summaryrefslogtreecommitdiffstats
path: root/third_party/rust/smallvec/src/lib.rs
blob: a335ca46c5f68931391a549d40bd49ea503c92c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Small vectors in various sizes. These store a certain number of elements inline, and fall back
//! to the heap for larger allocations.  This can be a useful optimization for improving cache
//! locality and reducing allocator traffic for workloads that fit within the inline buffer.
//!
//! ## `no_std` support
//!
//! By default, `smallvec` does not depend on `std`.  However, the optional
//! `write` feature implements the `std::io::Write` trait for vectors of `u8`.
//! When this feature is enabled, `smallvec` depends on `std`.
//!
//! ## Optional features
//!
//! ### `serde`
//!
//! When this optional dependency is enabled, `SmallVec` implements the `serde::Serialize` and
//! `serde::Deserialize` traits.
//!
//! ### `write`
//!
//! When this feature is enabled, `SmallVec<[u8; _]>` implements the `std::io::Write` trait.
//! This feature is not compatible with `#![no_std]` programs.
//!
//! ### `union`
//!
//! **This feature requires Rust 1.49.**
//!
//! When the `union` feature is enabled `smallvec` will track its state (inline or spilled)
//! without the use of an enum tag, reducing the size of the `smallvec` by one machine word.
//! This means that there is potentially no space overhead compared to `Vec`.
//! Note that `smallvec` can still be larger than `Vec` if the inline buffer is larger than two
//! machine words.
//!
//! To use this feature add `features = ["union"]` in the `smallvec` section of Cargo.toml.
//! Note that this feature requires Rust 1.49.
//!
//! Tracking issue: [rust-lang/rust#55149](https://github.com/rust-lang/rust/issues/55149)
//!
//! ### `const_generics`
//!
//! **This feature requires Rust 1.51.**
//!
//! When this feature is enabled, `SmallVec` works with any arrays of any size, not just a fixed
//! list of sizes.
//!
//! ### `const_new`
//!
//! **This feature requires Rust 1.51.**
//!
//! This feature exposes the functions [`SmallVec::new_const`], [`SmallVec::from_const`], and [`smallvec_inline`] which enables the `SmallVec` to be initialized from a const context.
//! For details, see the
//! [Rust Reference](https://doc.rust-lang.org/reference/const_eval.html#const-functions).
//!
//! ### `specialization`
//!
//! **This feature is unstable and requires a nightly build of the Rust toolchain.**
//!
//! When this feature is enabled, `SmallVec::from(slice)` has improved performance for slices
//! of `Copy` types.  (Without this feature, you can use `SmallVec::from_slice` to get optimal
//! performance for `Copy` types.)
//!
//! Tracking issue: [rust-lang/rust#31844](https://github.com/rust-lang/rust/issues/31844)
//!
//! ### `may_dangle`
//!
//! **This feature is unstable and requires a nightly build of the Rust toolchain.**
//!
//! This feature makes the Rust compiler less strict about use of vectors that contain borrowed
//! references. For details, see the
//! [Rustonomicon](https://doc.rust-lang.org/1.42.0/nomicon/dropck.html#an-escape-hatch).
//!
//! Tracking issue: [rust-lang/rust#34761](https://github.com/rust-lang/rust/issues/34761)

#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(feature = "specialization", allow(incomplete_features))]
#![cfg_attr(feature = "specialization", feature(specialization))]
#![cfg_attr(feature = "may_dangle", feature(dropck_eyepatch))]
#![cfg_attr(
    feature = "debugger_visualizer",
    feature(debugger_visualizer),
    debugger_visualizer(natvis_file = "../debug_metadata/smallvec.natvis")
)]
#![deny(missing_docs)]

#[doc(hidden)]
pub extern crate alloc;

#[cfg(any(test, feature = "write"))]
extern crate std;

#[cfg(test)]
mod tests;

#[allow(deprecated)]
use alloc::alloc::{Layout, LayoutErr};
use alloc::boxed::Box;
use alloc::{vec, vec::Vec};
use core::borrow::{Borrow, BorrowMut};
use core::cmp;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::hint::unreachable_unchecked;
use core::iter::{repeat, FromIterator, FusedIterator, IntoIterator};
use core::mem;
use core::mem::MaybeUninit;
use core::ops::{self, Range, RangeBounds};
use core::ptr::{self, NonNull};
use core::slice::{self, SliceIndex};

#[cfg(feature = "serde")]
use serde::{
    de::{Deserialize, Deserializer, SeqAccess, Visitor},
    ser::{Serialize, SerializeSeq, Serializer},
};

#[cfg(feature = "serde")]
use core::marker::PhantomData;

#[cfg(feature = "write")]
use std::io;

/// Creates a [`SmallVec`] containing the arguments.
///
/// `smallvec!` allows `SmallVec`s to be defined with the same syntax as array expressions.
/// There are two forms of this macro:
///
/// - Create a [`SmallVec`] containing a given list of elements:
///
/// ```
/// # #[macro_use] extern crate smallvec;
/// # use smallvec::SmallVec;
/// # fn main() {
/// let v: SmallVec<[_; 128]> = smallvec![1, 2, 3];
/// assert_eq!(v[0], 1);
/// assert_eq!(v[1], 2);
/// assert_eq!(v[2], 3);
/// # }
/// ```
///
/// - Create a [`SmallVec`] from a given element and size:
///
/// ```
/// # #[macro_use] extern crate smallvec;
/// # use smallvec::SmallVec;
/// # fn main() {
/// let v: SmallVec<[_; 0x8000]> = smallvec![1; 3];
/// assert_eq!(v, SmallVec::from_buf([1, 1, 1]));
/// # }
/// ```
///
/// Note that unlike array expressions this syntax supports all elements
/// which implement [`Clone`] and the number of elements doesn't have to be
/// a constant.
///
/// This will use `clone` to duplicate an expression, so one should be careful
/// using this with types having a nonstandard `Clone` implementation. For
/// example, `smallvec![Rc::new(1); 5]` will create a vector of five references
/// to the same boxed integer value, not five references pointing to independently
/// boxed integers.

#[macro_export]
macro_rules! smallvec {
    // count helper: transform any expression into 1
    (@one $x:expr) => (1usize);
    ($elem:expr; $n:expr) => ({
        $crate::SmallVec::from_elem($elem, $n)
    });
    ($($x:expr),*$(,)*) => ({
        let count = 0usize $(+ $crate::smallvec!(@one $x))*;
        #[allow(unused_mut)]
        let mut vec = $crate::SmallVec::new();
        if count <= vec.inline_size() {
            $(vec.push($x);)*
            vec
        } else {
            $crate::SmallVec::from_vec($crate::alloc::vec![$($x,)*])
        }
    });
}

/// Creates an inline [`SmallVec`] containing the arguments. This macro is enabled by the feature `const_new`.
///
/// `smallvec_inline!` allows `SmallVec`s to be defined with the same syntax as array expressions in `const` contexts.
/// The inline storage `A` will always be an array of the size specified by the arguments.
/// There are two forms of this macro:
///
/// - Create a [`SmallVec`] containing a given list of elements:
///
/// ```
/// # #[macro_use] extern crate smallvec;
/// # use smallvec::SmallVec;
/// # fn main() {
/// const V: SmallVec<[i32; 3]> = smallvec_inline![1, 2, 3];
/// assert_eq!(V[0], 1);
/// assert_eq!(V[1], 2);
/// assert_eq!(V[2], 3);
/// # }
/// ```
///
/// - Create a [`SmallVec`] from a given element and size:
///
/// ```
/// # #[macro_use] extern crate smallvec;
/// # use smallvec::SmallVec;
/// # fn main() {
/// const V: SmallVec<[i32; 3]> = smallvec_inline![1; 3];
/// assert_eq!(V, SmallVec::from_buf([1, 1, 1]));
/// # }
/// ```
///
/// Note that the behavior mimics that of array expressions, in contrast to [`smallvec`].
#[cfg(feature = "const_new")]
#[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
#[macro_export]
macro_rules! smallvec_inline {
    // count helper: transform any expression into 1
    (@one $x:expr) => (1usize);
    ($elem:expr; $n:expr) => ({
        $crate::SmallVec::<[_; $n]>::from_const([$elem; $n])
    });
    ($($x:expr),+ $(,)?) => ({
        const N: usize = 0usize $(+ $crate::smallvec_inline!(@one $x))*;
        $crate::SmallVec::<[_; N]>::from_const([$($x,)*])
    });
}

