1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "TaskController.h"
#include "nsIIdleRunnable.h"
#include "nsIRunnable.h"
#include "nsThreadUtils.h"
#include <algorithm>
#include <initializer_list>
#include "GeckoProfiler.h"
#include "mozilla/EventQueue.h"
#include "mozilla/BackgroundHangMonitor.h"
#include "mozilla/InputTaskManager.h"
#include "mozilla/VsyncTaskManager.h"
#include "mozilla/IOInterposer.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/SchedulerGroup.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Unused.h"
#include "nsIThreadInternal.h"
#include "nsQueryObject.h"
#include "nsThread.h"
#include "prenv.h"
#include "prsystem.h"
namespace mozilla {
std::unique_ptr<TaskController> TaskController::sSingleton;
thread_local size_t mThreadPoolIndex = -1;
std::atomic<uint64_t> Task::sCurrentTaskSeqNo = 0;
const int32_t kMinimumPoolThreadCount = 2;
const int32_t kMaximumPoolThreadCount = 8;
/* static */
int32_t TaskController::GetPoolThreadCount() {
if (PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT")) {
return strtol(PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT"), nullptr, 0);
}
int32_t numCores = std::max<int32_t>(1, PR_GetNumberOfProcessors());
return std::clamp<int32_t>(numCores, kMinimumPoolThreadCount,
kMaximumPoolThreadCount);
}
#if defined(MOZ_COLLECTING_RUNNABLE_TELEMETRY)
struct TaskMarker {
static constexpr Span<const char> MarkerTypeName() {
return MakeStringSpan("Task");
}
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
const nsCString& aName, uint32_t aPriority) {
aWriter.StringProperty("name", aName);
aWriter.IntProperty("priority", aPriority);
# define EVENT_PRIORITY(NAME, VALUE) \
if (aPriority == (VALUE)) { \
aWriter.StringProperty("priorityName", #NAME); \
} else
EVENT_QUEUE_PRIORITY_LIST(EVENT_PRIORITY)
# undef EVENT_PRIORITY
{
aWriter.StringProperty("priorityName", "Invalid Value");
}
}
static MarkerSchema MarkerTypeDisplay() {
using MS = MarkerSchema;
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
schema.SetChartLabel("{marker.data.name}");
schema.SetTableLabel(
"{marker.name} - {marker.data.name} - priority: "
"{marker.data.priorityName} ({marker.data.priority})");
schema.AddKeyLabelFormatSearchable("name", "Task Name", MS::Format::String,
MS::Searchable::Searchable);
schema.AddKeyLabelFormat("priorityName", "Priority Name",
MS::Format::String);
schema.AddKeyLabelFormat("priority", "Priority level", MS::Format::Integer);
return schema;
}
};
class MOZ_RAII AutoProfileTask {
public:
explicit AutoProfileTask(nsACString& aName, uint64_t aPriority)
: mName(aName), mPriority(aPriority) {
if (profiler_is_active()) {
mStartTime = TimeStamp::Now();
}
}
~AutoProfileTask() {
if (!profiler_thread_is_being_profiled_for_markers()) {
return;
}
AUTO_PROFILER_LABEL("AutoProfileTask", PROFILER);
AUTO_PROFILER_STATS(AUTO_PROFILE_TASK);
profiler_add_marker("Runnable", ::mozilla::baseprofiler::category::OTHER,
mStartTime.IsNull()
? MarkerTiming::IntervalEnd()
: MarkerTiming::IntervalUntilNowFrom(mStartTime),
TaskMarker{}, mName, mPriority);
}
private:
TimeStamp mStartTime;
nsAutoCString mName;
uint32_t mPriority;
};
# define AUTO_PROFILE_FOLLOWING_TASK(task) \
nsAutoCString name; \
(task)->GetName(name); \
AUTO_PROFILER_LABEL_DYNAMIC_NSCSTRING_NONSENSITIVE("Task", OTHER, name); \
mozilla::AutoProfileTask PROFILER_RAII(name, (task)->GetPriority());
#else
# define AUTO_PROFILE_FOLLOWING_TASK(task)
#endif
bool TaskManager::
UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
const MutexAutoLock& aProofOfLock, IterationType aIterationType) {
mCurrentSuspended = IsSuspended(aProofOfLock);
if (aIterationType == IterationType::EVENT_LOOP_TURN && !mCurrentSuspended) {
int32_t oldModifier = mCurrentPriorityModifier;
mCurrentPriorityModifier =
GetPriorityModifierForEventLoopTurn(aProofOfLock);
if (mCurrentPriorityModifier != oldModifier) {
return true;
}
}
return false;
}
Task* Task::GetHighestPriorityDependency() {
Task* currentTask = this;
while (!currentTask->mDependencies.empty()) {
auto iter = currentTask->mDependencies.begin();
while (iter != currentTask->mDependencies.end()) {
if ((*iter)->mCompleted) {
auto oldIter = iter;
iter++;
// Completed tasks are removed here to prevent needlessly keeping them
// alive or iterating over them in the future.
