1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
|
#include "test.h"
namespace intgemm {
namespace {
void CompareAs(int8_t * output_old, uint8_t * output_new, Index rows, Index cols) {
for (Index r = 0; r<rows; r++) {
for (Index c = 0; c<cols; c++) {
int a = int(output_old[rows*c + r]);
int b = int(output_new[rows*c + r]);
INFO("Inaccurate at row: " << r << " column " << c << ' '
<< a << ' ' << b);
CHECK(a+127 == b);
}
}
}
template <class Routine> void TestPrepareA(Index rows, Index cols) {
std::mt19937 gen;
// Go somewhat out of range too.
std::uniform_real_distribution<float> dist(-2, 2);
// Create array.
AlignedVector<float> inputA(rows * cols);
for (auto& it : inputA) {
it = dist(gen);
}
AlignedVector<int8_t> oldA(rows * cols);
AlignedVector<uint8_t> newA(rows * cols);
float quant_mult = 64; //From example
Routine::PrepareA(inputA.begin(), oldA.begin(), quant_mult, rows, cols);
Routine::PrepareA(inputA.begin(), newA.begin(), quant_mult, rows, cols);
CompareAs(oldA.begin(), newA.begin(), rows, cols);
}
template <class Routine> void TestPrepareBias(Index rows, Index cols) {
std::mt19937 gen;
// Go somewhat out of range too.
std::uniform_real_distribution<float> dist(-30.0, 30.0);
// Create array.
AlignedVector<float> inputB(rows * cols);
for (auto& it : inputB) {
it = dist(gen);
}
float alpha = 25;
float quant_mult = 127/alpha;
AlignedVector<int8_t> B_prep(inputB.size());
AlignedVector<int8_t> B_quant(inputB.size());
Routine::PrepareB(inputB.begin(), B_prep.begin(), quant_mult, rows, cols);
Routine::Quantize(inputB.begin(), B_quant.begin(), quant_mult, static_cast<intgemm::Index>(inputB.size()));
AlignedVector<float> inputBias(cols);
AlignedVector<float> goldBias(cols);
for (auto& it : goldBias) {
it = dist(gen);
}
int i = 0;
for (auto& it : inputBias) {
it = goldBias[i];
i++;
}
float unquant_mult_forprep = (-1)*(alpha)*(alpha)/(127.0f);
Routine::PrepareBias(B_prep.begin(), rows, cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult_forprep, inputBias.begin(), inputBias.begin()));
int A_rows = 1;
AlignedVector<int8_t> A_prep2(A_rows*rows);
for (auto& it : A_prep2) {
it =1;
}
//Routine::Multiply(A_prep2.begin(), B_prep.begin(), A_rows, rows, cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult_forprep, goldBias.begin(), goldBias.begin()));
//CompareEps(goldBias.begin(), inputBias.begin(), cols, 0.0001f);
AlignedVector<float> slowint_C(cols);
references::Multiply(A_prep2.begin(), B_quant.begin(), slowint_C.begin(), A_rows, rows, cols, [&](int32_t sum, const callbacks::OutputBufferInfo& info) {
return sum * unquant_mult_forprep + goldBias[info.col_idx];
});
CompareEps(slowint_C.begin(), inputBias.begin(), cols, 0.0001f);
}
template <class Routine> void TestMultiplyBiasNew(Index A_rows, Index width, Index B_cols,
float int_tolerance=.1, float float_tolerance=1, float MSE_float_tolerance=0, float MSE_int_tolerance=0) {
std::ostringstream info;
info << Routine::kName << "\t" << A_rows << '\t' << width << '\t' << B_cols << '\n';
// Initialize A and B.