/// `panic!()` in debug builds, optimization hint in release.
#[cfg(not(feature = "union"))]
macro_rules! debug_unreachable {
    () => {
        debug_unreachable!("entered unreachable code")
    };
    ($e:expr) => {
        if cfg!(not(debug_assertions)) {
            unreachable_unchecked();
        } else {
            panic!($e);
        }
    };
}

/// Trait to be implemented by a collection that can be extended from a slice
///
/// ## Example
///
/// ```rust
/// use smallvec::{ExtendFromSlice, SmallVec};
///
/// fn initialize<V: ExtendFromSlice<u8>>(v: &mut V) {
///     v.extend_from_slice(b"Test!");
/// }
///
/// let mut vec = Vec::new();
/// initialize(&mut vec);
/// assert_eq!(&vec, b"Test!");
///
/// let mut small_vec = SmallVec::<[u8; 8]>::new();
/// initialize(&mut small_vec);
/// assert_eq!(&small_vec as &[_], b"Test!");
/// ```
#[doc(hidden)]
#[deprecated]
pub trait ExtendFromSlice<T> {
    /// Extends a collection from a slice of its element type
    fn extend_from_slice(&mut self, other: &[T]);
}

#[allow(deprecated)]
impl<T: Clone> ExtendFromSlice<T> for Vec<T> {
    fn extend_from_slice(&mut self, other: &[T]) {
        Vec::extend_from_slice(self, other)
    }
}

/// Error type for APIs with fallible heap allocation
#[derive(Debug)]
pub enum CollectionAllocErr {
    /// Overflow `usize::MAX` or other error during size computation
    CapacityOverflow,
    /// The allocator return an error
    AllocErr {
        /// The layout that was passed to the allocator
        layout: Layout,
    },
}

impl fmt::Display for CollectionAllocErr {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Allocation error: {:?}", self)
    }
}

#[allow(deprecated)]
impl From<LayoutErr> for CollectionAllocErr {
    fn from(_: LayoutErr) -> Self {
        CollectionAllocErr::CapacityOverflow
    }
}

fn infallible<T>(result: Result<T, CollectionAllocErr>) -> T {
    match result {
        Ok(x) => x,
        Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"),
        Err(CollectionAllocErr::AllocErr { layout }) => alloc::alloc::handle_alloc_error(layout),
    }
}

/// FIXME: use `Layout::array` when we require a Rust version where it’s stable
/// https://github.com/rust-lang/rust/issues/55724
fn layout_array<T>(n: usize) -> Result<Layout, CollectionAllocErr> {
    let size = mem::size_of::<T>()
        .checked_mul(n)
        .ok_or(CollectionAllocErr::CapacityOverflow)?;
    let align = mem::align_of::<T>();
    Layout::from_size_align(size, align).map_err(|_| CollectionAllocErr::CapacityOverflow)
}

unsafe fn deallocate<T>(ptr: *mut T, capacity: usize) {
    // This unwrap should succeed since the same did when allocating.
    let layout = layout_array::<T>(capacity).unwrap();
    alloc::alloc::dealloc(ptr as *mut u8, layout)
}

/// An iterator that removes the items from a `SmallVec` and yields them by value.
///
/// Returned from [`SmallVec::drain`][1].
///
/// [1]: struct.SmallVec.html#method.drain
pub struct Drain<'a, T: 'a + Array> {
    tail_start: usize,
    tail_len: usize,
    iter: slice::Iter<'a, T::Item>,
    vec: NonNull<SmallVec<T>>,
}

impl<'a, T: 'a + Array> fmt::Debug for Drain<'a, T>
where
    T::Item: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
    }
}

unsafe impl<'a, T: Sync + Array> Sync for Drain<'a, T> {}
unsafe impl<'a, T: Send + Array> Send for Drain<'a, T> {}

impl<'a, T: 'a + Array> Iterator for Drain<'a, T> {
    type Item = T::Item;

    #[inline]
    fn next(&mut self) -> Option<T::Item> {
        self.iter
            .next()
            .map(|reference| unsafe { ptr::read(reference) })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, T: 'a + Array> DoubleEndedIterator for Drain<'a, T> {
    #[inline]
    fn next_back(&mut self) -> Option<T::Item> {
        self.iter
            .next_back()
            .map(|reference| unsafe { ptr::read(reference) })
    }
}

impl<'a, T: Array> ExactSizeIterator for Drain<'a, T> {
    #[inline]
    fn len(&self) -> usize {
        self.iter.len()
    }
}

impl<'a, T: Array> FusedIterator for Drain<'a, T> {}

impl<'a, T: 'a + Array> Drop for Drain<'a, T> {
    fn drop(&mut self) {
        self.for_each(drop);

        if self.tail_len > 0 {
            unsafe {
                let source_vec = self.vec.as_mut();

                // memmove back untouched tail, update to new length
                let start = source_vec.len();
                let tail = self.tail_start;
                if tail != start {
                    // as_mut_ptr creates a &mut, invalidating other pointers.
                    // This pattern avoids calling it with a pointer already present.
                    let ptr = source_vec.as_mut_ptr();
                    let src = ptr.add(tail);
                    let dst = ptr.add(start);
                    ptr::copy(src, dst, self.tail_len);
                }
                source_vec.set_len(start + self.tail_len);
            }
        }
    }
}

#[cfg(feature = "union")]
union SmallVecData<A: Array> {
    inline: core::mem::ManuallyDrop<MaybeUninit<A>>,
    heap: (*mut A::Item, usize),
}

#[cfg(all(feature = "union", feature = "const_new"))]
impl<T, const N: usize> SmallVecData<[T; N]> {
    #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
    #[inline]
    const fn from_const(inline: MaybeUninit<[T; N]>) -> Self {
        SmallVecData {
            inline: core::mem::ManuallyDrop::new(inline),
        }
    }
}

#[cfg(feature = "union")]
impl<A: Array> SmallVecData<A> {
    #[inline]
    unsafe fn inline(&self) -> *const A::Item {
        self.inline.as_ptr() as *const A::Item
    }
    #[inline]
    unsafe fn inline_mut(&mut self) -> *mut A::Item {
        self.inline.as_mut_ptr() as *mut A::Item
    }
    #[inline]
    fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> {
        SmallVecData {
            inline: core::mem::ManuallyDrop::new(inline),
        }
    }
    #[inline]
    unsafe fn into_inline(self) -> MaybeUninit<A> {
        core::mem::ManuallyDrop::into_inner(self.inline)
    }
    #[inline]
    unsafe fn heap(&self) -> (*mut A::Item, usize) {
        self.heap
    }
    #[inline]
    unsafe fn heap_mut(&mut self) -> &mut (*mut A::Item, usize) {
        &mut self.heap
    }
    #[inline]
    fn from_heap(ptr: *mut A::Item, len: usize) -> SmallVecData<A> {
        SmallVecData { heap: (ptr, len) }
    }
}

#[cfg(not(feature = "union"))]
enum SmallVecData<A: Array> {
    Inline(MaybeUninit<A>),
    Heap((*mut A::Item, usize)),
}

#[cfg(all(not(feature = "union"), feature = "const_new"))]
impl<T, const N: usize> SmallVecData<[T; N]> {
    #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
    #[inline]
    const fn from_const(inline: MaybeUninit<[T; N]>) -> Self {
        SmallVecData::Inline(inline)
    }
}