currentTask->mDependencies.erase(oldIter);
continue;
}
currentTask = iter->get();
break;
}
}
return currentTask == this ? nullptr : currentTask;
}
TaskController* TaskController::Get() {
MOZ_ASSERT(sSingleton.get());
return sSingleton.get();
}
bool TaskController::Initialize() {
MOZ_ASSERT(!sSingleton);
sSingleton = std::make_unique<TaskController>();
return sSingleton->InitializeInternal();
}
void ThreadFuncPoolThread(void* aIndex) {
mThreadPoolIndex = *reinterpret_cast<int32_t*>(aIndex);
delete reinterpret_cast<int32_t*>(aIndex);
TaskController::Get()->RunPoolThread();
}
bool TaskController::InitializeInternal() {
InputTaskManager::Init();
VsyncTaskManager::Init();
mMTProcessingRunnable = NS_NewRunnableFunction(
"TaskController::ExecutePendingMTTasks()",
[]() { TaskController::Get()->ProcessPendingMTTask(); });
mMTBlockingProcessingRunnable = NS_NewRunnableFunction(
"TaskController::ExecutePendingMTTasks()",
[]() { TaskController::Get()->ProcessPendingMTTask(true); });
return true;
}
// We want our default stack size limit to be approximately 2MB, to be safe for
// JS helper tasks that can use a lot of stack, but expect most threads to use
// much less. On Linux, however, requesting a stack of 2MB or larger risks the
// kernel allocating an entire 2MB huge page for it on first access, which we do
// not want. To avoid this possibility, we subtract 2 standard VM page sizes
// from our default.
constexpr PRUint32 sBaseStackSize = 2048 * 1024 - 2 * 4096;
// TSan enforces a minimum stack size that's just slightly larger than our
// default helper stack size. It does this to store blobs of TSan-specific data
// on each thread's stack. Unfortunately, that means that even though we'll
// actually receive a larger stack than we requested, the effective usable space
// of that stack is significantly less than what we expect. To offset TSan
// stealing our stack space from underneath us, double the default.
//
// Similarly, ASan requires more stack space due to red-zones.
#if defined(MOZ_TSAN) || defined(MOZ_ASAN)
constexpr PRUint32 sStackSize = 2 * sBaseStackSize;
#else
constexpr PRUint32 sStackSize = sBaseStackSize;
#endif
void TaskController::InitializeThreadPool() {
mPoolInitializationMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(!mThreadPoolInitialized);
mThreadPoolInitialized = true;
int32_t poolSize = GetPoolThreadCount();
for (int32_t i = 0; i < poolSize; i++) {
int32_t* index = new int32_t(i);
mPoolThreads.push_back(
{PR_CreateThread(PR_USER_THREAD, ThreadFuncPoolThread, index,
PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD,
PR_JOINABLE_THREAD, sStackSize),
nullptr});
}
}
/* static */
size_t TaskController::GetThreadStackSize() { return sStackSize; }
void TaskController::SetPerformanceCounterState(
PerformanceCounterState* aPerformanceCounterState) {
mPerformanceCounterState = aPerformanceCounterState;
}
/* static */
void TaskController::Shutdown() {
InputTaskManager::Cleanup();
VsyncTaskManager::Cleanup();
if (sSingleton) {
sSingleton->ShutdownThreadPoolInternal();
sSingleton->ShutdownInternal();
}
MOZ_ASSERT(!sSingleton);
}
void TaskController::ShutdownThreadPoolInternal() {
{
// Prevent racecondition on mShuttingDown and wait.