AlignedVector<float> A(A_rows * width);
AlignedVector<float> B(width * B_cols);
AlignedVector<float> bias(B_cols);
std::mt19937 gen;
std::uniform_real_distribution<float> dist(-1.0f, 1.0f);
for (auto& it : A) {
it = dist(gen);
}
for (auto& it : B) {
it = dist(gen);
}
for (auto& it : bias) {
it = dist(gen);
}
float alpha = 2.0f;
float quant_mult = 127.0f / alpha;
float unquant_mult = 1.0f / (quant_mult*quant_mult);
AlignedVector<uint8_t> A_prep(A.size());
AlignedVector<int8_t> B_prep(B.size());
Routine::PrepareA(A.begin(), A_prep.begin(), quant_mult, A_rows, width);
Routine::PrepareB(B.begin(), B_prep.begin(), quant_mult, width, B_cols);
AlignedVector<float> test_C(A_rows * B_cols);
/*REFERENCE MULTIPLICATION
*
*
*/
AlignedVector<int8_t> B_quant(B.size());
Routine::Quantize(B.begin(), B_quant.begin(), quant_mult, static_cast<Index>(B.size()));
AlignedVector<float> slowint_C(test_C.size());
// Taking the original A_preparation which means A would be int8_t
AlignedVector<int8_t> A_prep2(A.size());
Routine::PrepareA(A.begin(), A_prep2.begin(), quant_mult, A_rows, width);
references::Multiply(A_prep2.begin(), B_quant.begin(), slowint_C.begin(), A_rows, width, B_cols, [&](int32_t sum, const callbacks::OutputBufferInfo& info) {
return sum * unquant_mult + bias[info.col_idx];
});
AlignedVector<float> float_C(test_C.size());
references::Multiply(A.begin(), B.begin(), float_C.begin(), A_rows, width, B_cols, [&](double sum, const callbacks::OutputBufferInfo& info) {
return static_cast<float>(sum) + bias[info.col_idx];
});
/*ACTUAL MULTIPLICATION
*
*/
float unquant_mult_forprep = (-1.0f)*(alpha)*(alpha)/(127.0f); //Minus one to invert add_ps later on
Routine::PrepareBias(B_prep.begin(), width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult_forprep, bias.begin(), bias.begin()));
//Routine::PrepareBias(B.begin(), bias.begin(), alpha, width, B_cols);
Routine::Multiply8Shift(A_prep.begin(), B_prep.begin(), A_rows, width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult, bias.begin(), test_C.begin()));
CompareMSE(float_C.begin(), slowint_C.begin(), test_C.begin(), test_C.size(), info.str(),
int_tolerance, float_tolerance, MSE_float_tolerance, MSE_int_tolerance);
}
template <class Routine> void TestMultiplyShiftNonShift(Index A_rows, Index width, Index B_cols,
float int_tolerance=.1, float float_tolerance=1, float MSE_float_tolerance=0, float MSE_int_tolerance=0) {
std::ostringstream info;
info << Routine::kName << "\t" << A_rows << '\t' << width << '\t' << B_cols << '\n';
// Initialize A and B.
AlignedVector<float> A(A_rows * width);
AlignedVector<float> B(width * B_cols);
AlignedVector<float> bias(B_cols);
std::mt19937 gen;
std::uniform_real_distribution<float> dist(-1.0f, 1.0f);
for (auto& it : A) {
it = dist(gen);
}
for (auto& it : B) {
it = dist(gen);
}
for (auto& it : bias) {
it = 0;
}
float alpha = 2.0f;
float quant_mult = 127.0f / alpha;
float unquant_mult = 1.0f / (quant_mult*quant_mult);
AlignedVector<uint8_t> A_prep(A.size());
AlignedVector<int8_t> A_prep_old(A.size());
AlignedVector<int8_t> B_prep(B.size());
Routine::PrepareA(A.begin(), A_prep.begin(), quant_mult, A_rows, width);
Routine::PrepareA(A.begin(), A_prep_old.begin(), quant_mult, A_rows, width); //Non shited version
Routine::PrepareB(B.begin(), B_prep.begin(), quant_mult, width, B_cols);
AlignedVector<float> test_C(A_rows * B_cols);
/*
* Reference non shift multiplication instead of slowint
*/
AlignedVector<float> slowint_C(test_C.size());
Routine::Multiply(A_prep_old.begin(), B_prep.begin(), A_rows, width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult, bias.begin(), slowint_C.begin()));
AlignedVector<float> float_C(test_C.size());
references::Multiply(A.begin(), B.begin(), float_C.begin(), A_rows, width, B_cols, [&](double sum, const callbacks::OutputBufferInfo& info) {
return static_cast<float>(sum) + bias[info.col_idx];
});
/*
* Multiply8 shift multiplication
*/
float unquant_mult_forprep = (-1.0f)*(alpha)*(alpha)/(127.0f); //Minus one to invert add_ps later on
Routine::PrepareBias(B_prep.begin(), width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult_forprep, bias.begin(), bias.begin()));
Routine::Multiply8Shift(A_prep.begin(), B_prep.begin(), A_rows, width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult, bias.begin(), test_C.begin()));
CompareMSE(float_C.begin(), slowint_C.begin(), test_C.begin(), test_C.size(), info.str(),
int_tolerance, float_tolerance, MSE_float_tolerance, MSE_int_tolerance);
}
template <class Routine> void TestMultiplyShiftInt(Index A_rows, Index width, Index B_cols,
float int_tolerance=.1, float float_tolerance=1, float MSE_float_tolerance=0, float MSE_int_tolerance=0) {
std::ostringstream info;
info << Routine::kName << "\t" << A_rows << '\t' << width << '\t' << B_cols << '\n';
// Initialize A and B.
