1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
//! Basic types to build the parsers
use self::Needed::*;
use crate::error::{self, ErrorKind};
use crate::lib::std::fmt;
use core::num::NonZeroUsize;
/// Holds the result of parsing functions
///
/// It depends on the input type `I`, the output type `O`, and the error type `E`
/// (by default `(I, nom::ErrorKind)`)
///
/// The `Ok` side is a pair containing the remainder of the input (the part of the data that
/// was not parsed) and the produced value. The `Err` side contains an instance of `nom::Err`.
///
/// Outside of the parsing code, you can use the [Finish::finish] method to convert
/// it to a more common result type
pub type IResult<I, O, E = error::Error<I>> = Result<(I, O), Err<E>>;
/// Helper trait to convert a parser's result to a more manageable type
pub trait Finish<I, O, E> {
/// converts the parser's result to a type that is more consumable by error
/// management libraries. It keeps the same `Ok` branch, and merges `Err::Error`
/// and `Err::Failure` into the `Err` side.
///
/// *warning*: if the result is `Err(Err::Incomplete(_))`, this method will panic.
/// - "complete" parsers: It will not be an issue, `Incomplete` is never used
/// - "streaming" parsers: `Incomplete` will be returned if there's not enough data
/// for the parser to decide, and you should gather more data before parsing again.
/// Once the parser returns either `Ok(_)`, `Err(Err::Error(_))` or `Err(Err::Failure(_))`,
/// you can get out of the parsing loop and call `finish()` on the parser's result
fn finish(self) -> Result<(I, O), E>;
}
impl<I, O, E> Finish<I, O, E> for IResult<I, O, E> {
fn finish(self) -> Result<(I, O), E> {
match self {
Ok(res) => Ok(res),
Err(Err::Error(e)) | Err(Err::Failure(e)) => Err(e),
Err(Err::Incomplete(_)) => {
panic!("Cannot call `finish()` on `Err(Err::Incomplete(_))`: this result means that the parser does not have enough data to decide, you should gather more data and try to reapply the parser instead")
}
}
}
}
/// Contains information on needed data if a parser returned `Incomplete`
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))]
pub enum Needed {
/// Needs more data, but we do not know how much
Unknown,
/// Contains the required data size in bytes
Size(NonZeroUsize),
}
impl Needed {
/// Creates `Needed` instance, returns `Needed::Unknown` if the argument is zero
pub fn new(s: usize) -> Self {
match NonZeroUsize::new(s) {
Some(sz) => Needed::Size(sz),
None => Needed::Unknown,
}
}
/// Indicates if we know how many bytes we need
pub fn is_known(&self) -> bool {
*self != Unknown
}
/// Maps a `Needed` to `Needed` by applying a function to a contained `Size` value.
#[inline]
pub fn map<F: Fn(NonZeroUsize) -> usize>(self, f: F) -> Needed {
match self {
Unknown => Unknown,
Size(n) => Needed::new(f(n)),
}
}
}
/// The `Err` enum indicates the parser was not successful
///
/// It has three cases:
///
/// * `Incomplete` indicates that more data is needed to decide. The `Needed` enum
/// can contain how many additional bytes are necessary. If you are sure your parser
/// is working on full data, you can wrap your parser with the `complete` combinator
/// to transform that case in `Error`
/// * `Error` means some parser did not succeed, but another one might (as an example,
/// when testing different branches of an `alt` combinator)
/// * `Failure` indicates an unrecoverable error. As an example, if you recognize a prefix
/// to decide on the next parser to apply, and that parser fails, you know there's no need
/// to try other parsers, you were already in the right branch, so the data is invalid
///
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))]
pub enum Err<E> {
/// There was not enough data
Incomplete(Needed),
/// The parser had an error (recoverable)
Error(E),
/// The parser had an unrecoverable error: we got to the right
/// branch and we know other branches won't work, so backtrack
/// as fast as possible
Failure(E),
}
impl<E> Err<E> {
/// Tests if the result is Incomplete
pub fn is_incomplete(&self) -> bool {
if let Err::Incomplete(_) = self {
true
} else {
false
}
}
/// Applies the given function to the inner error