MutexAutoLock lock(mGraphMutex);
mShuttingDown = true;
mThreadPoolCV.NotifyAll();
}
for (PoolThread& thread : mPoolThreads) {
PR_JoinThread(thread.mThread);
}
}
void TaskController::ShutdownInternal() { sSingleton = nullptr; }
void TaskController::RunPoolThread() {
IOInterposer::RegisterCurrentThread();
// This is used to hold on to a task to make sure it is released outside the
// lock. This is required since it's perfectly feasible for task destructors
// to post events themselves.
RefPtr<Task> lastTask;
nsAutoCString threadName;
threadName.AppendLiteral("TaskController #");
threadName.AppendInt(static_cast<int64_t>(mThreadPoolIndex));
AUTO_PROFILER_REGISTER_THREAD(threadName.BeginReading());
MutexAutoLock lock(mGraphMutex);
while (true) {
bool ranTask = false;
if (!mThreadableTasks.empty()) {
for (auto iter = mThreadableTasks.begin(); iter != mThreadableTasks.end();
++iter) {
// Search for the highest priority dependency of the highest priority
// task.
// We work with rawptrs to avoid needless refcounting. All our tasks
// are always kept alive by the graph. If one is removed from the graph
// it is kept alive by mPoolThreads[mThreadPoolIndex].mCurrentTask.
Task* task = iter->get();
MOZ_ASSERT(!task->mTaskManager);
mPoolThreads[mThreadPoolIndex].mEffectiveTaskPriority =
task->GetPriority();
Task* nextTask;
while ((nextTask = task->GetHighestPriorityDependency())) {
task = nextTask;
}
if (task->IsMainThreadOnly() || task->mInProgress) {
continue;
}
mPoolThreads[mThreadPoolIndex].mCurrentTask = task;
mThreadableTasks.erase(task->mIterator);
task->mIterator = mThreadableTasks.end();
task->mInProgress = true;
if (!mThreadableTasks.empty()) {
// Ensure at least one additional thread is woken up if there are
// more threadable tasks to process. Notifying all threads at once
// isn't actually better for performance since they all need the
// GraphMutex to proceed anyway.
mThreadPoolCV.Notify();
}
bool taskCompleted = false;
{
MutexAutoUnlock unlock(mGraphMutex);
lastTask = nullptr;
AUTO_PROFILE_FOLLOWING_TASK(task);
taskCompleted = task->Run();
ranTask = true;
}
task->mInProgress = false;
if (!taskCompleted) {
// Presumably this task was interrupted, leave its dependencies
// unresolved and reinsert into the queue.
auto insertion = mThreadableTasks.insert(
mPoolThreads[mThreadPoolIndex].mCurrentTask);
MOZ_ASSERT(insertion.second);
task->mIterator = insertion.first;
} else {
task->mCompleted = true;
#ifdef DEBUG
task->mIsInGraph = false;
#endif
task->mDependencies.clear();
// This may have unblocked a main thread task. We could do this only
// if there was a main thread task before this one in the dependency
// chain.
mMayHaveMainThreadTask = true;
// Since this could have multiple dependencies thare are restricted
// to the main thread. Let's make sure that's awake.
EnsureMainThreadTasksScheduled();
MaybeInterruptTask(GetHighestPriorityMTTask());
}
// Store last task for release next time we release the lock or enter
// wait state.
lastTask = mPoolThreads[mThreadPoolIndex].mCurrentTask.forget();
break;
}
}
// Ensure the last task is released before we enter the wait state.
if (lastTask) {
MutexAutoUnlock unlock(mGraphMutex);
lastTask = nullptr;
// Run another loop iteration, while we were unlocked there was an
// opportunity for another task to be posted or shutdown to be initiated.