AlignedVector<float> A(A_rows * width);
AlignedVector<float> B(width * B_cols);
AlignedVector<float> bias(B_cols);
std::mt19937 gen;
std::uniform_real_distribution<float> dist(-1.0f, 1.0f);
for (auto& it : A) {
it = dist(gen);
}
for (auto& it : B) {
it = dist(gen);
}
for (auto& it : bias) {
it = 0;
}
float alpha = 2.0f;
float quant_mult = 127.0f / alpha;
float unquant_mult = 1.0f / (quant_mult*quant_mult);
AlignedVector<uint8_t> A_prep(A.size());
AlignedVector<int8_t> A_prep_old(A.size());
AlignedVector<int8_t> B_prep(B.size());
Routine::PrepareA(A.begin(), A_prep.begin(), quant_mult, A_rows, width);
Routine::PrepareA(A.begin(), A_prep_old.begin(), quant_mult, A_rows, width); //Non shited version
Routine::PrepareB(B.begin(), B_prep.begin(), quant_mult, width, B_cols);
AlignedVector<float> test_C(A_rows * B_cols);
/*
* Reference float multiplication
*/
AlignedVector<int8_t> B_quant(B.size());
Routine::Quantize(B.begin(), B_quant.begin(), quant_mult, static_cast<Index>(B.size()));
AlignedVector<float> slowint_C(test_C.size());
// Taking the original A_preparation which means A would be int8_t
// references::Multiply(A_prep.begin(), B_quant.begin(), slowint_C.begin(), A_rows, width, B_cols, [&](int32_t sum, const callbacks::OutputBufferInfo& info) {
// return sum * unquant_mult + bias[info.col_idx];
// });
AlignedVector<float> float_C(test_C.size());
references::Multiply(A.begin(), B.begin(), float_C.begin(), A_rows, width, B_cols, [&](double sum, const callbacks::OutputBufferInfo& info) {
return static_cast<float>(sum) + bias[info.col_idx];
});
/*
* Multiply8 shift multiplication
*/
//First prepare SlowInteger Bias:
AlignedVector<int8_t> A_prep2(1*width);
for (auto& it : A_prep2) {
it = 1;
}
AlignedVector<float> ShiftedBias(B_cols);
float unquant_mult_forprep = (-1)*(alpha)*(alpha)/(127.0f); //Minus one to invert add_ps later on
references::Multiply(A_prep2.begin(), B_quant.begin(), ShiftedBias.begin(), 1, width, B_cols, [&](int32_t sum, const callbacks::OutputBufferInfo& info) {
return sum * unquant_mult_forprep + bias[info.col_idx];
});
//Now prepare Fast integer Bias
Routine::PrepareBias(B_prep.begin(), width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult_forprep, bias.begin(), bias.begin()));
Routine::Multiply8Shift(A_prep.begin(), B_prep.begin(), A_rows, width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult, bias.begin(), test_C.begin()));
// Reference INT VERSION HERE with ADD127
// Taking the original A_preparation which means A would be int8_t
references::Multiply(A_prep.begin(), B_quant.begin(), slowint_C.begin(), A_rows, width, B_cols, [&](int32_t sum, const callbacks::OutputBufferInfo& info) {
return sum * unquant_mult + ShiftedBias[info.col_idx];
});
CompareMSE(float_C.begin(), slowint_C.begin(), test_C.begin(), test_C.size(), info.str(),
