summaryrefslogtreecommitdiffstats
path: root/plug-ins/selection-to-path/math.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--plug-ins/selection-to-path/math.c177
1 files changed, 177 insertions, 0 deletions
diff --git a/plug-ins/selection-to-path/math.c b/plug-ins/selection-to-path/math.c
new file mode 100644
index 0000000..58f3b3f
--- /dev/null
+++ b/plug-ins/selection-to-path/math.c
@@ -0,0 +1,177 @@
+/* math.c: define some simple array operations, and other functions.
+ *
+ * Copyright (C) 1992 Free Software Foundation, Inc.
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3, or (at your option)
+ * any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ */
+
+#include "config.h"
+
+#include <errno.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "libgimp/gimp.h"
+
+#include "types.h"
+#include "global.h"
+
+/* Numerical errors sometimes make a floating point number just slightly
+ larger or smaller than its true value. When it matters, we need to
+ compare with some tolerance, REAL_EPSILON, defined in kbase.h. */
+
+boolean
+epsilon_equal (real v1, real v2)
+{
+ return
+ v1 == v2 /* Usually they'll be exactly equal, anyway. */
+ || fabs (v1 - v2) <= REAL_EPSILON;
+}
+
+
+/* Return the Euclidean distance between P1 and P2. */
+
+real
+distance (real_coordinate_type p1, real_coordinate_type p2)
+{
+ return hypot (p1.x - p2.x, p1.y - p2.y);
+}
+
+
+/* Same thing, for integer points. */
+real
+int_distance (coordinate_type p1, coordinate_type p2)
+{
+ return hypot ((double) p1.x - p2.x, (double) p1.y - p2.y);
+}
+
+
+/* Return the arc cosine of V, in degrees in the range zero to 180. V
+ is taken to be in radians. */
+
+real
+my_acosd (real v)
+{
+ real a;
+
+ if (epsilon_equal (v, 1.0))
+ v = 1.0;
+ else if (epsilon_equal (v, -1.0))
+ v = -1.0;
+
+ errno = 0;
+ a = acos (v);
+ if (errno == ERANGE || errno == EDOM)
+ FATAL_PERROR ("acosd");
+
+ return a * 180.0 / G_PI;
+}
+
+
+/* The slope of the line defined by COORD1 and COORD2. */
+
+real
+slope (real_coordinate_type coord1, real_coordinate_type coord2)
+{
+ g_assert (coord2.x - coord1.x != 0);
+
+ return (coord2.y - coord1.y) / (coord2.x - coord1.x);
+}
+
+
+/* Turn an integer point into a real one, and vice versa. */
+
+real_coordinate_type
+int_to_real_coord (coordinate_type int_coord)
+{
+ real_coordinate_type real_coord;
+
+ real_coord.x = int_coord.x;
+ real_coord.y = int_coord.y;
+
+ return real_coord;
+}
+
+
+coordinate_type
+real_to_int_coord (real_coordinate_type real_coord)
+{
+ coordinate_type int_coord;
+
+ int_coord.x = SROUND (real_coord.x);
+ int_coord.y = SROUND (real_coord.y);
+
+ return int_coord;
+}
+
+
+/* See if two points (described by their row and column) are adjacent. */
+
+boolean
+points_adjacent_p (int row1, int col1, int row2, int col2)
+{
+ int row_diff = abs (row1 - row2);
+ int col_diff = abs (col1 - col2);
+
+ return
+ (row_diff == 1 && col_diff == 1)
+ || (row_diff == 0 && col_diff == 1)
+ || (row_diff == 1 && col_diff == 0);
+}
+
+
+/* Find the largest and smallest elements in an array of reals. */
+
+void
+find_bounds (real *values, unsigned value_count, real *min, real *max)
+{
+ unsigned this_value;
+
+ /* We must use FLT_MAX and FLT_MIN, instead of the corresponding
+ values for double, because gcc uses the native atof to parse
+ floating point constants, and many atof's choke on the extremes. */
+ *min = FLT_MAX;
+ *max = FLT_MIN;
+
+ for (this_value = 0; this_value < value_count; this_value++)
+ {
+ if (values[this_value] < *min)
+ *min = values[this_value];
+
+ if (values[this_value] > *max)
+ *max = values[this_value];
+ }
+}
+
+/* Map a range of numbers, some positive and some negative, into all
+ positive, with the greatest being at one and the least at zero.
+
+ This allocates new memory. */
+
+real *
+map_to_unit (real *values, unsigned value_count)
+{
+ real smallest, largest;
+ int this_value;
+ real *mapped_values = g_new (real, value_count);
+
+ find_bounds (values, value_count, &smallest, &largest);
+
+ largest -= smallest; /* We never care about largest itself. */
+
+ for (this_value = 0; this_value < value_count; this_value++)
+ mapped_values[this_value] = (values[this_value] - smallest) / largest;
+
+ return mapped_values;
+}