#[cfg(not(feature = "union"))]
impl<A: Array> SmallVecData<A> {
    #[inline]
    unsafe fn inline(&self) -> *const A::Item {
        match self {
            SmallVecData::Inline(a) => a.as_ptr() as *const A::Item,
            _ => debug_unreachable!(),
        }
    }
    #[inline]
    unsafe fn inline_mut(&mut self) -> *mut A::Item {
        match self {
            SmallVecData::Inline(a) => a.as_mut_ptr() as *mut A::Item,
            _ => debug_unreachable!(),
        }
    }
    #[inline]
    fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> {
        SmallVecData::Inline(inline)
    }
    #[inline]
    unsafe fn into_inline(self) -> MaybeUninit<A> {
        match self {
            SmallVecData::Inline(a) => a,
            _ => debug_unreachable!(),
        }
    }
    #[inline]
    unsafe fn heap(&self) -> (*mut A::Item, usize) {
        match self {
            SmallVecData::Heap(data) => *data,
            _ => debug_unreachable!(),
        }
    }
    #[inline]
    unsafe fn heap_mut(&mut self) -> &mut (*mut A::Item, usize) {
        match self {
            SmallVecData::Heap(data) => data,
            _ => debug_unreachable!(),
        }
    }
    #[inline]
    fn from_heap(ptr: *mut A::Item, len: usize) -> SmallVecData<A> {
        SmallVecData::Heap((ptr, len))
    }
}

unsafe impl<A: Array + Send> Send for SmallVecData<A> {}
unsafe impl<A: Array + Sync> Sync for SmallVecData<A> {}

/// A `Vec`-like container that can store a small number of elements inline.
///
/// `SmallVec` acts like a vector, but can store a limited amount of data inline within the
/// `SmallVec` struct rather than in a separate allocation.  If the data exceeds this limit, the
/// `SmallVec` will "spill" its data onto the heap, allocating a new buffer to hold it.
///
/// The amount of data that a `SmallVec` can store inline depends on its backing store. The backing
/// store can be any type that implements the `Array` trait; usually it is a small fixed-sized
/// array.  For example a `SmallVec<[u64; 8]>` can hold up to eight 64-bit integers inline.
///
/// ## Example
///
/// ```rust
/// use smallvec::SmallVec;
/// let mut v = SmallVec::<[u8; 4]>::new(); // initialize an empty vector
///
/// // The vector can hold up to 4 items without spilling onto the heap.
/// v.extend(0..4);
/// assert_eq!(v.len(), 4);
/// assert!(!v.spilled());
///
/// // Pushing another element will force the buffer to spill:
/// v.push(4);
/// assert_eq!(v.len(), 5);
/// assert!(v.spilled());
/// ```
pub struct SmallVec<A: Array> {
    // The capacity field is used to determine which of the storage variants is active:
    // If capacity <= Self::inline_capacity() then the inline variant is used and capacity holds the current length of the vector (number of elements actually in use).
    // If capacity > Self::inline_capacity() then the heap variant is used and capacity holds the size of the memory allocation.
    capacity: usize,
    data: SmallVecData<A>,
}

impl<A: Array> SmallVec<A> {
    /// Construct an empty vector
    #[inline]
    pub fn new() -> SmallVec<A> {
        // Try to detect invalid custom implementations of `Array`. Hopefully,
        // this check should be optimized away entirely for valid ones.
        assert!(
            mem::size_of::<A>() == A::size() * mem::size_of::<A::Item>()
                && mem::align_of::<A>() >= mem::align_of::<A::Item>()
        );
        SmallVec {
            capacity: 0,
            data: SmallVecData::from_inline(MaybeUninit::uninit()),
        }
    }

    /// Construct an empty vector with enough capacity pre-allocated to store at least `n`
    /// elements.
    ///
    /// Will create a heap allocation only if `n` is larger than the inline capacity.
    ///
    /// ```
    /// # use smallvec::SmallVec;
    ///
    /// let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(100);
    ///
    /// assert!(v.is_empty());
    /// assert!(v.capacity() >= 100);
    /// ```
    #[inline]
    pub fn with_capacity(n: usize) -> Self {
        let mut v = SmallVec::new();
        v.reserve_exact(n);
        v
    }

    /// Construct a new `SmallVec` from a `Vec<A::Item>`.
    ///
    /// Elements will be copied to the inline buffer if vec.capacity() <= Self::inline_capacity().
    ///
    /// ```rust
    /// use smallvec::SmallVec;
    ///
    /// let vec = vec![1, 2, 3, 4, 5];
    /// let small_vec: SmallVec<[_; 3]> = SmallVec::from_vec(vec);
    ///
    /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
    /// ```
    #[inline]
    pub fn from_vec(mut vec: Vec<A::Item>) -> SmallVec<A> {
        if vec.capacity() <= Self::inline_capacity() {
            unsafe {
                let mut data = SmallVecData::<A>::from_inline(MaybeUninit::uninit());
                let len = vec.len();
                vec.set_len(0);
                ptr::copy_nonoverlapping(vec.as_ptr(), data.inline_mut(), len);

                SmallVec {
                    capacity: len,
                    data,
                }
            }
        } else {
            let (ptr, cap, len) = (vec.as_mut_ptr(), vec.capacity(), vec.len());
            mem::forget(vec);

            SmallVec {
                capacity: cap,
                data: SmallVecData::from_heap(ptr, len),
            }
        }
    }

    /// Constructs a new `SmallVec` on the stack from an `A` without
    /// copying elements.
    ///
    /// ```rust
    /// use smallvec::SmallVec;
    ///
    /// let buf = [1, 2, 3, 4, 5];
    /// let small_vec: SmallVec<_> = SmallVec::from_buf(buf);
    ///
    /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
    /// ```
    #[inline]
    pub fn from_buf(buf: A) -> SmallVec<A> {
        SmallVec {
            capacity: A::size(),
            data: SmallVecData::from_inline(MaybeUninit::new(buf)),
        }
    }

    /// Constructs a new `SmallVec` on the stack from an `A` without
    /// copying elements. Also sets the length, which must be less or
    /// equal to the size of `buf`.
    ///
    /// ```rust
    /// use smallvec::SmallVec;
    ///
    /// let buf = [1, 2, 3, 4, 5, 0, 0, 0];
    /// let small_vec: SmallVec<_> = SmallVec::from_buf_and_len(buf, 5);
    ///
    /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
    /// ```
    #[inline]
    pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec<A> {
        assert!(len <= A::size());
        unsafe { SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), len) }
    }

    /// Constructs a new `SmallVec` on the stack from an `A` without
    /// copying elements. Also sets the length. The user is responsible
    /// for ensuring that `len <= A::size()`.
    ///
    /// ```rust
    /// use smallvec::SmallVec;
    /// use std::mem::MaybeUninit;
    ///
    /// let buf = [1, 2, 3, 4, 5, 0, 0, 0];
    /// let small_vec: SmallVec<_> = unsafe {
    ///     SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), 5)
    /// };
    ///
    /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
    /// ```
    #[inline]
    pub unsafe fn from_buf_and_len_unchecked(buf: MaybeUninit<A>, len: usize) -> SmallVec<A> {
        SmallVec {
            capacity: len,
            data: SmallVecData::from_inline(buf),
        }
    }

    /// Sets the length of a vector.
    ///
    /// This will explicitly set the size of the vector, without actually
    /// modifying its buffers, so it is up to the caller to ensure that the
    /// vector is actually the specified size.
    pub unsafe fn set_len(&mut self, new_len: usize) {
        let (_, len_ptr, _) = self.triple_mut();
        *len_ptr = new_len;
    }

    /// The maximum number of elements this vector can hold inline
    #[inline]
    fn inline_capacity() -> usize {
        if mem::size_of::<A::Item>() > 0 {
            A::size()
        } else {
            // For zero-size items code like `ptr.add(offset)` always returns the same pointer.
            // Therefore all items are at the same address,
            // and any array size has capacity for infinitely many items.
            // The capacity is limited by the bit width of the length field.
            //
            // `Vec` also does this:
            // https://github.com/rust-lang/rust/blob/1.44.0/src/liballoc/raw_vec.rs#L186
            //
            // In our case, this also ensures that a smallvec of zero-size items never spills,
            // and we never try to allocate zero bytes which `std::alloc::alloc` disallows.
            core::usize::MAX
        }
    }