pub fn map<E2, F>(self, f: F) -> Err<E2>
where
F: FnOnce(E) -> E2,
{
match self {
Err::Incomplete(n) => Err::Incomplete(n),
Err::Failure(t) => Err::Failure(f(t)),
Err::Error(t) => Err::Error(f(t)),
}
}
/// Automatically converts between errors if the underlying type supports it
pub fn convert<F>(e: Err<F>) -> Self
where
E: From<F>,
{
e.map(crate::lib::std::convert::Into::into)
}
}
impl<T> Err<(T, ErrorKind)> {
/// Maps `Err<(T, ErrorKind)>` to `Err<(U, ErrorKind)>` with the given `F: T -> U`
pub fn map_input<U, F>(self, f: F) -> Err<(U, ErrorKind)>
where
F: FnOnce(T) -> U,
{
match self {
Err::Incomplete(n) => Err::Incomplete(n),
Err::Failure((input, k)) => Err::Failure((f(input), k)),
Err::Error((input, k)) => Err::Error((f(input), k)),
}
}
}
impl<T> Err<error::Error<T>> {
/// Maps `Err<error::Error<T>>` to `Err<error::Error<U>>` with the given `F: T -> U`
pub fn map_input<U, F>(self, f: F) -> Err<error::Error<U>>
where
F: FnOnce(T) -> U,
{
match self {
Err::Incomplete(n) => Err::Incomplete(n),
Err::Failure(error::Error { input, code }) => Err::Failure(error::Error {
input: f(input),
code,
}),
Err::Error(error::Error { input, code }) => Err::Error(error::Error {
input: f(input),
code,
}),
}
}
}
#[cfg(feature = "alloc")]
use crate::lib::std::{borrow::ToOwned, string::String, vec::Vec};
#[cfg(feature = "alloc")]
impl Err<(&[u8], ErrorKind)> {
/// Obtaining ownership
#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))]
pub fn to_owned(self) -> Err<(Vec<u8>, ErrorKind)> {
self.map_input(ToOwned::to_owned)
}
}
#[cfg(feature = "alloc")]
impl Err<(&str, ErrorKind)> {
/// Obtaining ownership
#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))]
pub fn to_owned(self) -> Err<(String, ErrorKind)> {
self.map_input(ToOwned::to_owned)
}
}
#[cfg(feature = "alloc")]
impl Err<error::Error<&[u8]>> {
/// Obtaining ownership
#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))]
pub fn to_owned(self) -> Err<error::Error<Vec<u8>>> {
self.map_input(ToOwned::to_owned)
}
}
#[cfg(feature = "alloc")]
impl Err<error::Error<&str>> {
/// Obtaining ownership
#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))]
pub fn to_owned(self) -> Err<error::Error<String>> {
self.map_input(ToOwned::to_owned)
}
}
impl<E: Eq> Eq for Err<E> {}
impl<E> fmt::Display for Err<E>
where
E: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Err::Incomplete(Needed::Size(u)) => write!(f, "Parsing requires {} bytes/chars", u),
Err::Incomplete(Needed::Unknown) => write!(f, "Parsing requires more data"),
Err::Failure(c) => write!(f, "Parsing Failure: {:?}", c),
Err::Error(c) => write!(f, "Parsing Error: {:?}", c),
}
}
}
#[cfg(feature = "std")]
use std::error::Error;
#[cfg(feature = "std")]
impl<E> Error for Err<E>
where
E: fmt::Debug,
{
fn source(&self) -> Option<&(dyn Error + 'static)> {
None // no underlying error
}
}
/// All nom parsers implement this trait
pub trait Parser<I, O, E> {
/// A parser takes in input type, and returns a `Result` containing
/// either the remaining input and the output value, or an error
fn parse(&mut self, input: I) -> IResult<I, O, E>;
/// Maps a function over the result of a parser
fn map<G, O2>(self, g: G) -> Map<Self, G, O>
where
G: Fn(O) -> O2,
Self: core::marker::Sized,
{
Map {
f: self,
g,
phantom: core::marker::PhantomData,
}
}
/// Creates a second parser from the output of the first one, then apply over the rest of the input
fn flat_map<G, H, O2>(self, g: G) -> FlatMap<Self, G, O>
where
G: FnMut(O) -> H,
H: Parser<I, O2, E>,
Self: core::marker::Sized,
{
FlatMap {
f: self,
g,
phantom: core::marker::PhantomData,
}
}
/// Applies a second parser over the output of the first one
fn and_then<G, O2>(self, g: G) -> AndThen<Self, G, O>
where
G: Parser<O, O2, E>,
Self: core::marker::Sized,
{
AndThen {
f: self,
g,
phantom: core::marker::PhantomData,
}
}
/// Applies a second parser after the first one, return their results as a tuple
fn and<G, O2>(self, g: G) -> And<Self, G>
where
G: Parser<I, O2, E>,
Self: core::marker::Sized,
{
And { f: self, g }
}
/// Applies a second parser over the input if the first one failed
fn or<G>(self, g: G) -> Or<Self, G>
where
G: Parser<I, O, E>,
Self: core::marker::Sized,
{
Or { f: self, g }
}
