summaryrefslogtreecommitdiffstats
path: root/plug-ins/pygimp/plug-ins/spyro_plus.py
blob: 7d31c54d887b7762342ffa5513d95ad8e090bde3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
#!/usr/bin/env python2

# Draw Spyrographs, Epitrochoids, and Lissajous curves with interactive feedback.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

from gimpshelf import shelf
from gimpenums import *
import gimp
import gimpplugin
import gimpui
import gobject
import gtk
gdk = gtk.gdk

from math import pi, sin, cos, atan, atan2, fmod, radians, sqrt
import gettext
import fractions
import time


# i18n
t = gettext.translation("gimp20-python", gimp.locale_directory, fallback=True)
_ = t.ugettext

def N_(message):
    return message


pdb = gimp.pdb

two_pi, half_pi = 2 * pi, pi / 2
layer_name = _("Spyro Layer")
path_name = _("Spyro Path")

# "Enums"
GEAR_NOTATION, TOY_KIT_NOTATION, VISUAL_NOTATION = range(3)       # Pattern notations

# Mapping of pattern notation to the corresponding tab in the pattern notation notebook.
pattern_notation_page = {}

# Save options of the dialog
SAVE_AS_NEW_LAYER, SAVE_BY_REDRAW, SAVE_AS_PATH = range(3)
save_options = [
    _("Save\nas New Layer"),
    _("Redraw on\nActive layer"),
    _("Save\nas Path")
]

ring_teeth = [96, 144, 105, 150]

# Moving gear. Each gear is a pair of (#teeth, #holes)
# Hole #1 is closest to the edge of the wheel.
# The last hole is closest to the center.
wheel = [
    (24, 5), (30, 8), (32, 9), (36, 11), (40, 13), (42, 14), (45, 16),
    (48, 17), (50, 18), (52, 19), (56, 21), (60, 23), (63, 25), (64, 25),
    (72, 29), (75, 31), (80, 33), (84, 35)
]
wheel_teeth = [wh[0] for wh in wheel]


def lcm(a, b):
    """ Least common multiplier """
    return a * b // fractions.gcd(a, b)


### Shapes


class CanRotateShape:
    pass


class Shape:
    def configure(self, img, pp, cp):
        self.image, self.pp, self.cp = img, pp, cp

    def can_equal_w_h(self):
        return True

    def has_sides(self):
        return isinstance(self, SidedShape)

    def can_rotate(self):
        return isinstance(self, CanRotateShape)

    def can_morph(self):
        return self.has_sides()


class CircleShape(Shape):
    name = _("Circle")

    def get_center_of_moving_gear(self, oangle, dist=None):
        """
        :return: x,y - position where the center of the moving gear should be,
                     after going over oangle/two_pi of a full cycle over the outer gear.
        """
        cp = self.cp
        if dist is None:
            dist = cp.moving_gear_radius

        return (cp.x_center + (cp.x_half_size - dist) * cos(oangle),
                cp.y_center + (cp.y_half_size - dist) * sin(oangle))


class SidedShape(CanRotateShape, Shape):

    def configure(self, img, pp, cp):
        Shape.configure(self, img, pp, cp)
        self.angle_of_each_side = two_pi / pp.sides
        self.half_angle = self.angle_of_each_side / 2.0
        self.cos_half_angle = cos(self.half_angle)

    def get_center_of_moving_gear(self, oangle, dist=None):
        if dist is None:
            dist = self.cp.moving_gear_radius
        shape_factor = self.get_shape_factor(oangle)
        return (
            self.cp.x_center +
            (self.cp.x_half_size - dist) * shape_factor * cos(oangle),
            self.cp.y_center +
            (self.cp.y_half_size - dist) * shape_factor * sin(oangle)
        )


class PolygonShape(SidedShape):
    name = _("Polygon-Star")

    def get_shape_factor(self, oangle):
        oangle_mod = fmod(oangle + self.cp.shape_rotation_radians, self.angle_of_each_side)
        if oangle_mod > self.half_angle:
            oangle_mod = self.angle_of_each_side - oangle_mod

        # When oangle_mod = 0, the shape_factor will be cos(half_angle)) - which is the minimal shape_factor.
        # When oangle_mod is near the half_angle, the shape_factor will near 1.
        shape_factor = self.cos_half_angle / cos(oangle_mod)
        shape_factor -= self.pp.morph * (1 - shape_factor) * (1 + (self.pp.sides - 3) * 2)
        return shape_factor


class SineShape(SidedShape):
    # Sine wave on a circle ring.
    name = _("Sine")

    def get_shape_factor(self, oangle):
        oangle_mod = fmod(oangle + self.cp.shape_rotation_radians, self.angle_of_each_side)
        oangle_stretched = oangle_mod * self.pp.sides
        return 1 - self.pp.morph * (cos(oangle_stretched) + 1)


class BumpShape(SidedShape):
    # Semi-circles, based on a polygon
    name = _("Bumps")

    def get_shape_factor(self, oangle):
        oangle_mod = fmod(oangle + self.cp.shape_rotation_radians, self.angle_of_each_side)
        # Stretch back to angle between 0 and pi
        oangle_stretched = oangle_mod/2.0 * self.pp.sides

        # Compute factor for polygon.
        poly_angle = oangle_mod
        if poly_angle > self.half_angle:
            poly_angle = self.angle_of_each_side - poly_angle
        # When poly_oangle = 0, the shape_factor will be cos(half_angle)) - the minimal shape_factor.
        # When poly_angle is near the half_angle, the shape_factor will near 1.
        polygon_factor = self.cos_half_angle / cos(poly_angle)

