1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
|
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
use num_traits::{CheckedAdd, CheckedSub, PrimInt, Zero};
use std::ops::{Add, Neg, Sub};
use super::*;
/// A zero-overhead wrapper around integer types for the sake of always
/// requiring checked arithmetic
#[repr(transparent)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct CheckedInteger<T>(pub T);
impl<T> From<T> for CheckedInteger<T> {
fn from(i: T) -> Self {
Self(i)
}
}
// Orphan rules prevent a more general implementation, but this suffices
impl From<CheckedInteger<i64>> for i64 {
fn from(checked: CheckedInteger<i64>) -> i64 {
checked.0
}
}
impl<T, U: Into<T>> Add<U> for CheckedInteger<T>
where
T: CheckedAdd,
{
type Output = Option<Self>;
fn add(self, other: U) -> Self::Output {
self.0.checked_add(&other.into()).map(Into::into)
}
}
impl<T, U: Into<T>> Sub<U> for CheckedInteger<T>
where
T: CheckedSub,
{
type Output = Option<Self>;
fn sub(self, other: U) -> Self::Output {
self.0.checked_sub(&other.into()).map(Into::into)
}
}
/// Implement subtraction of checked `u64`s returning i64
// This is necessary for handling Mp4parseTrackInfo::media_time gracefully
impl Sub for CheckedInteger<u64> {
type Output = Option<CheckedInteger<i64>>;
fn sub(self, other: Self) -> Self::Output {
if self >= other {
self.0
.checked_sub(other.0)
.and_then(|u| i64::try_from(u).ok())
.map(CheckedInteger)
} else {
other
.0
.checked_sub(self.0)
.and_then(|u| i64::try_from(u).ok())
.map(i64::neg)
.map(CheckedInteger)
}
}
}
#[test]
fn u64_subtraction_returning_i64() {
// self > other
assert_eq!(
CheckedInteger(2u64) - CheckedInteger(1u64),
Some(CheckedInteger(1i64))
);
// self == other
assert_eq!(
CheckedInteger(1u64) - CheckedInteger(1u64),
Some(CheckedInteger(0i64))
);
// difference too large to store in i64
assert_eq!(CheckedInteger(u64::MAX) - CheckedInteger(1u64), None);
// self < other
assert_eq!(
CheckedInteger(1u64) - CheckedInteger(2u64),
Some(CheckedInteger(-1i64))
);
// difference not representable due to overflow
assert_eq!(CheckedInteger(1u64) - CheckedInteger(u64::MAX), None);
}
impl<T: std::cmp::PartialEq> PartialEq<T> for CheckedInteger<T> {
fn eq(&self, other: &T) -> bool {
self.0 == *other
}
}
/// Provides the following information about a sample in the source file:
/// sample data offset (start and end), composition time in microseconds
/// (start and end) and whether it is a sync sample
#[repr(C)]
#[derive(Default, Debug, PartialEq)]
pub struct Indice {
/// The byte offset in the file where the indexed sample begins.
pub start_offset: CheckedInteger<u64>,
/// The byte offset in the file where the indexed sample ends. This is
/// equivalent to `start_offset` + the length in bytes of the indexed
/// sample. Typically this will be the `start_offset` of the next sample
/// in the file.
pub end_offset: CheckedInteger<u64>,
/// The time in microseconds when the indexed sample should be displayed.
/// Analogous to the concept of presentation time stamp (pts).
pub start_composition: CheckedInteger<i64>,
/// The time in microseconds when the indexed sample should stop being
/// displayed. Typically this would be the `start_composition` time of the
/// next sample if samples were ordered by composition time.
pub end_composition: CheckedInteger<i64>,
/// The time in microseconds that the indexed sample should be decoded at.
/// Analogous to the concept of decode time stamp (dts).
pub start_decode: CheckedInteger<i64>,
/// Set if the indexed sample is a sync sample. The meaning of sync is
/// somewhat codec specific, but essentially amounts to if the sample is a
/// key frame.
pub sync: bool,
}
/// Create a vector of `Indice`s with the information about track samples.
/// It uses `stsc`, `stco`, `stsz` and `stts` boxes to construct a list of
/// every sample in the file and provides offsets which can be used to read
/// raw sample data from the file.
