranslate(Matrix4x4& aMatrix, const LengthPercentage& aX,
const LengthPercentage& aY,
TransformReferenceBox& aRefBox) {
Point3D temp;
temp.x = ProcessTranslatePart(aX, &aRefBox, &TransformReferenceBox::Width);
temp.y = ProcessTranslatePart(aY, &aRefBox, &TransformReferenceBox::Height);
aMatrix.PreTranslate(temp);
}
static void ProcessTranslate3D(Matrix4x4& aMatrix, const LengthPercentage& aX,
const LengthPercentage& aY, const Length& aZ,
TransformReferenceBox& aRefBox) {
Point3D temp;
temp.x = ProcessTranslatePart(aX, &aRefBox, &TransformReferenceBox::Width);
temp.y = ProcessTranslatePart(aY, &aRefBox, &TransformReferenceBox::Height);
temp.z = aZ.ToCSSPixels();
aMatrix.PreTranslate(temp);
}
/* Helper function to set up a scale matrix. */
static void ProcessScaleHelper(Matrix4x4& aMatrix, float aXScale, float aYScale,
float aZScale) {
aMatrix.PreScale(aXScale, aYScale, aZScale);
}
static void ProcessScale3D(Matrix4x4& aMatrix,
const StyleTransformOperation& aOp) {
const auto& scale = aOp.AsScale3D();
ProcessScaleHelper(aMatrix, scale._0, scale._1, scale._2);
}
/* Helper function that, given a set of angles, constructs the appropriate
* skew matrix.
*/
static void ProcessSkewHelper(Matrix4x4& aMatrix, const StyleAngle& aXAngle,
const StyleAngle& aYAngle) {
aMatrix.SkewXY(aXAngle.ToRadians(), aYAngle.ToRadians());
}
static void ProcessRotate3D(Matrix4x4& aMatrix, float aX, float aY, float aZ,
const StyleAngle& aAngle) {
Matrix4x4 temp;
temp.SetRotateAxisAngle(aX, aY, aZ, aAngle.ToRadians());
aMatrix = temp * aMatrix;
}
static void ProcessPerspective(
Matrix4x4& aMatrix,
const StyleGenericPerspectiveFunction<Length>& aPerspective) {
if (aPerspective.IsNone()) {
return;
}
float p = aPerspective.AsLength().ToCSSPixels();
if (!std::isinf(p)) {
aMatrix.Perspective(std::max(p, 1.0f));
}
}
static void MatrixForTransformFunction(Matrix4x4& aMatrix,
const StyleTransformOperation& aOp,
TransformReferenceBox& aRefBox) {
/* Get the keyword for the transform. */
switch (aOp.tag) {
case StyleTransformOperation::Tag::TranslateX:
ProcessTranslateX(aMatrix, aOp.AsTranslateX(), aRefBox);
break;
case StyleTransformOperation::Tag::TranslateY:
ProcessTranslateY(aMatrix, aOp.AsTranslateY(), aRefBox);
break;
case StyleTransformOperation::Tag::TranslateZ:
ProcessTranslateZ(aMatrix, aOp.AsTranslateZ());
break;
case StyleTransformOperation::Tag::Translate:
ProcessTranslate(aMatrix, aOp.AsTranslate()._0, aOp.AsTranslate()._1,
aRefBox);
break;
case StyleTransformOperation::Tag::Translate3D:
return ProcessTranslate3D(aMatrix, aOp.AsTranslate3D()._0,
aOp.AsTranslate3D()._1, aOp.AsTranslate3D()._2,
aRefBox);
break;
case StyleTransformOperation::Tag::ScaleX:
ProcessScaleHelper(aMatrix, aOp.AsScaleX(), 1.0f, 1.0f);
break;
case StyleTransformOperation::Tag::ScaleY:
ProcessScaleHelper(aMatrix, 1.0f, aOp.AsScaleY(), 1.0f);
break;
case StyleTransformOperation::Tag::ScaleZ:
ProcessScaleHelper(aMatrix, 1.0f, 1.0f, aOp.AsScaleZ());
break;
case StyleTransformOperation::Tag::Scale:
ProcessScaleHelper(aMatrix, aOp.AsScale()._0, aOp.AsScale()._1, 1.0f);
break;
case StyleTransformOperation::Tag::Scale3D:
ProcessScale3D(aMatrix, aOp);
break;
case StyleTransformOperation::Tag::SkewX:
ProcessSkewHelper(aMatrix, aOp.AsSkewX(), StyleAngle::Zero());
break;
case StyleTransformOperation::Tag::SkewY:
ProcessSkewHelper(aMatrix, StyleAngle::Zero(), aOp.AsSkewY());