    /// The maximum number of elements this vector can hold inline
    #[inline]
    pub fn inline_size(&self) -> usize {
        Self::inline_capacity()
    }

    /// The number of elements stored in the vector
    #[inline]
    pub fn len(&self) -> usize {
        self.triple().1
    }

    /// Returns `true` if the vector is empty
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// The number of items the vector can hold without reallocating
    #[inline]
    pub fn capacity(&self) -> usize {
        self.triple().2
    }

    /// Returns a tuple with (data ptr, len, capacity)
    /// Useful to get all SmallVec properties with a single check of the current storage variant.
    #[inline]
    fn triple(&self) -> (*const A::Item, usize, usize) {
        unsafe {
            if self.spilled() {
                let (ptr, len) = self.data.heap();
                (ptr, len, self.capacity)
            } else {
                (self.data.inline(), self.capacity, Self::inline_capacity())
            }
        }
    }

    /// Returns a tuple with (data ptr, len ptr, capacity)
    #[inline]
    fn triple_mut(&mut self) -> (*mut A::Item, &mut usize, usize) {
        unsafe {
            if self.spilled() {
                let &mut (ptr, ref mut len_ptr) = self.data.heap_mut();
                (ptr, len_ptr, self.capacity)
            } else {
                (
                    self.data.inline_mut(),
                    &mut self.capacity,
                    Self::inline_capacity(),
                )
            }
        }
    }

    /// Returns `true` if the data has spilled into a separate heap-allocated buffer.
    #[inline]
    pub fn spilled(&self) -> bool {
        self.capacity > Self::inline_capacity()
    }

    /// Creates a draining iterator that removes the specified range in the vector
    /// and yields the removed items.
    ///
    /// Note 1: The element range is removed even if the iterator is only
    /// partially consumed or not consumed at all.
    ///
    /// Note 2: It is unspecified how many elements are removed from the vector
    /// if the `Drain` value is leaked.
    ///
    /// # Panics
    ///
    /// Panics if the starting point is greater than the end point or if
    /// the end point is greater than the length of the vector.
    pub fn drain<R>(&mut self, range: R) -> Drain<'_, A>
    where
        R: RangeBounds<usize>,
    {
        use core::ops::Bound::*;

        let len = self.len();
        let start = match range.start_bound() {
            Included(&n) => n,
            Excluded(&n) => n.checked_add(1).expect("Range start out of bounds"),
            Unbounded => 0,
        };
        let end = match range.end_bound() {
            Included(&n) => n.checked_add(1).expect("Range end out of bounds"),
            Excluded(&n) => n,
            Unbounded => len,
        };

        assert!(start <= end);
        assert!(end <= len);

        unsafe {
            self.set_len(start);

            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);

            Drain {
                tail_start: end,
                tail_len: len - end,
                iter: range_slice.iter(),
                // Since self is a &mut, passing it to a function would invalidate the slice iterator.
                vec: NonNull::new_unchecked(self as *mut _),
            }
        }
    }

    /// Append an item to the vector.
    #[inline]
    pub fn push(&mut self, value: A::Item) {
        unsafe {
            let (mut ptr, mut len, cap) = self.triple_mut();
            if *len == cap {
                self.reserve(1);
                let &mut (heap_ptr, ref mut heap_len) = self.data.heap_mut();
                ptr = heap_ptr;
                len = heap_len;
            }
            ptr::write(ptr.add(*len), value);
            *len += 1;
        }
    }

    /// Remove an item from the end of the vector and return it, or None if empty.
    #[inline]
    pub fn pop(&mut self) -> Option<A::Item> {
        unsafe {
            let (ptr, len_ptr, _) = self.triple_mut();
            if *len_ptr == 0 {
                return None;
            }
            let last_index = *len_ptr - 1;
            *len_ptr = last_index;
            Some(ptr::read(ptr.add(last_index)))
        }
    }

    /// Moves all the elements of `other` into `self`, leaving `other` empty.
    ///
    /// # Example
    ///
    /// ```
    /// # use smallvec::{SmallVec, smallvec};
    /// let mut v0: SmallVec<[u8; 16]> = smallvec![1, 2, 3];
    /// let mut v1: SmallVec<[u8; 32]> = smallvec![4, 5, 6];
    /// v0.append(&mut v1);
    /// assert_eq!(*v0, [1, 2, 3, 4, 5, 6]);
    /// assert_eq!(*v1, []);
    /// ```
    pub fn append<B>(&mut self, other: &mut SmallVec<B>)
    where
        B: Array<Item = A::Item>,
    {
        self.extend(other.drain(..))
    }

    /// Re-allocate to set the capacity to `max(new_cap, inline_size())`.
    ///
    /// Panics if `new_cap` is less than the vector's length
    /// or if the capacity computation overflows `usize`.
    pub fn grow(&mut self, new_cap: usize) {
        infallible(self.try_grow(new_cap))
    }

    /// Re-allocate to set the capacity to `max(new_cap, inline_size())`.
    ///
    /// Panics if `new_cap` is less than the vector's length
    pub fn try_grow(&mut self, new_cap: usize) -> Result<(), CollectionAllocErr> {
        unsafe {
            let (ptr, &mut len, cap) = self.triple_mut();
            let unspilled = !self.spilled();
            assert!(new_cap >= len);
            if new_cap <= self.inline_size() {
                if unspilled {
                    return Ok(());
                }
                self.data = SmallVecData::from_inline(MaybeUninit::uninit());
                ptr::copy_nonoverlapping(ptr, self.data.inline_mut(), len);
                self.capacity = len;
                deallocate(ptr, cap);
            } else if new_cap != cap {
                let layout = layout_array::<A::Item>(new_cap)?;
                debug_assert!(layout.size() > 0);
                let new_alloc;
                if unspilled {
                    new_alloc = NonNull::new(alloc::alloc::alloc(layout))
                        .ok_or(CollectionAllocErr::AllocErr { layout })?
                        .cast()
                        .as_ptr();
                    ptr::copy_nonoverlapping(ptr, new_alloc, len);
                } else {
                    // This should never fail since the same succeeded
                    // when previously allocating `ptr`.
                    let old_layout = layout_array::<A::Item>(cap)?;

                    let new_ptr = alloc::alloc::realloc(ptr as *mut u8, old_layout, layout.size());
                    new_alloc = NonNull::new(new_ptr)
                        .ok_or(CollectionAllocErr::AllocErr { layout })?
                        .cast()
                        .as_ptr();
                }
                self.data = SmallVecData::from_heap(new_alloc, len);
                self.capacity = new_cap;
            }
            Ok(())
        }
    }

    /// Reserve capacity for `additional` more elements to be inserted.
    ///
    /// May reserve more space to avoid frequent reallocations.
    ///
    /// Panics if the capacity computation overflows `usize`.
    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        infallible(self.try_reserve(additional))
    }

    /// Reserve capacity for `additional` more elements to be inserted.
    ///
    /// May reserve more space to avoid frequent reallocations.
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
        // prefer triple_mut() even if triple() would work
        // so that the optimizer removes duplicated calls to it
        // from callers like insert()
        let (_, &mut len, cap) = self.triple_mut();
        if cap - len >= additional {
            return Ok(());
        }
        let new_cap = len
            .checked_add(additional)
            .and_then(usize::checked_next_power_of_two)
            .ok_or(CollectionAllocErr::CapacityOverflow)?;
        self.try_grow(new_cap)
    }

    /// Reserve the minimum capacity for `additional` more elements to be inserted.
    ///
    /// Panics if the new capacity overflows `usize`.
    pub fn reserve_exact(&mut self, additional: usize) {
        infallible(self.try_reserve_exact(additional))
    }

    /// Reserve the minimum capacity for `additional` more elements to be inserted.
    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
        let (_, &mut len, cap) = self.triple_mut();
        if cap - len >= additional {
            return Ok(());
        }
        let new_cap = len
            .checked_add(additional)
            .ok_or(CollectionAllocErr::CapacityOverflow)?;
        self.try_grow(new_cap)
    }