continue;
}
if (!ranTask) {
if (mShuttingDown) {
IOInterposer::UnregisterCurrentThread();
MOZ_ASSERT(mThreadableTasks.empty());
return;
}
AUTO_PROFILER_LABEL("TaskController::RunPoolThread", IDLE);
mThreadPoolCV.Wait();
}
}
}
void TaskController::AddTask(already_AddRefed<Task>&& aTask) {
RefPtr<Task> task(aTask);
if (!task->IsMainThreadOnly()) {
MutexAutoLock lock(mPoolInitializationMutex);
if (!mThreadPoolInitialized) {
InitializeThreadPool();
mThreadPoolInitialized = true;
}
}
MutexAutoLock lock(mGraphMutex);
if (TaskManager* manager = task->GetManager()) {
if (manager->mTaskCount == 0) {
mTaskManagers.insert(manager);
}
manager->DidQueueTask();
// Set this here since if this manager's priority modifier doesn't change
// we will not reprioritize when iterating over the queue.
task->mPriorityModifier = manager->mCurrentPriorityModifier;
}
task->mInsertionTime = TimeStamp::Now();
#ifdef DEBUG
task->mIsInGraph = true;
for (const RefPtr<Task>& otherTask : task->mDependencies) {
MOZ_ASSERT(!otherTask->mTaskManager ||
otherTask->mTaskManager == task->mTaskManager);
}
#endif
LogTask::LogDispatch(task);
std::pair<std::set<RefPtr<Task>, Task::PriorityCompare>::iterator, bool>
insertion;
if (task->IsMainThreadOnly()) {
insertion = mMainThreadTasks.insert(std::move(task));
} else {
insertion = mThreadableTasks.insert(std::move(task));
}
(*insertion.first)->mIterator = insertion.first;
MOZ_ASSERT(insertion.second);
MaybeInterruptTask(*insertion.first);
}
void TaskController::WaitForTaskOrMessage() {
MutexAutoLock lock(mGraphMutex);
while (!mMayHaveMainThreadTask) {
AUTO_PROFILER_LABEL("TaskController::WaitForTaskOrMessage", IDLE);
mMainThreadCV.Wait();
}
}
void TaskController::ExecuteNextTaskOnlyMainThread() {
MOZ_ASSERT(NS_IsMainThread());
MutexAutoLock lock(mGraphMutex);
ExecuteNextTaskOnlyMainThreadInternal(lock);
}
void TaskController::ProcessPendingMTTask(bool aMayWait) {
MOZ_ASSERT(NS_IsMainThread());
MutexAutoLock lock(mGraphMutex);
for (;;) {
// We only ever process one event here. However we may sometimes
// not actually process a real event because of suspended tasks.
// This loop allows us to wait until we've processed something
// in that scenario.
mMTTaskRunnableProcessedTask = ExecuteNextTaskOnlyMainThreadInternal(lock);
if (mMTTaskRunnableProcessedTask || !aMayWait) {
break;
}
BackgroundHangMonitor().NotifyWait();
{
// ProcessNextEvent will also have attempted to wait, however we may have
// given it a Runnable when all the tasks in our task graph were suspended
// but we weren't able to cheaply determine that.
AUTO_PROFILER_LABEL("TaskController::ProcessPendingMTTask", IDLE);
mMainThreadCV.Wait();
}
BackgroundHangMonitor().NotifyActivity();
}
if (mMayHaveMainThreadTask) {
EnsureMainThreadTasksScheduled();
}
}
void TaskController::ReprioritizeTask(Task* aTask, uint32_t aPriority) {
MutexAutoLock lock(mGraphMutex);
std::set<RefPtr<Task>, Task::PriorityCompare>* queue = &mMainThreadTasks;
if (!aTask->IsMainThreadOnly()) {
queue = &mThreadableTasks;
}
MOZ_ASSERT(aTask->mIterator != queue->end());
queue->erase(aTask->mIterator);
aTask->mPriority = aPriority;
auto insertion = queue->insert(aTask);
MOZ_ASSERT(insertion.second);
aTask->mIterator = insertion.first;
MaybeInterruptTask(aTask);
}
// Code supporting runnable compatibility.