break;
case StyleTransformOperation::Tag::Skew:
ProcessSkewHelper(aMatrix, aOp.AsSkew()._0, aOp.AsSkew()._1);
break;
case StyleTransformOperation::Tag::RotateX:
aMatrix.RotateX(aOp.AsRotateX().ToRadians());
break;
case StyleTransformOperation::Tag::RotateY:
aMatrix.RotateY(aOp.AsRotateY().ToRadians());
break;
case StyleTransformOperation::Tag::RotateZ:
aMatrix.RotateZ(aOp.AsRotateZ().ToRadians());
break;
case StyleTransformOperation::Tag::Rotate:
aMatrix.RotateZ(aOp.AsRotate().ToRadians());
break;
case StyleTransformOperation::Tag::Rotate3D:
ProcessRotate3D(aMatrix, aOp.AsRotate3D()._0, aOp.AsRotate3D()._1,
aOp.AsRotate3D()._2, aOp.AsRotate3D()._3);
break;
case StyleTransformOperation::Tag::Matrix:
ProcessMatrix(aMatrix, aOp);
break;
case StyleTransformOperation::Tag::Matrix3D:
ProcessMatrix3D(aMatrix, aOp);
break;
case StyleTransformOperation::Tag::InterpolateMatrix:
ProcessInterpolateMatrix(aMatrix, aOp, aRefBox);
break;
case StyleTransformOperation::Tag::AccumulateMatrix:
ProcessAccumulateMatrix(aMatrix, aOp, aRefBox);
break;
case StyleTransformOperation::Tag::Perspective:
ProcessPerspective(aMatrix, aOp.AsPerspective());
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown transform function!");
}
}
Matrix4x4 ReadTransforms(const StyleTransform& aTransform,
TransformReferenceBox& aRefBox,
float aAppUnitsPerMatrixUnit) {
Matrix4x4 result;
for (const StyleTransformOperation& op : aTransform.Operations()) {
MatrixForTransformFunction(result, op, aRefBox);
}
float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit;
result.PreScale(1 / scale, 1 / scale, 1 / scale);
result.PostScale(scale, scale, scale);
return result;
}
static void ProcessTranslate(Matrix4x4& aMatrix,
const StyleTranslate& aTranslate,
TransformReferenceBox& aRefBox) {
switch (aTranslate.tag) {
case StyleTranslate::Tag::None:
return;
case StyleTranslate::Tag::Translate:
return ProcessTranslate3D(aMatrix, aTranslate.AsTranslate()._0,
aTranslate.AsTranslate()._1,
aTranslate.AsTranslate()._2, aRefBox);
default:
MOZ_ASSERT_UNREACHABLE("Huh?");
}
}
static void ProcessRotate(Matrix4x4& aMatrix, const StyleRotate& aRotate) {
switch (aRotate.tag) {
case StyleRotate::Tag::None:
return;
case StyleRotate::Tag::Rotate:
aMatrix.RotateZ(aRotate.AsRotate().ToRadians());
return;
case StyleRotate::Tag::Rotate3D:
return ProcessRotate3D(aMatrix, aRotate.AsRotate3D()._0,
aRotate.AsRotate3D()._1, aRotate.AsRotate3D()._2,
aRotate.AsRotate3D()._3);
default:
MOZ_ASSERT_UNREACHABLE("Huh?");
}
}
static void ProcessScale(Matrix4x4& aMatrix, const StyleScale& aScale) {
switch (aScale.tag) {
case StyleScale::Tag::None:
return;
case StyleScale::Tag::Scale:
return ProcessScaleHelper(aMatrix, aScale.AsScale()._0,
aScale.AsScale()._1, aScale.AsScale()._2);
default:
MOZ_ASSERT_UNREACHABLE("Huh?");
}
}
Matrix4x4 ReadTransforms(const StyleTranslate& aTranslate,
const StyleRotate& aRotate, const StyleScale& aScale,
const Maybe<ResolvedMotionPathData>& aMotion,
const StyleTransform& aTransform,
TransformReferenceBox& aRefBox,
float aAppUnitsPerMatrixUnit) {
Matrix4x4 result;
ProcessTranslate(result, aTranslate, aRefBox);
ProcessRotate(result, aRotate);
ProcessScale(result, aScale);
if (aMotion.isSome()) {
// Create the equivalent translate and rotate function, according to the
// order in spec. We combine the translate and then the rotate.