    /// Shrink the capacity of the vector as much as possible.
    ///
    /// When possible, this will move data from an external heap buffer to the vector's inline
    /// storage.
    pub fn shrink_to_fit(&mut self) {
        if !self.spilled() {
            return;
        }
        let len = self.len();
        if self.inline_size() >= len {
            unsafe {
                let (ptr, len) = self.data.heap();
                self.data = SmallVecData::from_inline(MaybeUninit::uninit());
                ptr::copy_nonoverlapping(ptr, self.data.inline_mut(), len);
                deallocate(ptr, self.capacity);
                self.capacity = len;
            }
        } else if self.capacity() > len {
            self.grow(len);
        }
    }

    /// Shorten the vector, keeping the first `len` elements and dropping the rest.
    ///
    /// If `len` is greater than or equal to the vector's current length, this has no
    /// effect.
    ///
    /// This does not re-allocate.  If you want the vector's capacity to shrink, call
    /// `shrink_to_fit` after truncating.
    pub fn truncate(&mut self, len: usize) {
        unsafe {
            let (ptr, len_ptr, _) = self.triple_mut();
            while len < *len_ptr {
                let last_index = *len_ptr - 1;
                *len_ptr = last_index;
                ptr::drop_in_place(ptr.add(last_index));
            }
        }
    }

    /// Extracts a slice containing the entire vector.
    ///
    /// Equivalent to `&s[..]`.
    pub fn as_slice(&self) -> &[A::Item] {
        self
    }

    /// Extracts a mutable slice of the entire vector.
    ///
    /// Equivalent to `&mut s[..]`.
    pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
        self
    }

    /// Remove the element at position `index`, replacing it with the last element.
    ///
    /// This does not preserve ordering, but is O(1).
    ///
    /// Panics if `index` is out of bounds.
    #[inline]
    pub fn swap_remove(&mut self, index: usize) -> A::Item {
        let len = self.len();
        self.swap(len - 1, index);
        self.pop()
            .unwrap_or_else(|| unsafe { unreachable_unchecked() })
    }

    /// Remove all elements from the vector.
    #[inline]
    pub fn clear(&mut self) {
        self.truncate(0);
    }

    /// Remove and return the element at position `index`, shifting all elements after it to the
    /// left.
    ///
    /// Panics if `index` is out of bounds.
    pub fn remove(&mut self, index: usize) -> A::Item {
        unsafe {
            let (mut ptr, len_ptr, _) = self.triple_mut();
            let len = *len_ptr;
            assert!(index < len);
            *len_ptr = len - 1;
            ptr = ptr.add(index);
            let item = ptr::read(ptr);
            ptr::copy(ptr.add(1), ptr, len - index - 1);
            item
        }
    }

    /// Insert an element at position `index`, shifting all elements after it to the right.
    ///
    /// Panics if `index > len`.
    pub fn insert(&mut self, index: usize, element: A::Item) {
        self.reserve(1);

        unsafe {
            let (mut ptr, len_ptr, _) = self.triple_mut();
            let len = *len_ptr;
            ptr = ptr.add(index);
            if index < len {
                ptr::copy(ptr, ptr.add(1), len - index);
            } else if index == len {
                // No elements need shifting.
            } else {
                panic!("index exceeds length");
            }
            *len_ptr = len + 1;
            ptr::write(ptr, element);
        }
    }

    /// Insert multiple elements at position `index`, shifting all following elements toward the
    /// back.
    pub fn insert_many<I: IntoIterator<Item = A::Item>>(&mut self, index: usize, iterable: I) {
        let mut iter = iterable.into_iter();
        if index == self.len() {
            return self.extend(iter);
        }

        let (lower_size_bound, _) = iter.size_hint();
        assert!(lower_size_bound <= core::isize::MAX as usize); // Ensure offset is indexable
        assert!(index + lower_size_bound >= index); // Protect against overflow

        let mut num_added = 0;
        let old_len = self.len();
        assert!(index <= old_len);

        unsafe {
            // Reserve space for `lower_size_bound` elements.
            self.reserve(lower_size_bound);
            let start = self.as_mut_ptr();
            let ptr = start.add(index);

            // Move the trailing elements.
            ptr::copy(ptr, ptr.add(lower_size_bound), old_len - index);

            // In case the iterator panics, don't double-drop the items we just copied above.
            self.set_len(0);
            let mut guard = DropOnPanic {
                start,
                skip: index..(index + lower_size_bound),
                len: old_len + lower_size_bound,
            };

            // The set_len above invalidates the previous pointers, so we must re-create them.
            let start = self.as_mut_ptr();
            let ptr = start.add(index);

            while num_added < lower_size_bound {
                let element = match iter.next() {
                    Some(x) => x,
                    None => break,
                };
                let cur = ptr.add(num_added);
                ptr::write(cur, element);
                guard.skip.start += 1;
                num_added += 1;
            }

            if num_added < lower_size_bound {
                // Iterator provided fewer elements than the hint. Move the tail backward.
                ptr::copy(
                    ptr.add(lower_size_bound),
                    ptr.add(num_added),
                    old_len - index,
                );
            }
            // There are no more duplicate or uninitialized slots, so the guard is not needed.
            self.set_len(old_len + num_added);
            mem::forget(guard);
        }

        // Insert any remaining elements one-by-one.
        for element in iter {
            self.insert(index + num_added, element);
            num_added += 1;
        }

        struct DropOnPanic<T> {
            start: *mut T,
            skip: Range<usize>, // Space we copied-out-of, but haven't written-to yet.
            len: usize,
        }

        impl<T> Drop for DropOnPanic<T> {
            fn drop(&mut self) {
                for i in 0..self.len {
                    if !self.skip.contains(&i) {
                        unsafe {
                            ptr::drop_in_place(self.start.add(i));
                        }
                    }
                }
            }
        }
    }

    /// Convert a SmallVec to a Vec, without reallocating if the SmallVec has already spilled onto
    /// the heap.
    pub fn into_vec(self) -> Vec<A::Item> {
        if self.spilled() {
            unsafe {
                let (ptr, len) = self.data.heap();
                let v = Vec::from_raw_parts(ptr, len, self.capacity);
                mem::forget(self);
                v
            }
        } else {
            self.into_iter().collect()
        }
    }

    /// Converts a `SmallVec` into a `Box<[T]>` without reallocating if the `SmallVec` has already spilled
    /// onto the heap.
    ///
    /// Note that this will drop any excess capacity.
    pub fn into_boxed_slice(self) -> Box<[A::Item]> {
        self.into_vec().into_boxed_slice()
    }

    /// Convert the SmallVec into an `A` if possible. Otherwise return `Err(Self)`.
    ///
    /// This method returns `Err(Self)` if the SmallVec is too short (and the `A` contains uninitialized elements),
    /// or if the SmallVec is too long (and all the elements were spilled to the heap).
    pub fn into_inner(self) -> Result<A, Self> {
        if self.spilled() || self.len() != A::size() {
            // Note: A::size, not Self::inline_capacity
            Err(self)
        } else {
            unsafe {
                let data = ptr::read(&self.data);
                mem::forget(self);
                Ok(data.into_inline().assume_init())
            }
        }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
    /// This method operates in place and preserves the order of the retained
    /// elements.
    pub fn retain<F: FnMut(&mut A::Item) -> bool>(&mut self, mut f: F) {
        let mut del = 0;
        let len = self.len();
        for i in 0..len {
            if !f(&mut self[i]) {
                del += 1;
            } else if del > 0 {
                self.swap(i - del, i);
            }
        }
        self.truncate(len - del);
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// This method is identical in behaviour to [`retain`]; it is included only
    /// to maintain api-compatability with `std::Vec`, where the methods are
    /// separate for historical reasons.
    pub fn retain_mut<F: FnMut(&mut A::Item) -> bool>(&mut self, f: F) {
        self.retain(f)
    }

    /// Removes consecutive duplicate elements.
    pub fn dedup(&mut self)
    where
        A::Item: PartialEq<A::Item>,
    {
        self.dedup_by(|a, b| a == b);
    }