// Task that wraps a runnable.
class RunnableTask : public Task {
public:
RunnableTask(already_AddRefed<nsIRunnable>&& aRunnable, int32_t aPriority,
bool aMainThread = true)
: Task(aMainThread, aPriority), mRunnable(aRunnable) {}
virtual bool Run() override {
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
MOZ_ASSERT(NS_IsMainThread());
// If we're on the main thread, we want to record our current
// runnable's name in a static so that BHR can record it.
Array<char, nsThread::kRunnableNameBufSize> restoreRunnableName;
restoreRunnableName[0] = '\0';
auto clear = MakeScopeExit([&] {
MOZ_ASSERT(NS_IsMainThread());
nsThread::sMainThreadRunnableName = restoreRunnableName;
});
nsAutoCString name;
nsThread::GetLabeledRunnableName(mRunnable, name,
EventQueuePriority(GetPriority()));
restoreRunnableName = nsThread::sMainThreadRunnableName;
// Copy the name into sMainThreadRunnableName's buffer, and append a
// terminating null.
uint32_t length = std::min((uint32_t)nsThread::kRunnableNameBufSize - 1,
(uint32_t)name.Length());
memcpy(nsThread::sMainThreadRunnableName.begin(), name.BeginReading(),
length);
nsThread::sMainThreadRunnableName[length] = '\0';
#endif
mRunnable->Run();
mRunnable = nullptr;
return true;
}
void SetIdleDeadline(TimeStamp aDeadline) override {
nsCOMPtr<nsIIdleRunnable> idleRunnable = do_QueryInterface(mRunnable);
if (idleRunnable) {
idleRunnable->SetDeadline(aDeadline);
}
}
PerformanceCounter* GetPerformanceCounter() const override {
return nsThread::GetPerformanceCounterBase(mRunnable);
}
virtual bool GetName(nsACString& aName) override {
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
nsThread::GetLabeledRunnableName(mRunnable, aName,
EventQueuePriority(GetPriority()));
return true;
#else
return false;
#endif
}
private:
RefPtr<nsIRunnable> mRunnable;
};
void TaskController::DispatchRunnable(already_AddRefed<nsIRunnable>&& aRunnable,
uint32_t aPriority,
TaskManager* aManager) {
RefPtr<RunnableTask> task = new RunnableTask(std::move(aRunnable), aPriority);
task->SetManager(aManager);
TaskController::Get()->AddTask(task.forget());
}
nsIRunnable* TaskController::GetRunnableForMTTask(bool aReallyWait) {
MutexAutoLock lock(mGraphMutex);
while (mMainThreadTasks.empty()) {
if (!aReallyWait) {
return nullptr;
}
AUTO_PROFILER_LABEL("TaskController::GetRunnableForMTTask::Wait", IDLE);
mMainThreadCV.Wait();
}
return aReallyWait ? mMTBlockingProcessingRunnable : mMTProcessingRunnable;
}
bool TaskController::HasMainThreadPendingTasks() {
auto resetIdleState = MakeScopeExit([&idleManager = mIdleTaskManager] {
if (idleManager) {
idleManager->State().ClearCachedIdleDeadline();
}
});
for (bool considerIdle : {false, true}) {
if (considerIdle && !mIdleTaskManager) {
continue;
}
MutexAutoLock lock(mGraphMutex);
if (considerIdle) {
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
// Temporarily unlock so we can peek our idle deadline.
// XXX We could do this _before_ we take the lock if the API would let us.
// We do want to do this before looking at mMainThreadTasks, in case
// someone adds one while we're unlocked.
{
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().CachePeekedIdleDeadline(unlock);
}
}
// Return early if there's no tasks at all.
if (mMainThreadTasks.empty()) {
return false;
}
// We can cheaply count how many tasks are suspended.
uint64_t totalSuspended = 0;
for (TaskManager* manager : mTaskManagers) {
DebugOnly<bool> modifierChanged =
manager
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
lock, TaskManager::IterationType::NOT_EVENT_LOOP_TURN);
MOZ_ASSERT(!modifierChanged);
// The idle manager should be suspended unless we're doing the idle pass.
MOZ_ASSERT(manager != mIdleTaskManager || manager->mCurrentSuspended ||
considerIdle,
"Why are idle tasks not suspended here?");
if (manager->mCurrentSuspended) {
// XXX - If managers manage off-main-thread tasks this breaks! This
// scenario is explicitly not supported.