#[allow(clippy::reversed_empty_ranges)]
pub fn create_sample_table(
track: &Track,
track_offset_time: CheckedInteger<i64>,
) -> Option<TryVec<Indice>> {
let timescale = match track.timescale {
Some(ref t) => TrackTimeScale::<i64>(t.0 as i64, t.1),
_ => return None,
};
let (stsc, stco, stsz, stts) = match (&track.stsc, &track.stco, &track.stsz, &track.stts) {
(&Some(ref a), &Some(ref b), &Some(ref c), &Some(ref d)) => (a, b, c, d),
_ => return None,
};
// According to spec, no sync table means every sample is sync sample.
let has_sync_table = matches!(track.stss, Some(_));
let mut sample_size_iter = stsz.sample_sizes.iter();
// Get 'stsc' iterator for (chunk_id, chunk_sample_count) and calculate the sample
// offset address.
// With large numbers of samples, the cost of many allocations dominates,
// so it's worth iterating twice to allocate sample_table just once.
let total_sample_count = sample_to_chunk_iter(&stsc.samples, &stco.offsets)
.map(|(_, sample_counts)| sample_counts.to_usize())
.try_fold(0usize, usize::checked_add)?;
let mut sample_table = TryVec::with_capacity(total_sample_count).ok()?;
for i in sample_to_chunk_iter(&stsc.samples, &stco.offsets) {
let chunk_id = i.0 as usize;
let sample_counts = i.1;
let mut cur_position = match stco.offsets.get(chunk_id) {
Some(&i) => i.into(),
_ => return None,
};
for _ in 0..sample_counts {
let start_offset = cur_position;
let end_offset = match (stsz.sample_size, sample_size_iter.next()) {
(_, Some(t)) => (start_offset + *t)?,
(t, _) if t > 0 => (start_offset + t)?,
_ => 0.into(),
};
if end_offset == 0 {
return None;
}
cur_position = end_offset;
sample_table
.push(Indice {
start_offset,
end_offset,
sync: !has_sync_table,
..Default::default()
})
.ok()?;
}
}
// Mark the sync sample in sample_table according to 'stss'.
if let Some(ref v) = track.stss {
for iter in &v.samples {
match iter
.checked_sub(&1)
.and_then(|idx| sample_table.get_mut(idx as usize))
{
Some(elem) => elem.sync = true,
_ => return None,
}
}
}
let ctts_iter = track.ctts.as_ref().map(|v| v.samples.as_slice().iter());
let mut ctts_offset_iter = TimeOffsetIterator {
cur_sample_range: (0..0),
cur_offset: 0,
ctts_iter,
track_id: track.id,
};
let mut stts_iter = TimeToSampleIterator {
cur_sample_count: (0..0),
cur_sample_delta: 0,
stts_iter: stts.samples.as_slice().iter(),
track_id: track.id,
};
// sum_delta is the sum of stts_iter delta.
// According to spec:
// decode time => DT(n) = DT(n-1) + STTS(n)
// composition time => CT(n) = DT(n) + CTTS(n)
// Note:
// composition time needs to add the track offset time from 'elst' table.
let mut sum_delta = TrackScaledTime::<i64>(0, track.id);
for sample in sample_table.as_mut_slice() {
let decode_time = sum_delta;
sum_delta = (sum_delta + stts_iter.next_delta())?;
// ctts_offset is the current sample offset time.
let ctts_offset = ctts_offset_iter.next_offset_time();
let start_composition = track_time_to_us((decode_time + ctts_offset)?, timescale)?.0;
let end_composition = track_time_to_us((sum_delta + ctts_offset)?, timescale)?.0;
let start_decode = track_time_to_us(decode_time, timescale)?.0;
sample.start_composition = (track_offset_time + start_composition)?;
sample.end_composition = (track_offset_time + end_composition)?;
sample.start_decode = start_decode.into();
}
// Correct composition end time due to 'ctts' causes composition time re-ordering.
//
// Composition end time is not in specification. However, gecko needs it, so we need to
// calculate to correct the composition end time.
if !sample_table.is_empty() {
// Create an index table refers to sample_table and sorted by start_composisiton time.
let mut sort_table = TryVec::with_capacity(sample_table.len()).ok()?;
for i in 0..sample_table.len() {
sort_table.push(i).ok()?;
}
sort_table.sort_by_key(|i| match sample_table.get(*i) {
Some(v) => v.start_composition,
_ => 0.into(),
});
for indices in sort_table.windows(2) {
if let [current_index, peek_index] = *indices {
let next_start_composition_time = sample_table[peek_index].start_composition;
let sample = &mut sample_table[current_index];
sample.end_composition = next_start_composition_time;
}
}
}
Some(sample_table)
}
// Convert a 'ctts' compact table to full table by iterator,
// (sample_with_the_same_offset_count, offset) => (offset), (offset), (offset) ...
