summaryrefslogtreecommitdiffstats
path: root/plug-ins/gfig/gfig-grid.c
blob: ac81859e5b0504734d3dd4bfe2b0d094ddbb9631 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/*
 * Copyright (C) 1995 Spencer Kimball and Peter Mattis
 *
 * This is a plug-in for GIMP.
 *
 * Generates images containing vector type drawings.
 *
 * Copyright (C) 1997 Andy Thomas  alt@picnic.demon.co.uk
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

#include "config.h"

#include <math.h>
#include <stdlib.h>

#include <libgimp/gimp.h>
#include <libgimp/gimpui.h>

#include "gfig.h"
#include "gfig-grid.h"

#include "libgimp/stdplugins-intl.h"


/* For the isometric grid */
#define SQRT3 1.73205080756887729353   /* Square root of 3 */
#define SIN_1o6PI_RAD 0.5              /* Sine    1/6 Pi Radians */
#define COS_1o6PI_RAD SQRT3 / 2        /* Cosine  1/6 Pi Radians */
#define TAN_1o6PI_RAD 1 / SQRT3        /* Tangent 1/6 Pi Radians == SIN / COS */
#define RECIP_TAN_1o6PI_RAD SQRT3      /* Reciprocal of Tangent 1/6 Pi Radians */

gint           grid_gc_type           = GFIG_NORMAL_GC;

static void    draw_grid_polar     (cairo_t  *drawgc);
static void    draw_grid_sq        (cairo_t  *drawgc);
static void    draw_grid_iso       (cairo_t  *drawgc);

static cairo_t * gfig_get_grid_gc  (cairo_t   *cr,
                                    GtkWidget *widget,
                                    gint       gctype);

static void    find_grid_pos_polar (GdkPoint  *p,
                                    GdkPoint  *gp);


/********** PrimeFactors for Shaneyfelt-style Polar Grid **********
 * Quickly factor any number up to 17160
 * Correctly factors numbers up to 131 * 131 - 1
 */
typedef struct
{
  gint product;
  gint remaining;
  gint current;
  gint next;
  gint index;
} PrimeFactors;

static gchar primes[] = { 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,
                          59,61,67,71,73,79,83,89,97,101,103,107,109,113,127 };

#define PRIMES_MAX_INDEX 30


static gint
prime_factors_get (PrimeFactors *this)
{
  this->current = this->next;
  while (this->index <= PRIMES_MAX_INDEX)
    {
      if (this->remaining % primes[this->index] == 0)   /* divisible */
        {
          this->remaining /= primes[this->index];
          this->next = primes[this->index];
          return this->current;
        }
      this->index++;
    }
  this->next = this->remaining;
  this->remaining = 1;

  return this->current;
}

static gint
prime_factors_lookahead (PrimeFactors *this)
{
  return this->next;
}

static void
prime_factors_reset (PrimeFactors *this)
{
  this->remaining = this->product;
  this->index = 0;
  prime_factors_get (this);
}

static PrimeFactors *
prime_factors_new (gint n)
{
  PrimeFactors *this = g_new (PrimeFactors, 1);

  this->product = n;
  prime_factors_reset (this);

  return this;
}

static void
prime_factors_delete (PrimeFactors* this)
{
  g_free (this);
}

/********** ********** **********/

static gdouble
sector_size_at_radius (gdouble inner_radius)
{
  PrimeFactors *factors = prime_factors_new (selvals.opts.grid_sectors_desired);
  gint          current_sectors = 1;
  gdouble       sector_size     = 2 * G_PI / current_sectors;

  while ((current_sectors < selvals.opts.grid_sectors_desired)
         && (inner_radius*sector_size
             > (prime_factors_lookahead (factors) *
                selvals.opts.grid_granularity)))
    {
      current_sectors *= prime_factors_get (factors);
      sector_size = 2 * G_PI / current_sectors;
    }

  prime_factors_delete(factors);

  return sector_size;
}

static void
find_grid_pos_polar (GdkPoint *p,
                     GdkPoint *gp)
{
  gdouble cx = preview_width / 2.0;
  gdouble cy = preview_height / 2.0;
  gdouble px = p->x - cx;
  gdouble py = p->y - cy;
  gdouble x  = 0;
  gdouble y  = 0;
  gdouble r  = sqrt (SQR (px) + SQR (py));