//
// This is only incremented inside the lock -or- decremented on the main
// thread so this is safe.
totalSuspended += manager->mTaskCount;
}
}
// This would break down if we have a non-suspended task depending on a
// suspended task. This is why for the moment we do not allow tasks
// to be dependent on tasks managed by another taskmanager.
if (mMainThreadTasks.size() > totalSuspended) {
// If mIdleTaskManager->mTaskCount is 0, we never updated the suspended
// state of mIdleTaskManager above, hence shouldn't even check it here.
// But in that case idle tasks are not contributing to our suspended task
// count anyway.
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
!mIdleTaskManager->mCurrentSuspended) {
MOZ_ASSERT(considerIdle, "Why is mIdleTaskManager not suspended?");
// Check whether the idle tasks were really needed to make our "we have
// an unsuspended task" decision. If they were, we need to force-enable
// idle tasks until we run our next task.
if (mMainThreadTasks.size() - mIdleTaskManager->mTaskCount <=
totalSuspended) {
mIdleTaskManager->State().EnforcePendingTaskGuarantee();
}
}
return true;
}
}
return false;
}
uint64_t TaskController::PendingMainthreadTaskCountIncludingSuspended() {
MutexAutoLock lock(mGraphMutex);
return mMainThreadTasks.size();
}
bool TaskController::ExecuteNextTaskOnlyMainThreadInternal(
const MutexAutoLock& aProofOfLock) {
mGraphMutex.AssertCurrentThreadOwns();
// Block to make it easier to jump to our cleanup.
bool taskRan = false;
do {
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
if (taskRan) {
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
mIdleTaskManager->IsSuspended(aProofOfLock)) {
uint32_t activeTasks = mMainThreadTasks.size();
for (TaskManager* manager : mTaskManagers) {
if (manager->IsSuspended(aProofOfLock)) {
activeTasks -= manager->mTaskCount;
} else {
break;
}
}
if (!activeTasks) {
// We have only idle (and maybe other suspended) tasks left, so need
// to update the idle state. We need to temporarily release the lock
// while we do that.
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().RequestIdleDeadlineIfNeeded(unlock);
}
}
break;
}
if (!mIdleTaskManager) {
break;
}
if (mIdleTaskManager->mTaskCount) {
// We have idle tasks that we may not have gotten above because
// our idle state is not up to date. We need to update the idle state
// and try again. We need to temporarily release the lock while we do
// that.
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().UpdateCachedIdleDeadline(unlock);
} else {
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().RanOutOfTasks(unlock);
}
// When we unlocked, someone may have queued a new task on us. So try to
// see whether we can run things again.
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
} while (false);
if (mIdleTaskManager) {
// The pending task guarantee is not needed anymore, since we just tried
// running a task
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
if (mMainThreadTasks.empty()) {
++mRunOutOfMTTasksCounter;
// XXX the IdlePeriodState API demands we have a MutexAutoUnlock for it.
// Otherwise we could perhaps just do this after we exit the locked block,
// by pushing the lock down into this method. Though it's not clear that
// we could check mMainThreadTasks.size() once we unlock, and whether we
// could maybe substitute mMayHaveMainThreadTask for that check.
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().RanOutOfTasks(unlock);
}
}
return taskRan;
}
bool TaskController::DoExecuteNextTaskOnlyMainThreadInternal(
const MutexAutoLock& aProofOfLock) {
mGraphMutex.AssertCurrentThreadOwns();
nsCOMPtr<nsIThread> mainIThread;
NS_GetMainThread(getter_AddRefs(mainIThread));
nsThread* mainThread = static_cast<nsThread*>(mainIThread.get());
if (mainThread) {
mainThread->SetRunningEventDelay(TimeDuration(), TimeStamp());
}
uint32_t totalSuspended = 0;
for (TaskManager* manager : mTaskManagers) {
bool modifierChanged =
manager
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
aProofOfLock, TaskManager::IterationType::EVENT_LOOP_TURN);
if (modifierChanged) {
ProcessUpdatedPriorityModifier(manager);
}
if (manager->mCurrentSuspended) {
totalSuspended += manager->mTaskCount;
}
}
MOZ_ASSERT(mMainThreadTasks.size() >= totalSuspended);
// This would break down if we have a non-suspended task depending on a
// suspended task. This is why for the moment we do not allow tasks
// to be dependent on tasks managed by another taskmanager.