int_tolerance, float_tolerance, MSE_float_tolerance, MSE_int_tolerance);
}
// Bias
TEST_CASE("PrepareBias SSSE3", "[Add127]") {
if (kCPU < CPUType::SSSE3) return;
TestPrepareBias<SSSE3::Kernels8>(256,256);
TestPrepareBias<SSSE3::Kernels8>(2048,256);
TestPrepareBias<SSSE3::Kernels8>(512,512);
}
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX2
TEST_CASE("PrepareBias AVX2", "[Add127]") {
if (kCPU < CPUType::AVX2) return;
TestPrepareBias<AVX2::Kernels8>(256,256);
TestPrepareBias<AVX2::Kernels8>(2048,256);
TestPrepareBias<AVX2::Kernels8>(512,512);
}
#endif
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW
TEST_CASE("PrepareBias AVX512F", "[Add127]") {
if (kCPU < CPUType::AVX512BW) return;
TestPrepareBias<AVX512BW::Kernels8>(256,256);
TestPrepareBias<AVX512BW::Kernels8>(2048,256);
TestPrepareBias<AVX512BW::Kernels8>(512,512);
}
#endif
//A
TEST_CASE("PrepareA SSSE3", "[Add127]") {
if (kCPU < CPUType::SSSE3) return;
TestPrepareA<SSSE3::Kernels8>(64,64);
TestPrepareA<SSSE3::Kernels8>(256,256);
TestPrepareA<SSSE3::Kernels8>(512,512);
TestPrepareA<SSSE3::Kernels8>(2048,256);
}
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX2
TEST_CASE("PrepareA AVX2", "[Add127]") {
if (kCPU < CPUType::AVX2) return;
TestPrepareA<AVX2::Kernels8>(64,64);
TestPrepareA<AVX2::Kernels8>(256,256);
TestPrepareA<AVX2::Kernels8>(512,512);
TestPrepareA<AVX2::Kernels8>(2048,256);
}
#endif
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW
TEST_CASE("PrepareA AVX512F", "[Add127]") {
if (kCPU < CPUType::AVX512BW) return;
TestPrepareA<AVX512BW::Kernels8>(64,64);
TestPrepareA<AVX512BW::Kernels8>(256,256);
TestPrepareA<AVX512BW::Kernels8>(512,512);
TestPrepareA<AVX512BW::Kernels8>(2048,256);
}
#endif
// Multiply
TEST_CASE ("Multiply SSSE3 8bit Shift with bias", "[Add127]") {
if (kCPU < CPUType::SSSE3) return;
TestMultiplyBiasNew<SSSE3::Kernels8>(1, 64, 8, 0.11f, 0.1f, 0.06f, 0.05f);
TestMultiplyBiasNew<SSSE3::Kernels8>(8, 256, 256, 0.45f, 0.54f, 0.17f, 0.16f);
TestMultiplyBiasNew<SSSE3::Kernels8>(8, 2048, 256, 1.7f, 1.7f, 0.46f, 0.43f);
TestMultiplyBiasNew<SSSE3::Kernels8>(320, 256, 256, 0.56f, 0.64f, 0.16f, 0.15f);
TestMultiplyBiasNew<SSSE3::Kernels8>(472, 256, 256, 0.46f, 0.62f, 0.17f, 0.16f);
TestMultiplyBiasNew<SSSE3::Kernels8>(248, 256, 256, 0.48f, 0.64f, 0.16f, 0.15f);
TestMultiplyBiasNew<SSSE3::Kernels8>(200, 256, 256, 0.55f, 0.74f, 0.17f, 0.16f);
}
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX2
TEST_CASE ("Multiply AVX2 8bit Shift with bias", "[Add127]") {
if (kCPU < CPUType::AVX2) return;
TestMultiplyBiasNew<AVX2::Kernels8>(1, 64, 8, 0.11f, 0.11f, 0.06f, 0.05f);
TestMultiplyBiasNew<AVX2::Kernels8>(8, 256, 256, 0.49f, 0.54f, 0.17f, 0.16f);
TestMultiplyBiasNew<AVX2::Kernels8>(8, 2048, 256, 1.57f, 1.66f, 0.46f, 0.46f);