//
// For example:
// (2, 10), (4, 9) into (10, 10, 9, 9, 9, 9) by calling next_offset_time().
struct TimeOffsetIterator<'a> {
cur_sample_range: std::ops::Range<u32>,
cur_offset: i64,
ctts_iter: Option<std::slice::Iter<'a, TimeOffset>>,
track_id: usize,
}
impl<'a> Iterator for TimeOffsetIterator<'a> {
type Item = i64;
#[allow(clippy::reversed_empty_ranges)]
fn next(&mut self) -> Option<i64> {
let has_sample = self.cur_sample_range.next().or_else(|| {
// At end of current TimeOffset, find the next TimeOffset.
let iter = match self.ctts_iter {
Some(ref mut v) => v,
_ => return None,
};
let offset_version;
self.cur_sample_range = match iter.next() {
Some(v) => {
offset_version = v.time_offset;
0..v.sample_count
}
_ => {
offset_version = TimeOffsetVersion::Version0(0);
0..0
}
};
self.cur_offset = match offset_version {
TimeOffsetVersion::Version0(i) => i64::from(i),
TimeOffsetVersion::Version1(i) => i64::from(i),
};
self.cur_sample_range.next()
});
has_sample.and(Some(self.cur_offset))
}
}
impl<'a> TimeOffsetIterator<'a> {
fn next_offset_time(&mut self) -> TrackScaledTime<i64> {
match self.next() {
Some(v) => TrackScaledTime::<i64>(v as i64, self.track_id),
_ => TrackScaledTime::<i64>(0, self.track_id),
}
}
}
// Convert 'stts' compact table to full table by iterator,
// (sample_count_with_the_same_time, time) => (time, time, time) ... repeats
// sample_count_with_the_same_time.
//
// For example:
// (2, 3000), (1, 2999) to (3000, 3000, 2999).
struct TimeToSampleIterator<'a> {
cur_sample_count: std::ops::Range<u32>,
cur_sample_delta: u32,
stts_iter: std::slice::Iter<'a, Sample>,
track_id: usize,
}
impl<'a> Iterator for TimeToSampleIterator<'a> {
type Item = u32;
#[allow(clippy::reversed_empty_ranges)]
fn next(&mut self) -> Option<u32> {
let has_sample = self.cur_sample_count.next().or_else(|| {
self.cur_sample_count = match self.stts_iter.next() {
Some(v) => {
self.cur_sample_delta = v.sample_delta;
0..v.sample_count
}
_ => 0..0,
};
self.cur_sample_count.next()
});
has_sample.and(Some(self.cur_sample_delta))
}
}
impl<'a> TimeToSampleIterator<'a> {
fn next_delta(&mut self) -> TrackScaledTime<i64> {
match self.next() {
Some(v) => TrackScaledTime::<i64>(i64::from(v), self.track_id),
_ => TrackScaledTime::<i64>(0, self.track_id),
}
}
}
// Convert 'stco' compact table to full table by iterator.
// (start_chunk_num, sample_number) => (start_chunk_num, sample_number),
// (start_chunk_num + 1, sample_number),
// (start_chunk_num + 2, sample_number),
// ...
// (next start_chunk_num, next sample_number),
// ...
//
// For example:
// (1, 5), (5, 10), (9, 2) => (1, 5), (2, 5), (3, 5), (4, 5), (5, 10), (6, 10),
// (7, 10), (8, 10), (9, 2)
fn sample_to_chunk_iter<'a>(
stsc_samples: &'a TryVec<SampleToChunk>,
stco_offsets: &'a TryVec<u64>,
) -> SampleToChunkIterator<'a> {
SampleToChunkIterator {
chunks: (0..0),
sample_count: 0,
stsc_peek_iter: stsc_samples.as_slice().iter().peekable(),
remain_chunk_count: stco_offsets
.len()
.try_into()
.expect("stco.entry_count is u32"),
}
}
struct SampleToChunkIterator<'a> {
chunks: std::ops::Range<u32>,
sample_count: u32,
stsc_peek_iter: std::iter::Peekable<std::slice::Iter<'a, SampleToChunk>>,
remain_chunk_count: u32, // total chunk number from 'stco'.