// https://drafts.fxtf.org/motion-1/#calculating-path-transform
//
// Besides, we have to shift the object by the delta between anchor-point
// and transform-origin, to make sure we rotate the object according to
// anchor-point.
result.PreTranslate(aMotion->mTranslate.x + aMotion->mShift.x,
aMotion->mTranslate.y + aMotion->mShift.y, 0.0);
if (aMotion->mRotate != 0.0) {
result.RotateZ(aMotion->mRotate);
}
// Shift the origin back to transform-origin.
result.PreTranslate(-aMotion->mShift.x, -aMotion->mShift.y, 0.0);
}
for (const StyleTransformOperation& op : aTransform.Operations()) {
MatrixForTransformFunction(result, op, aRefBox);
}
float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit;
result.PreScale(1 / scale, 1 / scale, 1 / scale);
result.PostScale(scale, scale, scale);
return result;
}
mozilla::CSSPoint Convert2DPosition(const mozilla::LengthPercentage& aX,
const mozilla::LengthPercentage& aY,
const CSSSize& aSize) {
return {
aX.ResolveToCSSPixels(aSize.width),
aY.ResolveToCSSPixels(aSize.height),
};
}
CSSPoint Convert2DPosition(const LengthPercentage& aX,
const LengthPercentage& aY,
TransformReferenceBox& aRefBox) {
return {
aX.ResolveToCSSPixelsWith(
[&] { return CSSPixel::FromAppUnits(aRefBox.Width()); }),
aY.ResolveToCSSPixelsWith(
[&] { return CSSPixel::FromAppUnits(aRefBox.Height()); }),
};
}
Point Convert2DPosition(const LengthPercentage& aX, const LengthPercentage& aY,
TransformReferenceBox& aRefBox,
int32_t aAppUnitsPerPixel) {
float scale = mozilla::AppUnitsPerCSSPixel() / float(aAppUnitsPerPixel);
CSSPoint p = Convert2DPosition(aX, aY, aRefBox);
return {p.x * scale, p.y * scale};
}
/*
* The relevant section of the transitions specification:
* http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types-
* defers all of the details to the 2-D and 3-D transforms specifications.
* For the 2-D transforms specification (all that's relevant for us, right
* now), the relevant section is:
* http://dev.w3.org/csswg/css3-2d-transforms/#animation
* This, in turn, refers to the unmatrix program in Graphics Gems,
* available from http://tog.acm.org/resources/GraphicsGems/ , and in
* particular as the file GraphicsGems/gemsii/unmatrix.c
* in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
*
* The unmatrix reference is for general 3-D transform matrices (any of the
* 16 components can have any value).
*
* For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant:
*
* [ A C E ]
* [ B D F ]
* [ 0 0 1 ]
*
* For that case, I believe the algorithm in unmatrix reduces to:
*
* (1) If A * D - B * C == 0, the matrix is singular. Fail.
*
* (2) Set translation components (Tx and Ty) to the translation parts of
* the matrix (E and F) and then ignore them for the rest of the time.