    /// Removes consecutive duplicate elements using the given equality relation.
    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
    where
        F: FnMut(&mut A::Item, &mut A::Item) -> bool,
    {
        // See the implementation of Vec::dedup_by in the
        // standard library for an explanation of this algorithm.
        let len = self.len();
        if len <= 1 {
            return;
        }

        let ptr = self.as_mut_ptr();
        let mut w: usize = 1;

        unsafe {
            for r in 1..len {
                let p_r = ptr.add(r);
                let p_wm1 = ptr.add(w - 1);
                if !same_bucket(&mut *p_r, &mut *p_wm1) {
                    if r != w {
                        let p_w = p_wm1.add(1);
                        mem::swap(&mut *p_r, &mut *p_w);
                    }
                    w += 1;
                }
            }
        }

        self.truncate(w);
    }

    /// Removes consecutive elements that map to the same key.
    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
    where
        F: FnMut(&mut A::Item) -> K,
        K: PartialEq<K>,
    {
        self.dedup_by(|a, b| key(a) == key(b));
    }

    /// Resizes the `SmallVec` in-place so that `len` is equal to `new_len`.
    ///
    /// If `new_len` is greater than `len`, the `SmallVec` is extended by the difference, with each
    /// additional slot filled with the result of calling the closure `f`. The return values from `f`
    //// will end up in the `SmallVec` in the order they have been generated.
    ///
    /// If `new_len` is less than `len`, the `SmallVec` is simply truncated.
    ///
    /// This method uses a closure to create new values on every push. If you'd rather `Clone` a given
    /// value, use `resize`. If you want to use the `Default` trait to generate values, you can pass
    /// `Default::default()` as the second argument.
    ///
    /// Added for std::vec::Vec compatibility (added in Rust 1.33.0)
    ///
    /// ```
    /// # use smallvec::{smallvec, SmallVec};
    /// let mut vec : SmallVec<[_; 4]> = smallvec![1, 2, 3];
    /// vec.resize_with(5, Default::default);
    /// assert_eq!(&*vec, &[1, 2, 3, 0, 0]);
    ///
    /// let mut vec : SmallVec<[_; 4]> = smallvec![];
    /// let mut p = 1;
    /// vec.resize_with(4, || { p *= 2; p });
    /// assert_eq!(&*vec, &[2, 4, 8, 16]);
    /// ```
    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
    where
        F: FnMut() -> A::Item,
    {
        let old_len = self.len();
        if old_len < new_len {
            let mut f = f;
            let additional = new_len - old_len;
            self.reserve(additional);
            for _ in 0..additional {
                self.push(f());
            }
        } else if old_len > new_len {
            self.truncate(new_len);
        }
    }

    /// Creates a `SmallVec` directly from the raw components of another
    /// `SmallVec`.
    ///
    /// # Safety
    ///
    /// This is highly unsafe, due to the number of invariants that aren't
    /// checked:
    ///
    /// * `ptr` needs to have been previously allocated via `SmallVec` for its
    ///   spilled storage (at least, it's highly likely to be incorrect if it
    ///   wasn't).
    /// * `ptr`'s `A::Item` type needs to be the same size and alignment that
    ///   it was allocated with
    /// * `length` needs to be less than or equal to `capacity`.
    /// * `capacity` needs to be the capacity that the pointer was allocated
    ///   with.
    ///
    /// Violating these may cause problems like corrupting the allocator's
    /// internal data structures.
    ///
    /// Additionally, `capacity` must be greater than the amount of inline
    /// storage `A` has; that is, the new `SmallVec` must need to spill over
    /// into heap allocated storage. This condition is asserted against.
    ///
    /// The ownership of `ptr` is effectively transferred to the
    /// `SmallVec` which may then deallocate, reallocate or change the
    /// contents of memory pointed to by the pointer at will. Ensure
    /// that nothing else uses the pointer after calling this
    /// function.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate smallvec;
    /// # use smallvec::SmallVec;
    /// use std::mem;
    /// use std::ptr;
    ///
    /// fn main() {
    ///     let mut v: SmallVec<[_; 1]> = smallvec![1, 2, 3];
    ///
    ///     // Pull out the important parts of `v`.
    ///     let p = v.as_mut_ptr();
    ///     let len = v.len();
    ///     let cap = v.capacity();
    ///     let spilled = v.spilled();
    ///
    ///     unsafe {
    ///         // Forget all about `v`. The heap allocation that stored the
    ///         // three values won't be deallocated.
    ///         mem::forget(v);
    ///
    ///         // Overwrite memory with [4, 5, 6].
    ///         //
    ///         // This is only safe if `spilled` is true! Otherwise, we are
    ///         // writing into the old `SmallVec`'s inline storage on the
    ///         // stack.
    ///         assert!(spilled);
    ///         for i in 0..len {
    ///             ptr::write(p.add(i), 4 + i);
    ///         }
    ///
    ///         // Put everything back together into a SmallVec with a different
    ///         // amount of inline storage, but which is still less than `cap`.
    ///         let rebuilt = SmallVec::<[_; 2]>::from_raw_parts(p, len, cap);
    ///         assert_eq!(&*rebuilt, &[4, 5, 6]);
    ///     }
    /// }
    #[inline]
    pub unsafe fn from_raw_parts(ptr: *mut A::Item, length: usize, capacity: usize) -> SmallVec<A> {
        assert!(capacity > Self::inline_capacity());
        SmallVec {
            capacity,
            data: SmallVecData::from_heap(ptr, length),
        }
    }

    /// Returns a raw pointer to the vector's buffer.
    pub fn as_ptr(&self) -> *const A::Item {
        // We shadow the slice method of the same name to avoid going through
        // `deref`, which creates an intermediate reference that may place
        // additional safety constraints on the contents of the slice.
        self.triple().0
    }

    /// Returns a raw mutable pointer to the vector's buffer.
    pub fn as_mut_ptr(&mut self) -> *mut A::Item {
        // We shadow the slice method of the same name to avoid going through
        // `deref_mut`, which creates an intermediate reference that may place
        // additional safety constraints on the contents of the slice.
        self.triple_mut().0
    }
}

impl<A: Array> SmallVec<A>
where
    A::Item: Copy,
{
    /// Copy the elements from a slice into a new `SmallVec`.
    ///
    /// For slices of `Copy` types, this is more efficient than `SmallVec::from(slice)`.
    pub fn from_slice(slice: &[A::Item]) -> Self {
        let len = slice.len();
        if len <= Self::inline_capacity() {
            SmallVec {
                capacity: len,
                data: SmallVecData::from_inline(unsafe {
                    let mut data: MaybeUninit<A> = MaybeUninit::uninit();
                    ptr::copy_nonoverlapping(
                        slice.as_ptr(),
                        data.as_mut_ptr() as *mut A::Item,
                        len,
                    );
                    data
                }),
            }
        } else {
            let mut b = slice.to_vec();
            let (ptr, cap) = (b.as_mut_ptr(), b.capacity());
            mem::forget(b);
            SmallVec {
                capacity: cap,
                data: SmallVecData::from_heap(ptr, len),
            }
        }
    }

    /// Copy elements from a slice into the vector at position `index`, shifting any following
    /// elements toward the back.
    ///
    /// For slices of `Copy` types, this is more efficient than `insert`.
    pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item]) {
        self.reserve(slice.len());

        let len = self.len();
        assert!(index <= len);

        unsafe {
            let slice_ptr = slice.as_ptr();
            let ptr = self.as_mut_ptr().add(index);
            ptr::copy(ptr, ptr.add(slice.len()), len - index);
            ptr::copy_nonoverlapping(slice_ptr, ptr, slice.len());
            self.set_len(len + slice.len());
        }
    }

    /// Copy elements from a slice and append them to the vector.
    ///
    /// For slices of `Copy` types, this is more efficient than `extend`.
    #[inline]
    pub fn extend_from_slice(&mut self, slice: &[A::Item]) {
        let len = self.len();
        self.insert_from_slice(len, slice);
    }
}

impl<A: Array> SmallVec<A>
where
    A::Item: Clone,
{
    /// Resizes the vector so that its length is equal to `len`.
    ///
    /// If `len` is less than the current length, the vector simply truncated.
    ///
    /// If `len` is greater than the current length, `value` is appended to the
    /// vector until its length equals `len`.
    pub fn resize(&mut self, len: usize, value: A::Item) {
        let old_len = self.len();

        if len > old_len {
            self.extend(repeat(value).take(len - old_len));
        } else {
            self.truncate(len);
        }
    }

