/* math.c: define some simple array operations, and other functions. * * Copyright (C) 1992 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "config.h" #include #include #include #include "libgimp/gimp.h" #include "types.h" #include "global.h" /* Numerical errors sometimes make a floating point number just slightly larger or smaller than its true value. When it matters, we need to compare with some tolerance, REAL_EPSILON, defined in kbase.h. */ boolean epsilon_equal (real v1, real v2) { return v1 == v2 /* Usually they'll be exactly equal, anyway. */ || fabs (v1 - v2) <= REAL_EPSILON; } /* Return the Euclidean distance between P1 and P2. */ real distance (real_coordinate_type p1, real_coordinate_type p2) { return hypot (p1.x - p2.x, p1.y - p2.y); } /* Same thing, for integer points. */ real int_distance (coordinate_type p1, coordinate_type p2) { return hypot ((double) p1.x - p2.x, (double) p1.y - p2.y); } /* Return the arc cosine of V, in degrees in the range zero to 180. V is taken to be in radians. */ real my_acosd (real v) { real a; if (epsilon_equal (v, 1.0)) v = 1.0; else if (epsilon_equal (v, -1.0)) v = -1.0; errno = 0; a = acos (v); if (errno == ERANGE || errno == EDOM) FATAL_PERROR ("acosd"); return a * 180.0 / G_PI; } /* The slope of the line defined by COORD1 and COORD2. */ real slope (real_coordinate_type coord1, real_coordinate_type coord2) { g_assert (coord2.x - coord1.x != 0); return (coord2.y - coord1.y) / (coord2.x - coord1.x); } /* Turn an integer point into a real one, and vice versa. */ real_coordinate_type int_to_real_coord (coordinate_type int_coord) { real_coordinate_type real_coord; real_coord.x = int_coord.x; real_coord.y = int_coord.y; return real_coord; } coordinate_type real_to_int_coord (real_coordinate_type real_coord) { coordinate_type int_coord; int_coord.x = SROUND (real_coord.x); int_coord.y = SROUND (real_coord.y); return int_coord; } /* See if two points (described by their row and column) are adjacent. */ boolean points_adjacent_p (int row1, int col1, int row2, int col2) { int row_diff = abs (row1 - row2); int col_diff = abs (col1 - col2); return (row_diff == 1 && col_diff == 1) || (row_diff == 0 && col_diff == 1) || (row_diff == 1 && col_diff == 0); } /* Find the largest and smallest elements in an array of reals. */ void find_bounds (real *values, unsigned value_count, real *min, real *max) { unsigned this_value; /* We must use FLT_MAX and FLT_MIN, instead of the corresponding values for double, because gcc uses the native atof to parse floating point constants, and many atof's choke on the extremes. */ *min = FLT_MAX; *max = FLT_MIN; for (this_value = 0; this_value < value_count; this_value++) { if (values[this_value] < *min) *min = values[this_value]; if (values[this_value] > *max) *max = values[this_value]; } } /* Map a range of numbers, some positive and some negative, into all positive, with the greatest being at one and the least at zero. This allocates new memory. */ real * map_to_unit (real *values, unsigned value_count) { real smallest, largest; int this_value; real *mapped_values = g_new (real, value_count); find_bounds (values, value_count, &smallest, &largest); largest -= smallest; /* We never care about largest itself. */ for (this_value = 0; this_value < value_count; this_value++) mapped_values[this_value] = (values[this_value] - smallest) / largest; return mapped_values; }