* (For us, E and F each actually consist of three constants: a
* length, a multiplier for the width, and a multiplier for the
* height. This actually requires its own decomposition, but I'll
* keep that separate.)
*
* (3) Let the X scale (Sx) be sqrt(A^2 + B^2). Then divide both A and B
* by it.
*
* (4) Let the XY shear (K) be A * C + B * D. From C, subtract A times
* the XY shear. From D, subtract B times the XY shear.
*
* (5) Let the Y scale (Sy) be sqrt(C^2 + D^2). Divide C, D, and the XY
* shear (K) by it.
*
* (6) At this point, A * D - B * C is either 1 or -1. If it is -1,
* negate the XY shear (K), the X scale (Sx), and A, B, C, and D.
* (Alternatively, we could negate the XY shear (K) and the Y scale
* (Sy).)
*
* (7) Let the rotation be R = atan2(B, A).
*
* Then the resulting decomposed transformation is:
*
* translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy)
*
* An interesting result of this is that all of the simple transform
* functions (i.e., all functions other than matrix()), in isolation,
* decompose back to themselves except for:
* 'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes
* to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the
* alternate sign possibilities that would get fixed in step 6):
* In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
* sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
* sin(φ). In step 4, the XY shear is sin(φ). Thus, after step 4, C =
* -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ). Thus, in step 5, the Y scale is
* sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ). Thus, after step 5, C = -sin(φ), D
* = cos(φ), and the XY shear is tan(φ). Thus, in step 6, A * D - B * C =
* cos²(φ) + sin²(φ) = 1. In step 7, the rotation is thus φ.
*
* skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes
* to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring
* the alternate sign possibilities that would get fixed in step 6):
* In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
* sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
* sin(φ). In step 4, the XY shear is cos(φ)tan(θ) + sin(φ). Thus, after step 4,
* C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ)
* D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ)
* Thus, in step 5, the Y scale is sqrt(C² + D²) =
* sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) -
* 2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) +
* (sin²(φ)cos²(φ) + cos⁴(φ))) =
* sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) =
* cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so
* we avoid flipping in step 6).
* After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is
* (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) =
* (dividing both numerator and denominator by cos(φ))
* (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ).
* (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .)
* Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
* In step 7, the rotation is thus φ.
*
* To check this result, we can multiply things back together:
*
* [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ) 0 ]
* [ sin(φ) cos(φ) ] [ 0 1 ] [ 0 cos(φ) ]
*
* [ cos(φ) cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ) 0 ]
* [ sin(φ) sin(φ)tan(θ + φ) + cos(φ) ] [ 0 cos(φ) ]
*
* but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)),
* cos(φ)tan(θ + φ) - sin(φ)
* = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ)
* = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ)
* = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ)
* = tan(θ) (cos(φ) + sin(φ)tan(φ))
* = tan(θ) sec(φ) (cos²(φ) + sin²(φ))
* = tan(θ) sec(φ)
* and
* sin(φ)tan(θ + φ) + cos(φ)
* = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ)
* = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ)
* = sec(φ) (sin²(φ) + cos²(φ))
* = sec(φ)
* so the above is:
* [ cos(φ) tan(θ) sec(φ) ] [ sec(φ) 0 ]
* [ sin(φ) sec(φ) ] [ 0 cos(φ) ]
*
* [ 1 tan(θ) ]
* [ tan(φ) 1 ]
*/
/*
* Decompose2DMatrix implements the above decomposition algorithm.
*/
bool Decompose2DMatrix(const Matrix& aMatrix, Point3D& aScale,
ShearArray& aShear, gfxQuaternion& aRotate,
Point3D& aTranslate) {
float A = aMatrix._11, B = aMatrix._12, C = aMatrix._21, D = aMatrix._22;
if (A * D == B * C) {
// singular matrix
return false;
}
float scaleX = sqrt(A * A + B * B);
A /= scaleX;
B /= scaleX;
float XYshear = A * C + B * D;
C -= A * XYshear;
D -= B * XYshear;
float scaleY = sqrt(C * C + D * D);
C /= scaleY;
D /= scaleY;
XYshear /= scaleY;
float determinant = A * D - B * C;
// Determinant should now be 1 or -1.