    /// Creates a `SmallVec` with `n` copies of `elem`.
    /// ```
    /// use smallvec::SmallVec;
    ///
    /// let v = SmallVec::<[char; 128]>::from_elem('d', 2);
    /// assert_eq!(v, SmallVec::from_buf(['d', 'd']));
    /// ```
    pub fn from_elem(elem: A::Item, n: usize) -> Self {
        if n > Self::inline_capacity() {
            vec![elem; n].into()
        } else {
            let mut v = SmallVec::<A>::new();
            unsafe {
                let (ptr, len_ptr, _) = v.triple_mut();
                let mut local_len = SetLenOnDrop::new(len_ptr);

                for i in 0..n {
                    ::core::ptr::write(ptr.add(i), elem.clone());
                    local_len.increment_len(1);
                }
            }
            v
        }
    }
}

impl<A: Array> ops::Deref for SmallVec<A> {
    type Target = [A::Item];
    #[inline]
    fn deref(&self) -> &[A::Item] {
        unsafe {
            let (ptr, len, _) = self.triple();
            slice::from_raw_parts(ptr, len)
        }
    }
}

impl<A: Array> ops::DerefMut for SmallVec<A> {
    #[inline]
    fn deref_mut(&mut self) -> &mut [A::Item] {
        unsafe {
            let (ptr, &mut len, _) = self.triple_mut();
            slice::from_raw_parts_mut(ptr, len)
        }
    }
}

impl<A: Array> AsRef<[A::Item]> for SmallVec<A> {
    #[inline]
    fn as_ref(&self) -> &[A::Item] {
        self
    }
}

impl<A: Array> AsMut<[A::Item]> for SmallVec<A> {
    #[inline]
    fn as_mut(&mut self) -> &mut [A::Item] {
        self
    }
}

impl<A: Array> Borrow<[A::Item]> for SmallVec<A> {
    #[inline]
    fn borrow(&self) -> &[A::Item] {
        self
    }
}

impl<A: Array> BorrowMut<[A::Item]> for SmallVec<A> {
    #[inline]
    fn borrow_mut(&mut self) -> &mut [A::Item] {
        self
    }
}

#[cfg(feature = "write")]
#[cfg_attr(docsrs, doc(cfg(feature = "write")))]
impl<A: Array<Item = u8>> io::Write for SmallVec<A> {
    #[inline]
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.extend_from_slice(buf);
        Ok(buf.len())
    }

    #[inline]
    fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
        self.extend_from_slice(buf);
        Ok(())
    }

    #[inline]
    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl<A: Array> Serialize for SmallVec<A>
where
    A::Item: Serialize,
{
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let mut state = serializer.serialize_seq(Some(self.len()))?;
        for item in self {
            state.serialize_element(&item)?;
        }
        state.end()
    }
}

#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl<'de, A: Array> Deserialize<'de> for SmallVec<A>
where
    A::Item: Deserialize<'de>,
{
    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        deserializer.deserialize_seq(SmallVecVisitor {
            phantom: PhantomData,
        })
    }
}

#[cfg(feature = "serde")]
struct SmallVecVisitor<A> {
    phantom: PhantomData<A>,
}

#[cfg(feature = "serde")]
impl<'de, A: Array> Visitor<'de> for SmallVecVisitor<A>
where
    A::Item: Deserialize<'de>,
{
    type Value = SmallVec<A>;

    fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str("a sequence")
    }

    fn visit_seq<B>(self, mut seq: B) -> Result<Self::Value, B::Error>
    where
        B: SeqAccess<'de>,
    {
        use serde::de::Error;
        let len = seq.size_hint().unwrap_or(0);
        let mut values = SmallVec::new();
        values.try_reserve(len).map_err(B::Error::custom)?;

        while let Some(value) = seq.next_element()? {
            values.push(value);
        }

        Ok(values)
    }
}

#[cfg(feature = "specialization")]
trait SpecFrom<A: Array, S> {
    fn spec_from(slice: S) -> SmallVec<A>;
}

#[cfg(feature = "specialization")]
mod specialization;

#[cfg(feature = "arbitrary")]
mod arbitrary;

#[cfg(feature = "specialization")]
impl<'a, A: Array> SpecFrom<A, &'a [A::Item]> for SmallVec<A>
where
    A::Item: Copy,
{
    #[inline]
    fn spec_from(slice: &'a [A::Item]) -> SmallVec<A> {
        SmallVec::from_slice(slice)
    }
}

impl<'a, A: Array> From<&'a [A::Item]> for SmallVec<A>
where
    A::Item: Clone,
{
    #[cfg(not(feature = "specialization"))]
    #[inline]
    fn from(slice: &'a [A::Item]) -> SmallVec<A> {
        slice.iter().cloned().collect()
    }

    #[cfg(feature = "specialization")]
    #[inline]
    fn from(slice: &'a [A::Item]) -> SmallVec<A> {
        SmallVec::spec_from(slice)
    }
}

impl<A: Array> From<Vec<A::Item>> for SmallVec<A> {
    #[inline]
    fn from(vec: Vec<A::Item>) -> SmallVec<A> {
        SmallVec::from_vec(vec)
    }
}

impl<A: Array> From<A> for SmallVec<A> {
    #[inline]
    fn from(array: A) -> SmallVec<A> {
        SmallVec::from_buf(array)
    }
}

impl<A: Array, I: SliceIndex<[A::Item]>> ops::Index<I> for SmallVec<A> {
    type Output = I::Output;

    fn index(&self, index: I) -> &I::Output {
        &(**self)[index]
    }
}

impl<A: Array, I: SliceIndex<[A::Item]>> ops::IndexMut<I> for SmallVec<A> {
    fn index_mut(&mut self, index: I) -> &mut I::Output {
        &mut (&mut **self)[index]
    }
}

#[allow(deprecated)]
impl<A: Array> ExtendFromSlice<A::Item> for SmallVec<A>
where
    A::Item: Copy,
{
    fn extend_from_slice(&mut self, other: &[A::Item]) {
        SmallVec::extend_from_slice(self, other)
    }
}

impl<A: Array> FromIterator<A::Item> for SmallVec<A> {
    #[inline]
    fn from_iter<I: IntoIterator<Item = A::Item>>(iterable: I) -> SmallVec<A> {
        let mut v = SmallVec::new();
        v.extend(iterable);
        v
    }
}

impl<A: Array> Extend<A::Item> for SmallVec<A> {
    fn extend<I: IntoIterator<Item = A::Item>>(&mut self, iterable: I) {
        let mut iter = iterable.into_iter();
        let (lower_size_bound, _) = iter.size_hint();
        self.reserve(lower_size_bound);

        unsafe {
            let (ptr, len_ptr, cap) = self.triple_mut();
            let mut len = SetLenOnDrop::new(len_ptr);
            while len.get() < cap {
                if let Some(out) = iter.next() {
                    ptr::write(ptr.add(len.get()), out);
                    len.increment_len(1);
                } else {
                    return;
                }
            }
        }

        for elem in iter {
            self.push(elem);
        }
    }
}

impl<A: Array> fmt::Debug for SmallVec<A>
where
    A::Item: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_list().entries(self.iter()).finish()
    }
}

impl<A: Array> Default for SmallVec<A> {
    #[inline]
    fn default() -> SmallVec<A> {
        SmallVec::new()
    }
}

#[cfg(feature = "may_dangle")]
unsafe impl<#[may_dangle] A: Array> Drop for SmallVec<A> {
    fn drop(&mut self) {
        unsafe {
            if self.spilled() {
                let (ptr, len) = self.data.heap();
                Vec::from_raw_parts(ptr, len, self.capacity);
            } else {
                ptr::drop_in_place(&mut self[..]);
            }
        }
    }
}

#[cfg(not(feature = "may_dangle"))]
impl<A: Array> Drop for SmallVec<A> {
    fn drop(&mut self) {
        unsafe {
            if self.spilled() {
                let (ptr, len) = self.data.heap();
                Vec::from_raw_parts(ptr, len, self.capacity);
            } else {
                ptr::drop_in_place(&mut self[..]);
            }
        }
    }
}

impl<A: Array> Clone for SmallVec<A>
where
    A::Item: Clone,
{
    #[inline]
    fn clone(&self) -> SmallVec<A> {
        SmallVec::from(self.as_slice())
    }

    fn clone_from(&mut self, source: &Self) {
        // Inspired from `impl Clone for Vec`.