  if (r >= selvals.opts.grid_radius_min * 0.5)
    {
      gdouble t;
      gdouble sectorSize;

      r = selvals.opts.grid_radius_interval
        * (gint) (0.5 + ((r - selvals.opts.grid_radius_min) /
                         selvals.opts.grid_radius_interval))
        + selvals.opts.grid_radius_min;

      t = atan2 (py, px) + 2 * G_PI;
      sectorSize = sector_size_at_radius (r);
      t = selvals.opts.grid_rotation
        + (gint) (0.5 + ((t - selvals.opts.grid_rotation) / sectorSize))
        * sectorSize;
      x = r * cos (t);
      y = r * sin (t);
    }

  gp->x = x + cx;
  gp->y = y + cy;
}

/* find_grid_pos - Given an x, y point return the grid position of it */
/* return the new position in the passed point */

void
gfig_grid_colors (GtkWidget *widget)
{
}

void
find_grid_pos (GdkPoint *p,
               GdkPoint *gp,
               guint     is_butt3)
{
  gint16          x = p->x;
  gint16          y = p->y;
  static GdkPoint cons_pnt;

  if (selvals.opts.gridtype == RECT_GRID)
    {
      if (p->x % selvals.opts.gridspacing > selvals.opts.gridspacing/2)
        x += selvals.opts.gridspacing;

      if (p->y % selvals.opts.gridspacing > selvals.opts.gridspacing/2)
        y += selvals.opts.gridspacing;

      gp->x = (x/selvals.opts.gridspacing)*selvals.opts.gridspacing;
      gp->y = (y/selvals.opts.gridspacing)*selvals.opts.gridspacing;

      if (is_butt3)
        {
          if (abs (gp->x - cons_pnt.x) < abs (gp->y - cons_pnt.y))
            gp->x = cons_pnt.x;
          else
            gp->y = cons_pnt.y;
        }
      else
        {
          /* Store the point since might be used later */
          cons_pnt = *gp; /* Structure copy */
        }
    }
  else if (selvals.opts.gridtype == POLAR_GRID)
    {
      find_grid_pos_polar (p,gp);
    }
  else if (selvals.opts.gridtype == ISO_GRID)
    {
      /*
       * This really needs a picture to show the math...
       *
       * Consider an isometric grid with one of the sets of lines
       * parallel to the y axis (vertical alignment). Further define
       * that the origin of a Cartesian grid is at a isometric vertex.
       * For simplicity consider the first quadrant only.
       *
       *  - Let one line segment between vertices be r
       *  - Define the value of r as the grid spacing
       *  - Assign an integer n identifier to each vertical grid line
       *    along the x axis.  with n=0 being the y axis. n can be any
       *    integer
       *  - Let m to be any integer

       *  - Let h be the spacing between vertical grid lines measured
       *    along the x axis.  It follows from the isometric grid that
       *    h has a value of r * COS(1/6 Pi Rad)
       *
       *  Consider a Vertex V at the Cartesian location [Xv, Yv]
       *
       *   It follows that vertices belong to the set...
       *   V[Xv, Yv] = [ [ n * h ] ,
       *                 [ m * r + ( 0.5 * r (n % 2) ) ] ]
       *   for all integers n and m
       *
       * Who cares? Me. It's useful in solving this problem:
       * Consider an arbitrary point P[Xp,Yp], find the closest vertex
       * in the set V.
       *
       * Restated this problem is "find values for m and n that are
       * drive V closest to P"
       *
       * A Solution method (there may be a better one?):
       *
       * Step 1) bound n to the two closest values for Xp
       *         n_lo = (int) (Xp / h)
       *         n_hi = n_lo + 1
       *
       * Step 2) Consider the two closes vertices for each n_lo and
       *         n_hi. The further of the vertices in each pair can
       *         readily be discarded.
       *
       *         m_lo_n_lo = (int) ( (Yp / r) - 0.5 (n_lo % 2) )
       *         m_hi_n_lo = m_lo_n_lo + 1
       *
       *         m_lo_n_hi = (int) ( (Yp / r) - 0.5 (n_hi % 2) )
       *         m_hi_n_hi = m_hi_n_hi
       *
       * Step 3) compute the distance from P to V1 and V2. Snap to the
       *         closer point.
       */

      gint n_lo;
      gint n_hi;
      gint m_lo_n_lo;
      gint m_hi_n_lo;
      gint m_lo_n_hi;
      gint m_hi_n_hi;
      gint m_n_lo;
      gint m_n_hi;
      gdouble r;
      gdouble h;
      gint x1;
      gint x2;
      gint y1;
      gint y2;

      r = selvals.opts.gridspacing;
      h = COS_1o6PI_RAD * r;

      n_lo = (gint) x / h;
      n_hi = n_lo + 1;