/// automatically converts the parser's output and error values to another type, as long as they
/// implement the `From` trait
fn into<O2: From<O>, E2: From<E>>(self) -> Into<Self, O, O2, E, E2>
where
Self: core::marker::Sized,
{
Into {
f: self,
phantom_out1: core::marker::PhantomData,
phantom_err1: core::marker::PhantomData,
phantom_out2: core::marker::PhantomData,
phantom_err2: core::marker::PhantomData,
}
}
}
impl<'a, I, O, E, F> Parser<I, O, E> for F
where
F: FnMut(I) -> IResult<I, O, E> + 'a,
{
fn parse(&mut self, i: I) -> IResult<I, O, E> {
self(i)
}
}
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
#[cfg(feature = "alloc")]
impl<'a, I, O, E> Parser<I, O, E> for Box<dyn Parser<I, O, E> + 'a> {
fn parse(&mut self, input: I) -> IResult<I, O, E> {
(**self).parse(input)
}
}
/// Implementation of `Parser::map`
#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))]
pub struct Map<F, G, O1> {
f: F,
g: G,
phantom: core::marker::PhantomData<O1>,
}
impl<'a, I, O1, O2, E, F: Parser<I, O1, E>, G: Fn(O1) -> O2> Parser<I, O2, E> for Map<F, G, O1> {
fn parse(&mut self, i: I) -> IResult<I, O2, E> {
match self.f.parse(i) {
Err(e) => Err(e),
Ok((i, o)) => Ok((i, (self.g)(o))),
}
}
}
/// Implementation of `Parser::flat_map`
#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))]
pub struct FlatMap<F, G, O1> {
f: F,
g: G,
phantom: core::marker::PhantomData<O1>,
}
impl<'a, I, O1, O2, E, F: Parser<I, O1, E>, G: Fn(O1) -> H, H: Parser<I, O2, E>> Parser<I, O2, E>
for FlatMap<F, G, O1>
{
fn parse(&mut self, i: I) -> IResult<I, O2, E> {
let (i, o1) = self.f.parse(i)?;
(self.g)(o1).parse(i)
}
}
/// Implementation of `Parser::and_then`
#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))]
pub struct AndThen<F, G, O1> {
f: F,
g: G,
phantom: core::marker::PhantomData<O1>,
}
impl<'a, I, O1, O2, E, F: Parser<I, O1, E>, G: Parser<O1, O2, E>> Parser<I, O2, E>
for AndThen<F, G, O1>
{
fn parse(&mut self, i: I) -> IResult<I, O2, E> {
let (i, o1) = self.f.parse(i)?;
let (_, o2) = self.g.parse(o1)?;
Ok((i, o2))
}
}
/// Implementation of `Parser::and`
#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))]
pub struct And<F, G> {
f: F,
g: G,
}
impl<'a, I, O1, O2, E, F: Parser<I, O1, E>, G: Parser<I, O2, E>> Parser<I, (O1, O2), E>
for And<F, G>
{
fn parse(&mut self, i: I) -> IResult<I, (O1, O2), E> {
let (i, o1) = self.f.parse(i)?;
let (i, o2) = self.g.parse(i)?;
Ok((i, (o1, o2)))
}
}
/// Implementation of `Parser::or`
#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))]
pub struct Or<F, G> {
f: F,
g: G,
}
impl<'a, I: Clone, O, E: crate::error::ParseError<I>, F: Parser<I, O, E>, G: Parser<I, O, E>>
Parser<I, O, E> for Or<F, G>
{
fn parse(&mut self, i: I) -> IResult<I, O, E> {
match self.f.parse(i.clone()) {
Err(Err::Error(e1)) => match self.g.parse(i) {
Err(Err::Error(e2)) => Err(Err::Error(e1.or(e2))),
res => res,
},
res => res,
}
}
}
/// Implementation of `Parser::into`
#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))]
pub struct Into<F, O1, O2: From<O1>, E1, E2: From<E1>> {
f: F,
phantom_out1: core::marker::PhantomData<O1>,
phantom_err1: core::marker::PhantomData<E1>,
phantom_out2: core::marker::PhantomData<O2>,
phantom_err2: core::marker::PhantomData<E2>,
}
impl<
'a,
I: Clone,
O1,
O2: From<O1>,
E1,
E2: crate::error::ParseError<I> + From<E1>,
F: Parser<I, O1, E1>,
> Parser<I, O2, E2> for Into<F, O1, O2, E1, E2>
{
fn parse(&mut self, i: I) -> IResult<I, O2, E2> {
match self.f.parse(i) {
Ok((i, o)) => Ok((i, o.into())),
Err(Err::Error(e)) => Err(Err::Error(e.into())),
Err(Err::Failure(e)) => Err(Err::Failure(e.into())),
Err(Err::Incomplete(e)) => Err(Err::Incomplete(e)),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::error::ErrorKind;
#[doc(hidden)]
#[macro_export]
macro_rules! assert_size (
($t:ty, $sz:expr) => (
assert_eq!(crate::lib::std::mem::size_of::<$t>(), $sz);
);
);
#[test]
#[cfg(target_pointer_width = "64")]
fn size_test() {
assert_size!(IResult<&[u8], &[u8], (&[u8], u32)>, 40);
assert_size!(IResult<&str, &str, u32>, 40);
assert_size!(Needed, 8);
assert_size!(Err<u32>, 16);
assert_size!(ErrorKind, 1);
}
#[test]
fn err_map_test() {
let e = Err::Error(1);
assert_eq!(e.map(|v| v + 1), Err::Error(2));
}
}
|