        // drop anything that will not be overwritten
        self.truncate(source.len());

        // self.len <= other.len due to the truncate above, so the
        // slices here are always in-bounds.
        let (init, tail) = source.split_at(self.len());

        // reuse the contained values' allocations/resources.
        self.clone_from_slice(init);
        self.extend(tail.iter().cloned());
    }
}

impl<A: Array, B: Array> PartialEq<SmallVec<B>> for SmallVec<A>
where
    A::Item: PartialEq<B::Item>,
{
    #[inline]
    fn eq(&self, other: &SmallVec<B>) -> bool {
        self[..] == other[..]
    }
}

impl<A: Array> Eq for SmallVec<A> where A::Item: Eq {}

impl<A: Array> PartialOrd for SmallVec<A>
where
    A::Item: PartialOrd,
{
    #[inline]
    fn partial_cmp(&self, other: &SmallVec<A>) -> Option<cmp::Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
}

impl<A: Array> Ord for SmallVec<A>
where
    A::Item: Ord,
{
    #[inline]
    fn cmp(&self, other: &SmallVec<A>) -> cmp::Ordering {
        Ord::cmp(&**self, &**other)
    }
}

impl<A: Array> Hash for SmallVec<A>
where
    A::Item: Hash,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state)
    }
}

unsafe impl<A: Array> Send for SmallVec<A> where A::Item: Send {}

/// An iterator that consumes a `SmallVec` and yields its items by value.
///
/// Returned from [`SmallVec::into_iter`][1].
///
/// [1]: struct.SmallVec.html#method.into_iter
pub struct IntoIter<A: Array> {
    data: SmallVec<A>,
    current: usize,
    end: usize,
}

impl<A: Array> fmt::Debug for IntoIter<A>
where
    A::Item: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
    }
}

impl<A: Array + Clone> Clone for IntoIter<A>
where
    A::Item: Clone,
{
    fn clone(&self) -> IntoIter<A> {
        SmallVec::from(self.as_slice()).into_iter()
    }
}

impl<A: Array> Drop for IntoIter<A> {
    fn drop(&mut self) {
        for _ in self {}
    }
}

impl<A: Array> Iterator for IntoIter<A> {
    type Item = A::Item;

    #[inline]
    fn next(&mut self) -> Option<A::Item> {
        if self.current == self.end {
            None
        } else {
            unsafe {
                let current = self.current;
                self.current += 1;
                Some(ptr::read(self.data.as_ptr().add(current)))
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let size = self.end - self.current;
        (size, Some(size))
    }
}

impl<A: Array> DoubleEndedIterator for IntoIter<A> {
    #[inline]
    fn next_back(&mut self) -> Option<A::Item> {
        if self.current == self.end {
            None
        } else {
            unsafe {
                self.end -= 1;
                Some(ptr::read(self.data.as_ptr().add(self.end)))
            }
        }
    }
}

impl<A: Array> ExactSizeIterator for IntoIter<A> {}
impl<A: Array> FusedIterator for IntoIter<A> {}

impl<A: Array> IntoIter<A> {
    /// Returns the remaining items of this iterator as a slice.
    pub fn as_slice(&self) -> &[A::Item] {
        let len = self.end - self.current;
        unsafe { core::slice::from_raw_parts(self.data.as_ptr().add(self.current), len) }
    }

    /// Returns the remaining items of this iterator as a mutable slice.
    pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
        let len = self.end - self.current;
        unsafe { core::slice::from_raw_parts_mut(self.data.as_mut_ptr().add(self.current), len) }
    }
}

impl<A: Array> IntoIterator for SmallVec<A> {
    type IntoIter = IntoIter<A>;
    type Item = A::Item;
    fn into_iter(mut self) -> Self::IntoIter {
        unsafe {
            // Set SmallVec len to zero as `IntoIter` drop handles dropping of the elements
            let len = self.len();
            self.set_len(0);
            IntoIter {
                data: self,
                current: 0,
                end: len,
            }
        }
    }
}

impl<'a, A: Array> IntoIterator for &'a SmallVec<A> {
    type IntoIter = slice::Iter<'a, A::Item>;
    type Item = &'a A::Item;
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, A: Array> IntoIterator for &'a mut SmallVec<A> {
    type IntoIter = slice::IterMut<'a, A::Item>;
    type Item = &'a mut A::Item;
    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

/// Types that can be used as the backing store for a SmallVec
pub unsafe trait Array {
    /// The type of the array's elements.
    type Item;
    /// Returns the number of items the array can hold.
    fn size() -> usize;
}

/// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
///
/// Copied from https://github.com/rust-lang/rust/pull/36355
struct SetLenOnDrop<'a> {
    len: &'a mut usize,
    local_len: usize,
}

impl<'a> SetLenOnDrop<'a> {
    #[inline]
    fn new(len: &'a mut usize) -> Self {
        SetLenOnDrop {
            local_len: *len,
            len,
        }
    }

    #[inline]
    fn get(&self) -> usize {
        self.local_len
    }

    #[inline]
    fn increment_len(&mut self, increment: usize) {
        self.local_len += increment;
    }
}

impl<'a> Drop for SetLenOnDrop<'a> {
    #[inline]
    fn drop(&mut self) {
        *self.len = self.local_len;
    }
}

#[cfg(feature = "const_new")]
impl<T, const N: usize> SmallVec<[T; N]> {
    /// Construct an empty vector.
    ///
    /// This is a `const` version of [`SmallVec::new`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays.
    #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
    #[inline]
    pub const fn new_const() -> Self {
        SmallVec {
            capacity: 0,
            data: SmallVecData::from_const(MaybeUninit::uninit()),
        }
    }

    /// The array passed as an argument is moved to be an inline version of `SmallVec`.
    ///
    /// This is a `const` version of [`SmallVec::from_buf`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays.
    #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
    #[inline]
    pub const fn from_const(items: [T; N]) -> Self {
        SmallVec {
            capacity: N,
            data: SmallVecData::from_const(MaybeUninit::new(items)),
        }
    }
}

#[cfg(all(feature = "const_generics", not(doc)))]
#[cfg_attr(docsrs, doc(cfg(feature = "const_generics")))]
unsafe impl<T, const N: usize> Array for [T; N] {
    type Item = T;
    #[inline]
    fn size() -> usize {
        N
    }
}

#[cfg(any(not(feature = "const_generics"), doc))]
macro_rules! impl_array(
    ($($size:expr),+) => {
        $(
            unsafe impl<T> Array for [T; $size] {
                type Item = T;
                #[inline]
                fn size() -> usize { $size }
            }
        )+
    }
);

#[cfg(any(not(feature = "const_generics"), doc))]
impl_array!(
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
    26, 27, 28, 29, 30, 31, 32, 36, 0x40, 0x60, 0x80, 0x100, 0x200, 0x400, 0x600, 0x800, 0x1000,
    0x2000, 0x4000, 0x6000, 0x8000, 0x10000, 0x20000, 0x40000, 0x60000, 0x80000, 0x10_0000
);

/// Convenience trait for constructing a `SmallVec`
pub trait ToSmallVec<A: Array> {
    /// Construct a new `SmallVec` from a slice.
    fn to_smallvec(&self) -> SmallVec<A>;
}

impl<A: Array> ToSmallVec<A> for [A::Item]
where
    A::Item: Copy,
{
    #[inline]
    fn to_smallvec(&self) -> SmallVec<A> {
        SmallVec::from_slice(self)
    }
}