if (mMainThreadTasks.size() > totalSuspended) {
for (auto iter = mMainThreadTasks.begin(); iter != mMainThreadTasks.end();
iter++) {
Task* task = iter->get();
if (task->mTaskManager && task->mTaskManager->mCurrentSuspended) {
// Even though we may want to run some dependencies of this task, we
// will run them at their own priority level and not the priority
// level of their dependents.
continue;
}
task = GetFinalDependency(task);
if (!task->IsMainThreadOnly() || task->mInProgress ||
(task->mTaskManager && task->mTaskManager->mCurrentSuspended)) {
continue;
}
mCurrentTasksMT.push(task);
mMainThreadTasks.erase(task->mIterator);
task->mIterator = mMainThreadTasks.end();
task->mInProgress = true;
TaskManager* manager = task->GetManager();
bool result = false;
{
MutexAutoUnlock unlock(mGraphMutex);
if (manager) {
manager->WillRunTask();
if (manager != mIdleTaskManager) {
// Notify the idle period state that we're running a non-idle task.
// This needs to happen while our mutex is not locked!
mIdleTaskManager->State().FlagNotIdle();
} else {
TimeStamp idleDeadline =
mIdleTaskManager->State().GetCachedIdleDeadline();
MOZ_ASSERT(
idleDeadline,
"How can we not have a deadline if our manager is enabled?");
task->SetIdleDeadline(idleDeadline);
}
}
if (mIdleTaskManager) {
// We found a task to run; we can clear the idle deadline on our idle
// task manager. This _must_ be done before we actually run the task,
// because running the task could reenter via spinning the event loop
// and we want to make sure there's no cached idle deadline at that
// point. But we have to make sure we do it after out SetIdleDeadline
// call above, in the case when the task is actually an idle task.
mIdleTaskManager->State().ClearCachedIdleDeadline();
}
TimeStamp now = TimeStamp::Now();
if (mainThread) {
if (task->GetPriority() < uint32_t(EventQueuePriority::InputHigh)) {
mainThread->SetRunningEventDelay(TimeDuration(), now);
} else {
mainThread->SetRunningEventDelay(now - task->mInsertionTime, now);
}
}
PerformanceCounterState::Snapshot snapshot =
mPerformanceCounterState->RunnableWillRun(
task->GetPerformanceCounter(), now,
manager == mIdleTaskManager);
{
LogTask::Run log(task);
AUTO_PROFILE_FOLLOWING_TASK(task);
result = task->Run();
}
// Task itself should keep manager alive.
if (manager) {
manager->DidRunTask();
}
mPerformanceCounterState->RunnableDidRun(std::move(snapshot));
}
// Task itself should keep manager alive.
if (manager && result && manager->mTaskCount == 0) {
mTaskManagers.erase(manager);
}
task->mInProgress = false;
if (!result) {
// Presumably this task was interrupted, leave its dependencies
// unresolved and reinsert into the queue.
auto insertion =
mMainThreadTasks.insert(std::move(mCurrentTasksMT.top()));
MOZ_ASSERT(insertion.second);
task->mIterator = insertion.first;
manager->WillRunTask();
} else {
task->mCompleted = true;
#ifdef DEBUG
task->mIsInGraph = false;
#endif
// Clear dependencies to release references.
task->mDependencies.clear();
if (!mThreadableTasks.empty()) {
// We're going to wake up a single thread in our pool. This thread
// is responsible for waking up additional threads in the situation
// where more than one task became available.
mThreadPoolCV.Notify();
}
}
mCurrentTasksMT.pop();
return true;
}
}
mMayHaveMainThreadTask = false;
if (mIdleTaskManager) {
// We did not find a task to run. We still need to clear the cached idle
// deadline on our idle state, because that deadline was only relevant to
// the execution of this function. Had we found a task, we would have
// cleared the deadline before running that task.