TestMultiplyBiasNew<AVX2::Kernels8>(320, 256, 256, 0.49f, 0.64f, 0.16f, 0.15f);
TestMultiplyBiasNew<AVX2::Kernels8>(472, 256, 256, 0.46f, 0.62f, 0.17f, 0.16f);
TestMultiplyBiasNew<AVX2::Kernels8>(248, 256, 256, 0.48f, 0.64f, 0.16f, 0.15f);
TestMultiplyBiasNew<AVX2::Kernels8>(200, 256, 256, 0.55f, 0.74f, 0.17f, 0.16f);
}
#endif
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW
TEST_CASE ("Multiply AVX512F 8bit Shift with bias", "[Add127]") {
if (kCPU < CPUType::AVX512BW) return;
TestMultiplyBiasNew<AVX512BW::Kernels8>(1, 64, 8, 0.0001f, 0.05f, 0.03f, 0.001f);
TestMultiplyBiasNew<AVX512BW::Kernels8>(8, 256, 256, 0.0001f, 0.22f, 0.06f, 0.001f);
TestMultiplyBiasNew<AVX512BW::Kernels8>(8, 2048, 256, 0.0001f, 0.61f, 0.17f, 0.001f);
TestMultiplyBiasNew<AVX512BW::Kernels8>(320, 256, 256, 0.0001f, 0.27f, 0.06f, 0.001f);
TestMultiplyBiasNew<AVX512BW::Kernels8>(472, 256, 256, 0.0001f, 0.33f, 0.06f, 0.001f);
TestMultiplyBiasNew<AVX512BW::Kernels8>(248, 256, 256, 0.0001f, 0.27f, 0.06f, 0.001f);
TestMultiplyBiasNew<AVX512BW::Kernels8>(200, 256, 256, 0.0001f, 0.28f, 0.06f, 0.001f);
}
#endif
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI
TEST_CASE ("Multiply AVX512VNNI 8bit Shift with bias", "[Add127]") {
if (kCPU < CPUType::AVX512VNNI) return;
TestMultiplyBiasNew<AVX512VNNI::Kernels8>(1, 64, 8, 0.0001f, 0.05f, 0.03f, 0.001f);
TestMultiplyBiasNew<AVX512VNNI::Kernels8>(8, 256, 256, 0.0001f, 0.22f, 0.06f, 0.001f);
TestMultiplyBiasNew<AVX512VNNI::Kernels8>(8, 2048, 256, 0.0001f, 0.61f, 0.17f, 0.001f);
TestMultiplyBiasNew<AVX512VNNI::Kernels8>(320, 256, 256, 0.0001f, 0.27f, 0.06f, 0.001f);
TestMultiplyBiasNew<AVX512VNNI::Kernels8>(472, 256, 256, 0.0001f, 0.33f, 0.06f, 0.001f);
TestMultiplyBiasNew<AVX512VNNI::Kernels8>(248, 256, 256, 0.0001f, 0.27f, 0.06f, 0.001f);
TestMultiplyBiasNew<AVX512VNNI::Kernels8>(200, 256, 256, 0.0001f, 0.28f, 0.06f, 0.001f);
}
#endif
//Multiply old vs new
TEST_CASE ("Multiply SSSE3 8bit Shift vs nonshift", "[Add127]") {
if (kCPU < CPUType::SSSE3) return;
TestMultiplyShiftNonShift<SSSE3::Kernels8>(1, 64, 8, 0.00001f, 0.1f, 0.06f, 0.00001f);
TestMultiplyShiftNonShift<SSSE3::Kernels8>(8, 256, 256, 0.00001f, 0.54f, 0.17f, 0.00001f);
TestMultiplyShiftNonShift<SSSE3::Kernels8>(8, 2048, 256, 17.9f, 1.7f, 0.46f, 4.2f); //Big difference here because the non-shift version is very bad
TestMultiplyShiftNonShift<SSSE3::Kernels8>(320, 256, 256, 1.2f, 0.64f, 0.16f, 0.006f);
TestMultiplyShiftNonShift<SSSE3::Kernels8>(472, 256, 256, 1.1f, 0.62f, 0.17f, 0.006f);
TestMultiplyShiftNonShift<SSSE3::Kernels8>(248, 256, 256, 0.9f, 0.64f, 0.16f, 0.007f);
TestMultiplyShiftNonShift<SSSE3::Kernels8>(200, 256, 256, 1, 0.74f, 0.17f, 0.006f);
}
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX2
