1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
#![warn(
trivial_casts,
trivial_numeric_casts,
unused_extern_crates,
unused_import_braces,
unused_qualifications
)]
use std::{
fmt::Debug,
iter::Sum,
ops::{Add, AddAssign, Range, Sub},
};
#[derive(Debug)]
pub struct RangeAllocator<T> {
/// The range this allocator covers.
initial_range: Range<T>,
/// A Vec of ranges in this heap which are unused.
/// Must be ordered with ascending range start to permit short circuiting allocation.
/// No two ranges in this vec may overlap.
free_ranges: Vec<Range<T>>,
}
#[derive(Clone, Debug, PartialEq)]
pub struct RangeAllocationError<T> {
pub fragmented_free_length: T,
}
impl<T> RangeAllocator<T>
where
T: Clone + Copy + Add<Output = T> + AddAssign + Sub<Output = T> + Eq + PartialOrd + Debug,
{
pub fn new(range: Range<T>) -> Self {
RangeAllocator {
initial_range: range.clone(),
free_ranges: vec![range],
}
}
pub fn initial_range(&self) -> &Range<T> {
&self.initial_range
}
pub fn allocate_range(&mut self, length: T) -> Result<Range<T>, RangeAllocationError<T>> {
assert_ne!(length + length, length);
let mut best_fit: Option<(usize, Range<T>)> = None;
let mut fragmented_free_length = length - length;
for (index, range) in self.free_ranges.iter().cloned().enumerate() {
let range_length = range.end - range.start;
fragmented_free_length += range_length;
if range_length < length {
continue;
} else if range_length == length {
// Found a perfect fit, so stop looking.
best_fit = Some((index, range));
break;
}
best_fit = Some(match best_fit {
Some((best_index, best_range)) => {
// Find best fit for this allocation to reduce memory fragmentation.
if range_length < best_range.end - best_range.start {
(index, range)
} else {
(best_index, best_range.clone())
}
}
None => (index, range),
});
}
match best_fit {
Some((index, range)) => {
if range.end - range.start == length {
self.free_ranges.remove(index);
} else {
self.free_ranges[index].start += length;
}
Ok(range.start..(range.start + length))
}
None => Err(RangeAllocationError {
fragmented_free_length,
}),
}
}
pub fn free_range(&mut self, range: Range<T>) {
assert!(self.initial_range.start <= range.start && range.end <= self.initial_range.end);
assert!(range.start < range.end);
// Get insertion position.
let i = self
.free_ranges
.iter()
.position(|r| r.start > range.start)
.unwrap_or(self.free_ranges.len());
// Try merging with neighboring ranges in the free list.
// Before: |left|-(range)-|right|
if i > 0 && range.start == self.free_ranges[i - 1].end {
// Merge with |left|.
self.free_ranges[i - 1].end =
if i < self.free_ranges.len() && range.end == self.free_ranges[i].start {
// Check for possible merge with |left| and |right|.
let right = self.free_ranges.remove(i);
right.end
} else {
range.end
};
return;
} else if i < self.free_ranges.len() && range.end == self.free_ranges[i].start {
// Merge with |right|.
self.free_ranges[i].start = if i > 0 && range.start == self.free_ranges[i - 1].end {
// Check for possible merge with |left| and |right|.
let left = self.free_ranges.remove(i - 1);
left.start
} else {
range.start
};
return;
}
// Debug checks
assert!(
(i == 0 || self.free_ranges[i - 1].end < range.start)
&& (i >= self.free_ranges.len() || range.end < self.free_ranges[i].start)
);
self.free_ranges.insert(i, range);
}
/// Returns an iterator over allocated non-empty ranges
pub fn allocated_ranges<'a>(&'a self) -> impl 'a + Iterator<Item = Range<T>> {
let first = match self.free_ranges.first() {
Some(Range { ref start, .. }) if *start > self.initial_range.start => {
Some(self.initial_range.start..*start)
}
None => Some(self.initial_range.clone()),
_ => None,
};
let last = match self.free_ranges.last() {
Some(Range { end, .. }) if *end < self.initial_range.end => {
Some(*end..self.initial_range.end)
}
_ => None,
};
let mid = self
.free_ranges
.iter()
.zip(self.free_ranges.iter().skip(1))
.map(|(ra, rb)| ra.end..rb.start);
first.into_iter().chain(mid).chain(last)
}
pub fn reset(&mut self) {
self.free_ranges.clear();
self.free_ranges.push(self.initial_range.clone());
}
pub fn is_empty(&self) -> bool {
self.free_ranges.len() == 1 && self.free_ranges[0] == self.initial_range
}
}
impl<T: Copy + Sub<Output = T> + Sum> RangeAllocator<T> {
pub fn total_available(&self) -> T {
self.free_ranges
.iter()
.map(|range| range.end - range.start)
.sum()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_basic_allocation() {
let mut alloc = RangeAllocator::new(0..10);
// Test if an allocation works
assert_eq!(alloc.allocate_range(4), Ok(0..4));
assert!(alloc.allocated_ranges().eq(std::iter::once(0..4)));
// Free the prior allocation
alloc.free_range(0..4);
// Make sure the free actually worked
assert_eq!(alloc.free_ranges, vec![0..10]);
assert!(alloc.allocated_ranges().eq(std::iter::empty()));
}
#[test]
fn test_out_of_space() {
let mut alloc = RangeAllocator::new(0..10);
// Test if the allocator runs out of space correctly
assert_eq!(alloc.allocate_range(10), Ok(0..10));
assert!(alloc.allocated_ranges().eq(std::iter::once(0..10)));
assert!(alloc.allocate_range(4).is_err());
alloc.free_range(0..10);
}
#[test]
fn test_dont_use_block_that_is_too_small() {
let mut alloc = RangeAllocator::new(0..10);
// Allocate three blocks then free the middle one and check for correct state
assert_eq!(alloc.allocate_range(3), Ok(0..3));
assert_eq!(alloc.allocate_range(3), Ok(3..6));
assert_eq!(alloc.allocate_range(3), Ok(6..9));
alloc.free_range(3..6);
assert_eq!(alloc.free_ranges, vec![3..6, 9..10]);
assert_eq!(
alloc.allocated_ranges().collect::<Vec<Range<i32>>>(),
vec![0..3, 6..9]
);
// Now request space that the middle block can fill, but the end one can't.