}
impl<'a> Iterator for SampleToChunkIterator<'a> {
type Item = (u32, u32);
fn next(&mut self) -> Option<(u32, u32)> {
let has_chunk = self.chunks.next().or_else(|| {
self.chunks = self.locate();
self.remain_chunk_count
.checked_sub(
self.chunks
.len()
.try_into()
.expect("len() of a Range<u32> must fit in u32"),
)
.and_then(|res| {
self.remain_chunk_count = res;
self.chunks.next()
})
});
has_chunk.map(|id| (id, self.sample_count))
}
}
impl<'a> SampleToChunkIterator<'a> {
#[allow(clippy::reversed_empty_ranges)]
fn locate(&mut self) -> std::ops::Range<u32> {
loop {
return match (self.stsc_peek_iter.next(), self.stsc_peek_iter.peek()) {
(Some(next), Some(peek)) if next.first_chunk == peek.first_chunk => {
// Invalid entry, skip it and will continue searching at
// next loop iteration.
continue;
}
(Some(next), Some(peek)) if next.first_chunk > 0 && peek.first_chunk > 0 => {
self.sample_count = next.samples_per_chunk;
(next.first_chunk - 1)..(peek.first_chunk - 1)
}
(Some(next), None) if next.first_chunk > 0 => {
self.sample_count = next.samples_per_chunk;
// Total chunk number in 'stsc' could be different to 'stco',
// there could be more chunks at the last 'stsc' record.
match next.first_chunk.checked_add(self.remain_chunk_count) {
Some(r) => (next.first_chunk - 1)..r - 1,
_ => 0..0,
}
}
_ => 0..0,
};
}
}
}
/// Calculate numerator * scale / denominator, if possible.
///
/// Applying the associativity of integer arithmetic, we divide first
/// and add the remainder after multiplying each term separately
/// to preserve precision while leaving more headroom. That is,
/// (n * s) / d is split into floor(n / d) * s + (n % d) * s / d.
///
/// Return None on overflow or if the denominator is zero.
fn rational_scale<T, S>(numerator: T, denominator: T, scale2: S) -> Option<T>
where
T: PrimInt + Zero,
S: PrimInt,
{
if denominator.is_zero() {
return None;
}
let integer = numerator / denominator;
let remainder = numerator % denominator;
num_traits::cast(scale2).and_then(|s| match integer.checked_mul(&s) {
Some(integer) => remainder
.checked_mul(&s)
.and_then(|remainder| (remainder / denominator).checked_add(&integer)),
None => None,
})
}
#[derive(Debug, PartialEq)]
pub struct Microseconds<T>(pub T);
/// Convert `time` in media's global (mvhd) timescale to microseconds,
/// using provided `MediaTimeScale`
pub fn media_time_to_us(time: MediaScaledTime, scale: MediaTimeScale) -> Option<Microseconds<u64>> {
let microseconds_per_second = 1_000_000;
rational_scale(time.0, scale.0, microseconds_per_second).map(Microseconds)
}
/// Convert `time` in track's local (mdhd) timescale to microseconds,
/// using provided `TrackTimeScale<T>`
pub fn track_time_to_us<T>(
time: TrackScaledTime<T>,
scale: TrackTimeScale<T>,
) -> Option<Microseconds<T>>
where
T: PrimInt + Zero,
{
assert_eq!(time.1, scale.1);
let microseconds_per_second = 1_000_000;
rational_scale(time.0, scale.0, microseconds_per_second).map(Microseconds)
}
#[test]
fn rational_scale_overflow() {
assert_eq!(rational_scale::<u64, u64>(17, 3, 1000), Some(5666));
let large = 0x4000_0000_0000_0000;
assert_eq!(rational_scale::<u64, u64>(large, 2, 2), Some(large));
assert_eq!(rational_scale::<u64, u64>(large, 4, 4), Some(large));
assert_eq!(rational_scale::<u64, u64>(large, 2, 8), None);
assert_eq!(rational_scale::<u64, u64>(large, 8, 4), Some(large / 2));
assert_eq!(rational_scale::<u64, u64>(large + 1, 4, 4), Some(large + 1));
assert_eq!(rational_scale::<u64, u64>(large, 40, 1000), None);
}
#[test]
fn media_time_overflow() {
let scale = MediaTimeScale(90000);
let duration = MediaScaledTime(9_007_199_254_710_000);
assert_eq!(
media_time_to_us(duration, scale),
Some(Microseconds(100_079_991_719_000_000u64))
);
}
#[test]
fn track_time_overflow() {
let scale = TrackTimeScale(44100u64, 0);
let duration = TrackScaledTime(4_413_527_634_807_900u64, 0);
assert_eq!(
track_time_to_us(duration, scale),
Some(Microseconds(100_079_991_719_000_000u64))
);
}
|