TEST_CASE ("Multiply AVX2 8bit Shift vs nonshift", "[Add127]") {
if (kCPU < CPUType::AVX2) return;
TestMultiplyShiftNonShift<AVX2::Kernels8>(1, 64, 8, 0.00001f, 0.11f, 0.06f, 0.00001f);
TestMultiplyShiftNonShift<AVX2::Kernels8>(8, 256, 256, 0.00001f, 0.54f, 0.17f, 0.00001f);
TestMultiplyShiftNonShift<AVX2::Kernels8>(8, 2048, 256, 9.4f, 1.66f, 0.46f, 1.67f); //Big difference here because the non-shift version is very bad
TestMultiplyShiftNonShift<AVX2::Kernels8>(320, 256, 256, 0.0001f, 0.64f, 0.16f, 0.0001f);
TestMultiplyShiftNonShift<AVX2::Kernels8>(472, 256, 256, 0.0001f, 0.62f, 0.17f, 0.0001f);
TestMultiplyShiftNonShift<AVX2::Kernels8>(248, 256, 256, 0.0001f, 0.64f, 0.16f, 0.0001f);
TestMultiplyShiftNonShift<AVX2::Kernels8>(200, 256, 256, 0.0001f, 0.74f, 0.17f, 0.0001f);
}
#endif
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW
TEST_CASE ("Multiply AVX512F 8bit Shift vs nonshift", "[Add127]") {
if (kCPU < CPUType::AVX512BW) return;
TestMultiplyShiftNonShift<AVX512BW::Kernels8>(1, 64, 8, 0.0001f, 0.05f, 0.03f, 0.001f);
TestMultiplyShiftNonShift<AVX512BW::Kernels8>(8, 256, 256, 0.0001f, 0.22f, 0.06f, 0.001f);
TestMultiplyShiftNonShift<AVX512BW::Kernels8>(8, 2048, 256, 3.51f, 0.61f, 0.17f, 0.3f);
TestMultiplyShiftNonShift<AVX512BW::Kernels8>(320, 256, 256, 0.0001f, 0.27f, 0.06f, 0.001f);
TestMultiplyShiftNonShift<AVX512BW::Kernels8>(472, 256, 256, 0.0001f, 0.33f, 0.06f, 0.001f);
TestMultiplyShiftNonShift<AVX512BW::Kernels8>(248, 256, 256, 0.0001f, 0.27f, 0.06f, 0.001f);
TestMultiplyShiftNonShift<AVX512BW::Kernels8>(200, 256, 256, 0.0001f, 0.28f, 0.06f, 0.001f);
}
#endif
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI
TEST_CASE ("Multiply AVX512VNNI 8bit Shift vs nonshift", "[Add127]") {
if (kCPU < CPUType::AVX512VNNI) return;
TestMultiplyShiftNonShift<AVX512VNNI::Kernels8>(1, 64, 8, 0.00001f, 0.05f, 0.03f, 0.00001f);
TestMultiplyShiftNonShift<AVX512VNNI::Kernels8>(8, 256, 256, 0.00001f, 0.22f, 0.06f, 0.00001f);
TestMultiplyShiftNonShift<AVX512VNNI::Kernels8>(8, 2048, 256, 0.0001f, 0.61f, 0.17f, 0.0001f);
TestMultiplyShiftNonShift<AVX512VNNI::Kernels8>(320, 256, 256, 0.00001f, 0.27f, 0.06f, 0.00001f);
TestMultiplyShiftNonShift<AVX512VNNI::Kernels8>(472, 256, 256, 0.00001f, 0.33f, 0.06f, 0.00001f);
TestMultiplyShiftNonShift<AVX512VNNI::Kernels8>(248, 256, 256, 0.00001f, 0.27f, 0.06f, 0.00001f);
TestMultiplyShiftNonShift<AVX512VNNI::Kernels8>(200, 256, 256, 0.00001f, 0.28f, 0.06f, 0.00001f);
}
#endif
//Multiply Shift vs int shift implementation
TEST_CASE ("Multiply SSSE3 8bit Shift vs Int", "[Add127]") {
if (kCPU < CPUType::SSSE3) return;
TestMultiplyShiftInt<SSSE3::Kernels8>(1, 64, 8, 0.0001f, 0.1f, 0.06f, 0.0001f);
TestMultiplyShiftInt<SSSE3::Kernels8>(8, 256, 256, 0.0001f, 0.54f, 0.17f, 0.0001f);