if (0.99 > Abs(determinant) || Abs(determinant) > 1.01) {
return false;
}
if (determinant < 0) {
A = -A;
B = -B;
C = -C;
D = -D;
XYshear = -XYshear;
scaleX = -scaleX;
}
float rotate = atan2f(B, A);
aRotate = gfxQuaternion(0, 0, sin(rotate / 2), cos(rotate / 2));
aShear[ShearType::XY] = XYshear;
aScale.x = scaleX;
aScale.y = scaleY;
aTranslate.x = aMatrix._31;
aTranslate.y = aMatrix._32;
return true;
}
/**
* Implementation of the unmatrix algorithm, specified by:
*
* http://dev.w3.org/csswg/css3-2d-transforms/#unmatrix
*
* This, in turn, refers to the unmatrix program in Graphics Gems,
* available from http://tog.acm.org/resources/GraphicsGems/ , and in
* particular as the file GraphicsGems/gemsii/unmatrix.c
* in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
*/
bool Decompose3DMatrix(const Matrix4x4& aMatrix, Point3D& aScale,
ShearArray& aShear, gfxQuaternion& aRotate,
Point3D& aTranslate, Point4D& aPerspective) {
Matrix4x4 local = aMatrix;
if (local[3][3] == 0) {
return false;
}
/* Normalize the matrix */
local.Normalize();
/**
* perspective is used to solve for perspective, but it also provides
* an easy way to test for singularity of the upper 3x3 component.
*/
Matrix4x4 perspective = local;
Point4D empty(0, 0, 0, 1);
perspective.SetTransposedVector(3, empty);
if (perspective.Determinant() == 0.0) {
return false;
}
/* First, isolate perspective. */
if (local[0][3] != 0 || local[1][3] != 0 || local[2][3] != 0) {
/* aPerspective is the right hand side of the equation. */
aPerspective = local.TransposedVector(3);
/**
* Solve the equation by inverting perspective and multiplying
* aPerspective by the inverse.
*/
perspective.Invert();
aPerspective = perspective.TransposeTransform4D(aPerspective);
/* Clear the perspective partition */
local.SetTransposedVector(3, empty);
} else {
aPerspective = Point4D(0, 0, 0, 1);
}
/* Next take care of translation */
for (int i = 0; i < 3; i++) {
aTranslate[i] = local[3][i];
local[3][i] = 0;
}
/* Now get scale and shear. */
/* Compute X scale factor and normalize first row. */
aScale.x = local[0].Length();
local[0] /= aScale.x;
/* Compute XY shear factor and make 2nd local orthogonal to 1st. */
aShear[ShearType::XY] = local[0].DotProduct(local[1]);
local[1] -= local[0] * aShear[ShearType::XY];
/* Now, compute Y scale and normalize 2nd local. */
aScale.y = local[1].Length();
local[1] /= aScale.y;
aShear[ShearType::XY] /= aScale.y;
/* Compute XZ and YZ shears, make 3rd local orthogonal */
aShear[ShearType::XZ] = local[0].DotProduct(local[2]);
local[2] -= local[0] * aShear[ShearType::XZ];
aShear[ShearType::YZ] = local[1].DotProduct(local[2]);
local[2] -= local[1] * aShear[ShearType::YZ];
/* Next, get Z scale and normalize 3rd local. */
aScale.z = local[2].Length();
local[2] /= aScale.z;
aShear[ShearType::XZ] /= aScale.z;
aShear[ShearType::YZ] /= aScale.z;
/**
* At this point, the matrix (in locals) is orthonormal.
* Check for a coordinate system flip. If the determinant
* is -1, then negate the matrix and the scaling factors.
*/
if (local[0].DotProduct(local[1].CrossProduct(local[2])) < 0) {
aScale *= -1;
for (int i = 0; i < 3; i++) {
local[i] *= -1;
}
}
/* Now, get the rotations out */
aRotate = gfxQuaternion(local);
return true;
}
} // namespace nsStyleTransformMatrix
|