assert_eq!(alloc.allocate_range(3), Ok(3..6));
}
#[test]
fn test_free_blocks_in_middle() {
let mut alloc = RangeAllocator::new(0..100);
// Allocate many blocks then free every other block.
assert_eq!(alloc.allocate_range(10), Ok(0..10));
assert_eq!(alloc.allocate_range(10), Ok(10..20));
assert_eq!(alloc.allocate_range(10), Ok(20..30));
assert_eq!(alloc.allocate_range(10), Ok(30..40));
assert_eq!(alloc.allocate_range(10), Ok(40..50));
assert_eq!(alloc.allocate_range(10), Ok(50..60));
assert_eq!(alloc.allocate_range(10), Ok(60..70));
assert_eq!(alloc.allocate_range(10), Ok(70..80));
assert_eq!(alloc.allocate_range(10), Ok(80..90));
assert_eq!(alloc.allocate_range(10), Ok(90..100));
assert_eq!(alloc.free_ranges, vec![]);
assert!(alloc.allocated_ranges().eq(std::iter::once(0..100)));
alloc.free_range(10..20);
alloc.free_range(30..40);
alloc.free_range(50..60);
alloc.free_range(70..80);
alloc.free_range(90..100);
// Check that the right blocks were freed.
assert_eq!(
alloc.free_ranges,
vec![10..20, 30..40, 50..60, 70..80, 90..100]
);
assert_eq!(
alloc.allocated_ranges().collect::<Vec<Range<i32>>>(),
vec![0..10, 20..30, 40..50, 60..70, 80..90]
);
// Fragment the memory on purpose a bit.
assert_eq!(alloc.allocate_range(6), Ok(10..16));
assert_eq!(alloc.allocate_range(6), Ok(30..36));
assert_eq!(alloc.allocate_range(6), Ok(50..56));
assert_eq!(alloc.allocate_range(6), Ok(70..76));
assert_eq!(alloc.allocate_range(6), Ok(90..96));
// Check for fragmentation.
assert_eq!(
alloc.free_ranges,
vec![16..20, 36..40, 56..60, 76..80, 96..100]
);
assert_eq!(
alloc.allocated_ranges().collect::<Vec<Range<i32>>>(),
vec![0..16, 20..36, 40..56, 60..76, 80..96]
);
// Fill up the fragmentation
assert_eq!(alloc.allocate_range(4), Ok(16..20));
assert_eq!(alloc.allocate_range(4), Ok(36..40));
assert_eq!(alloc.allocate_range(4), Ok(56..60));
assert_eq!(alloc.allocate_range(4), Ok(76..80));
assert_eq!(alloc.allocate_range(4), Ok(96..100));
// Check that nothing is free.
assert_eq!(alloc.free_ranges, vec![]);
assert!(alloc.allocated_ranges().eq(std::iter::once(0..100)));
}
#[test]
fn test_ignore_block_if_another_fits_better() {
let mut alloc = RangeAllocator::new(0..10);
// Allocate blocks such that the only free spaces available are 3..6 and 9..10
// in order to prepare for the next test.
assert_eq!(alloc.allocate_range(3), Ok(0..3));
assert_eq!(alloc.allocate_range(3), Ok(3..6));
assert_eq!(alloc.allocate_range(3), Ok(6..9));
alloc.free_range(3..6);
assert_eq!(alloc.free_ranges, vec![3..6, 9..10]);
assert_eq!(
alloc.allocated_ranges().collect::<Vec<Range<i32>>>(),
vec![0..3, 6..9]
);
// Now request space that can be filled by 3..6 but should be filled by 9..10
// because 9..10 is a perfect fit.
assert_eq!(alloc.allocate_range(1), Ok(9..10));
}
#[test]
fn test_merge_neighbors() {
let mut alloc = RangeAllocator::new(0..9);
assert_eq!(alloc.allocate_range(3), Ok(0..3));
assert_eq!(alloc.allocate_range(3), Ok(3..6));
assert_eq!(alloc.allocate_range(3), Ok(6..9));
alloc.free_range(0..3);
alloc.free_range(6..9);
alloc.free_range(3..6);
assert_eq!(alloc.free_ranges, vec![0..9]);
assert!(alloc.allocated_ranges().eq(std::iter::empty()));
}
}
|