      /* evaluate m candidates for n_lo */
      m_lo_n_lo = (gint) ((y / r) - 0.5 * (n_lo % 2));
      m_hi_n_lo = m_lo_n_lo + 1;

     /* figure out which is the better candidate */
      if (fabs ((m_lo_n_lo * r + (0.5 * r * (n_lo % 2))) - y) <
          fabs ((m_hi_n_lo * r + (0.5 * r * (n_lo % 2))) - y))
        {
          m_n_lo = m_lo_n_lo;
        }
      else
        {
          m_n_lo = m_hi_n_lo;
        }

      /* evaluate m candidates for n_hi */
      m_lo_n_hi = (gint) ( (y / r) - 0.5 * (n_hi % 2) );
      m_hi_n_hi = m_lo_n_hi + 1;

      /* figure out which is the better candidate */
      if (fabs((m_lo_n_hi * r + (0.5 * r * (n_hi % 2))) - y) <
          fabs((m_hi_n_hi * r + (0.5 * r * (n_hi % 2))) - y))
        {
          m_n_hi = m_lo_n_hi;
        }
      else
        {
          m_n_hi = m_hi_n_hi;
        }

      /* Now, which is closer to [x,y]? we can use a somewhat
       * abbreviated form of the distance formula since we only care
       * about relative values.
       */

      x1 = (gint) (n_lo * h);
      y1 = (gint) (m_n_lo * r + (0.5 * r * (n_lo % 2)));
      x2 = (gint) (n_hi * h);
      y2 = (gint) (m_n_hi * r + (0.5 * r * (n_hi % 2)));

      if (((x - x1) * (x - x1) + (y - y1) * (y - y1)) <
          ((x - x2) * (x - x2) + (y - y2) * (y - y2)))
        {
          gp->x =  x1;
          gp->y =  y1;
        }
      else
        {
          gp->x =  x2;
          gp->y =  y2;
        }
    }
}

static void
draw_grid_polar (cairo_t *cr)
{
    gdouble       inner_radius;
    gdouble       outer_radius;
    gdouble       max_radius = sqrt (SQR (preview_width) + SQR (preview_height));
    gint          current_sectors = 1;
    PrimeFactors *factors = prime_factors_new (selvals.opts.grid_sectors_desired);
    for (inner_radius = 0, outer_radius = selvals.opts.grid_radius_min;
         outer_radius <= max_radius;
         inner_radius = outer_radius, outer_radius += selvals.opts.grid_radius_interval)
      {
        gdouble t;
        gdouble sector_size = 2 * G_PI / current_sectors;
        cairo_arc (cr,
                   0.5 + preview_width / 2.0,
                   0.5 + preview_height / 2.0,
                   outer_radius, 0, 2 * G_PI);
        cairo_stroke (cr);

        while ((current_sectors < selvals.opts.grid_sectors_desired)
               && (inner_radius * sector_size
                   > prime_factors_lookahead (factors) * selvals.opts.grid_granularity ))
          {
            current_sectors *= prime_factors_get (factors);
            sector_size = 2 * G_PI / current_sectors;
          }

        for (t = 0 ; t < 2 * G_PI ; t += sector_size)
          {
            gdouble normal_x = cos (selvals.opts.grid_rotation+t);
            gdouble normal_y = sin (selvals.opts.grid_rotation+t);
            cairo_move_to (cr,
                           0.5 + (preview_width / 2.0 + inner_radius * normal_x),
                           0.5 + (preview_height / 2.0 - inner_radius * normal_y));
            cairo_line_to (cr,
                           0.5 + (preview_width / 2.0 + outer_radius * normal_x),
                           0.5 + (preview_height / 2.0 - outer_radius * normal_y));
            cairo_stroke (cr);
          }
      }

    prime_factors_delete (factors);
}


static void
draw_grid_sq (cairo_t *cr)
{
  gint step;
  gint loop;