TestMultiplyShiftInt<SSSE3::Kernels8>(8, 2048, 256, 0.0001f, 1.7f, 0.46f, 0.0001f);
TestMultiplyShiftInt<SSSE3::Kernels8>(320, 256, 256, 0.0001f, 0.64f, 0.16f, 0.0001f);
TestMultiplyShiftInt<SSSE3::Kernels8>(472, 256, 256, 0.0001f, 0.62f, 0.17f, 0.0001f);
TestMultiplyShiftInt<SSSE3::Kernels8>(248, 256, 256, 0.0001f, 0.64f, 0.16f, 0.0001f);
TestMultiplyShiftInt<SSSE3::Kernels8>(200, 256, 256, 0.0001f, 0.74f, 0.17f, 0.0001f);
}
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX2
TEST_CASE ("Multiply AVX2 8bit Shift vs Int", "[Add127]") {
if (kCPU < CPUType::AVX2) return;
TestMultiplyShiftInt<AVX2::Kernels8>(1, 64, 8, 0.0001f, 0.11f, 0.06f, 0.0001f);
TestMultiplyShiftInt<AVX2::Kernels8>(8, 256, 256, 0.0001f, 0.54f, 0.17f, 0.0001f);
TestMultiplyShiftInt<AVX2::Kernels8>(8, 2048, 256, 0.0001f, 1.66f, 0.46f, 0.0001f);
TestMultiplyShiftInt<AVX2::Kernels8>(320, 256, 256, 0.0001f, 0.64f, 0.16f, 0.0001f);
TestMultiplyShiftInt<AVX2::Kernels8>(472, 256, 256, 0.0001f, 0.62f, 0.17f, 0.0001f);
TestMultiplyShiftInt<AVX2::Kernels8>(248, 256, 256, 0.0001f, 0.64f, 0.16f, 0.0001f);
TestMultiplyShiftInt<AVX2::Kernels8>(200, 256, 256, 0.0001f, 0.74f, 0.17f, 0.0001f);
}
#endif
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW
TEST_CASE ("Multiply AVX512F 8bit Shift vs Int", "[Add127]") {
if (kCPU < CPUType::AVX512BW) return;
TestMultiplyShiftInt<AVX512BW::Kernels8>(1, 64, 8, 0.0001f, 0.05f, 0.03f, 0.0001f);
TestMultiplyShiftInt<AVX512BW::Kernels8>(8, 256, 256, 0.0001f, 0.22f, 0.06f, 0.0001f);
TestMultiplyShiftInt<AVX512BW::Kernels8>(8, 2048, 256, 0.0001f, 0.61f, 0.17f, 0.0001f);
TestMultiplyShiftInt<AVX512BW::Kernels8>(320, 256, 256, 0.0001f, 0.27f, 0.06f, 0.0001f);
TestMultiplyShiftInt<AVX512BW::Kernels8>(472, 256, 256, 0.0001f, 0.33f, 0.06f, 0.0001f);
TestMultiplyShiftInt<AVX512BW::Kernels8>(248, 256, 256, 0.0001f, 0.27f, 0.06f, 0.0001f);
TestMultiplyShiftInt<AVX512BW::Kernels8>(200, 256, 256, 0.0001f, 0.28f, 0.06f, 0.0001f);
}
#endif
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI
TEST_CASE ("Multiply AVX512VNNI 8bit Shift vs Int", "[Add127]") {
if (kCPU < CPUType::AVX512VNNI) return;
TestMultiplyShiftInt<AVX512VNNI::Kernels8>(1, 64, 8, 0.0001f, 0.05f, 0.03f, 0.0001f);
TestMultiplyShiftInt<AVX512VNNI::Kernels8>(8, 256, 256, 0.0001f, 0.22f, 0.06f, 0.0001f);
TestMultiplyShiftInt<AVX512VNNI::Kernels8>(8, 2048, 256, 0.0001f, 0.61f, 0.17f, 0.0001f);
TestMultiplyShiftInt<AVX512VNNI::Kernels8>(320, 256, 256, 0.0001f, 0.27f, 0.06f, 0.0001f);
TestMultiplyShiftInt<AVX512VNNI::Kernels8>(472, 256, 256, 0.0001f, 0.33f, 0.06f, 0.0001f);
TestMultiplyShiftInt<AVX512VNNI::Kernels8>(248, 256, 256, 0.0001f, 0.27f, 0.06f, 0.0001f);
TestMultiplyShiftInt<AVX512VNNI::Kernels8>(200, 256, 256, 0.0001f, 0.28f, 0.06f, 0.0001f);
}
#endif
} // namespace
} // namespace intgemm
|