mIdleTaskManager->State().ClearCachedIdleDeadline();
}
return false;
}
Task* TaskController::GetFinalDependency(Task* aTask) {
Task* nextTask;
while ((nextTask = aTask->GetHighestPriorityDependency())) {
aTask = nextTask;
}
return aTask;
}
void TaskController::MaybeInterruptTask(Task* aTask) {
mGraphMutex.AssertCurrentThreadOwns();
if (!aTask) {
return;
}
// This optimization prevents many slow lookups in long chains of similar
// priority.
if (!aTask->mDependencies.empty()) {
Task* firstDependency = aTask->mDependencies.begin()->get();
if (aTask->GetPriority() <= firstDependency->GetPriority() &&
!firstDependency->mCompleted &&
aTask->IsMainThreadOnly() == firstDependency->IsMainThreadOnly()) {
// This task has the same or a higher priority as one of its dependencies,
// never any need to interrupt.
return;
}
}
Task* finalDependency = GetFinalDependency(aTask);
if (finalDependency->mInProgress) {
// No need to wake anything, we can't schedule this task right now anyway.
return;
}
if (aTask->IsMainThreadOnly()) {
mMayHaveMainThreadTask = true;
EnsureMainThreadTasksScheduled();
if (mCurrentTasksMT.empty()) {
return;
}
// We could go through the steps above here and interrupt an off main
// thread task in case it has a lower priority.
if (!finalDependency->IsMainThreadOnly()) {
return;
}
if (mCurrentTasksMT.top()->GetPriority() < aTask->GetPriority()) {
mCurrentTasksMT.top()->RequestInterrupt(aTask->GetPriority());
}
} else {
Task* lowestPriorityTask = nullptr;
for (PoolThread& thread : mPoolThreads) {
if (!thread.mCurrentTask) {
mThreadPoolCV.Notify();
// There's a free thread, no need to interrupt anything.
return;
}
if (!lowestPriorityTask) {
lowestPriorityTask = thread.mCurrentTask.get();
continue;
}
// This should possibly select the lowest priority task which was started
// the latest. But for now we ignore that optimization.
// This also doesn't guarantee a task is interruptable, so that's an
// avenue for improvements as well.
if (lowestPriorityTask->GetPriority() > thread.mEffectiveTaskPriority) {
lowestPriorityTask = thread.mCurrentTask.get();
}
}
if (lowestPriorityTask->GetPriority() < aTask->GetPriority()) {
lowestPriorityTask->RequestInterrupt(aTask->GetPriority());
}
// We choose not to interrupt main thread tasks for tasks which may be
// executed off the main thread.
}
}
Task* TaskController::GetHighestPriorityMTTask() {
mGraphMutex.AssertCurrentThreadOwns();
if (!mMainThreadTasks.empty()) {
return mMainThreadTasks.begin()->get();
}
return nullptr;
}
void TaskController::EnsureMainThreadTasksScheduled() {
if (mObserver) {
mObserver->OnDispatchedEvent();
}
if (mExternalCondVar) {
mExternalCondVar->Notify();
}
mMainThreadCV.Notify();
}
void TaskController::ProcessUpdatedPriorityModifier(TaskManager* aManager) {
mGraphMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(NS_IsMainThread());
int32_t modifier = aManager->mCurrentPriorityModifier;
std::vector<RefPtr<Task>> storedTasks;
// Find all relevant tasks.
for (auto iter = mMainThreadTasks.begin(); iter != mMainThreadTasks.end();) {
if ((*iter)->mTaskManager == aManager) {
storedTasks.push_back(*iter);
iter = mMainThreadTasks.erase(iter);
} else {
iter++;
}
}
// Reinsert found tasks with their new priorities.
for (RefPtr<Task>& ref : storedTasks) {
// Kept alive at first by the vector and then by mMainThreadTasks.
Task* task = ref;
task->mPriorityModifier = modifier;
auto insertion = mMainThreadTasks.insert(std::move(ref));
MOZ_ASSERT(insertion.second);
task->mIterator = insertion.first;
}
}
} // namespace mozilla
|