  /* Draw the horizontal lines */
  step = selvals.opts.gridspacing;

  for (loop = 0 ; loop < preview_height ; loop += step)
    {
      cairo_move_to (cr, 0 + .5, loop + .5);
      cairo_line_to (cr, preview_width + .5, loop + .5);
    }

  /* Draw the vertical lines */

  for (loop = 0 ; loop < preview_width ; loop += step)
    {
      cairo_move_to (cr, loop + .5, 0 + .5);
      cairo_line_to (cr, loop + .5, preview_height + .5);
    }
  cairo_stroke (cr);
}

static void
draw_grid_iso (cairo_t *cr)
{
  /* vstep is an int since it's defined from grid size */
  gint    vstep;
  gdouble loop;
  gdouble hstep;

  gdouble diagonal_start;
  gdouble diagonal_end;
  gdouble diagonal_width;
  gdouble diagonal_height;

  vstep = selvals.opts.gridspacing;
  hstep = selvals.opts.gridspacing * COS_1o6PI_RAD;

  /* Draw the vertical lines - These are easy */
  for (loop = 0 ; loop < preview_width ; loop += hstep)
    {
      cairo_move_to (cr, loop, 0);
      cairo_line_to (cr, loop, preview_height);
    }
  cairo_stroke (cr);

  /* draw diag lines at a Theta of +/- 1/6 Pi Rad */

  diagonal_start = -(((int)preview_width * TAN_1o6PI_RAD) - (((int)(preview_width * TAN_1o6PI_RAD)) % vstep));

  diagonal_end = preview_height + (preview_width * TAN_1o6PI_RAD);
  diagonal_end -= ((int)diagonal_end) % vstep;

  diagonal_width = preview_width;
  diagonal_height = preview_width * TAN_1o6PI_RAD;

  /* Draw diag lines */
  for (loop = diagonal_start ; loop < diagonal_end ; loop += vstep)
    {
      cairo_move_to (cr, 0, loop);
      cairo_line_to (cr, diagonal_width, loop + diagonal_height);

      cairo_move_to (cr, 0, loop);
      cairo_line_to (cr, diagonal_width, loop - diagonal_height);
    }
  cairo_stroke (cr);
}

static cairo_t *
gfig_get_grid_gc (cairo_t *cr, GtkWidget *w, gint gctype)
{
  switch (gctype)
    {
    default:
    case GFIG_NORMAL_GC:
      cairo_set_source_rgb (cr, .92, .92, .92);
      break;
    case GFIG_BLACK_GC:
      cairo_set_source_rgb (cr, 0., 0., 0.);
      break;
    case GFIG_WHITE_GC:
      cairo_set_source_rgb (cr, 1., 1., 1.);
      break;
    case GFIG_GREY_GC:
      cairo_set_source_rgb (cr, .5, .5, .5);
      break;
    case GFIG_DARKER_GC:
      cairo_set_source_rgb (cr, .25, .25, .25);
      break;
    case GFIG_LIGHTER_GC:
      cairo_set_source_rgb (cr, .75, .75, .75);
      break;
    case GFIG_VERY_DARK_GC:
      cairo_set_source_rgb (cr, .125, .125, .125);
      break;
    }

  return cr;
}

void
draw_grid (cairo_t *cr)
{
  /* Get the size of the preview and calc where the lines go */
  /* Draw in prelight to start with... */
  /* Always start in the upper left corner for rect.
   */

  if ((preview_width < selvals.opts.gridspacing &&
       preview_height < selvals.opts.gridspacing))
    {
      /* Don't draw if they don't fit */
      return;
    }

  if (selvals.opts.drawgrid)
    gfig_get_grid_gc (cr, gfig_context->preview, grid_gc_type);
  else
    return;

  cairo_set_line_width (cr, 1.);
  if (selvals.opts.gridtype == RECT_GRID)
    draw_grid_sq (cr);
  else if (selvals.opts.gridtype == POLAR_GRID)
    draw_grid_polar (cr);
  else if (selvals.opts.gridtype == ISO_GRID)
    draw_grid_iso (cr);
}