        # Bump
        return polygon_factor - self.pp.morph * (1 - abs(cos(oangle_stretched)))


class ShapePart(object):
    def set_bounds(self, start, end):
        self.bound_start, self.bound_end = start, end
        self.bound_diff = self.bound_end - self.bound_start


class StraightPart(ShapePart):

    def __init__(self, teeth, perp_direction, x1, y1, x2, y2):
        self.teeth, self.perp_direction = max(teeth, 1),  perp_direction
        self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
        self.x_diff = self.x2 - self.x1
        self.y_diff = self.y2 - self.y1

        angle =  atan2(self.y_diff, self.x_diff) # - shape_rotation_radians
        perp_angle = angle + perp_direction * half_pi
        self.sin_angle = sin(perp_angle)
        self.cos_angle = cos(perp_angle)

    def perpendicular_at_oangle(self, oangle, perp_distance):
        factor = (oangle - self.bound_start) / self.bound_diff
        return (self.x1 + factor * self.x_diff + perp_distance * self.cos_angle,
                self.y1 + factor * self.y_diff + perp_distance * self.sin_angle)


class RoundPart(ShapePart):

    def __init__(self, teeth, x, y, start_angle, end_angle):
        self.teeth = max(teeth, 1)
        self.start_angle, self.end_angle = start_angle, end_angle
        self.x, self.y = x, y

        self.diff_angle = self.end_angle - self.start_angle

    def perpendicular_at_oangle(self, oangle, perp_distance):
        angle = (
            self.start_angle +
            self.diff_angle * (oangle - self.bound_start) / self.bound_diff
        )
        return (self.x + perp_distance * cos(angle),
                self.y + perp_distance * sin(angle))


class ShapeParts(list):
    """ A list of shape parts. """

    def __init__(self):
        list.__init__(self)
        self.total_teeth = 0

    def finish(self):
        for part in self:
            self.total_teeth += part.teeth
        teeth = 0
        bound_end = 0.0
        for part in self:
            bound_start = bound_end
            teeth += part.teeth
            bound_end = teeth/float(self.total_teeth) * two_pi
            part.set_bounds(bound_start, bound_end)

    def perpendicular_at_oangle(self, oangle, perp_distance):
        for part in self:
            if oangle <= part.bound_end:
                return part.perpendicular_at_oangle(oangle, perp_distance)

        # We shouldn't reach here
        return 0.0, 0.0


class AbstractShapeFromParts(Shape):
    def __init__(self):
        self.parts = None

    def get_center_of_moving_gear(self, oangle, dist=None):
        """
        :param oangle: an angle in radians, between 0 and 2*pi
        :return: x,y - position where the center of the moving gear should be,
                     after going over oangle/two_pi of a full cycle over the outer gear.
        """
        if dist is None:
            dist = self.cp.moving_gear_radius
        return self.parts.perpendicular_at_oangle(oangle, dist)


class RackShape(CanRotateShape, AbstractShapeFromParts):
    name = _("Rack")

    def configure(self, img, pp, cp):
        Shape.configure(self, img, pp, cp)

        round_teeth = 12
        side_teeth = (cp.fixed_gear_teeth - 2 * round_teeth) / 2

        # Determine start and end points of rack.

        cos_rot = cos(cp.shape_rotation_radians)
        sin_rot = sin(cp.shape_rotation_radians)

        x_size = cp.x2 - cp.x1 - cp.moving_gear_radius * 4
        y_size = cp.y2 - cp.y1 - cp.moving_gear_radius * 4

        size = ((x_size * cos_rot)**2 + (y_size * sin_rot)**2) ** 0.5

        x1 = cp.x_center - size/2.0 * cos_rot
        y1 = cp.y_center - size/2.0 * sin_rot
        x2 = cp.x_center + size/2.0 * cos_rot
        y2 = cp.y_center + size/2.0 * sin_rot

        # Build shape from shape parts.
        self.parts = ShapeParts()
        self.parts.append(StraightPart(side_teeth, -1, x2, y2, x1, y1))
        self.parts.append(
            RoundPart(
                round_teeth, x1, y1,
                half_pi + cp.shape_rotation_radians,
                3 * half_pi + cp.shape_rotation_radians
            )
        )
        self.parts.append(StraightPart(side_teeth, -1, x1, y1, x2, y2))
        self.parts.append(
            RoundPart(
                round_teeth, x2, y2,
                3 * half_pi + cp.shape_rotation_radians,
                5 * half_pi + cp.shape_rotation_radians)
        )
        self.parts.finish()


class FrameShape(AbstractShapeFromParts):
    name = _("Frame")

    def configure(self, img, pp, cp):
        Shape.configure(self, img, pp, cp)

        x1, x2 = cp.x1 + cp.moving_gear_radius, cp.x2 - cp.moving_gear_radius
        y1, y2 = cp.y1 + cp.moving_gear_radius, cp.y2 - cp.moving_gear_radius
        x_diff, y_diff = abs(x2 - x1), abs(y2 - y1)

        # Build shape from shape parts.
        self.parts = ShapeParts()
        self.parts.append(StraightPart(x_diff, 1, x2, cp.y2, x1, cp.y2))
        self.parts.append(StraightPart(y_diff, 1, cp.x1, y2, cp.x1, y1))
        self.parts.append(StraightPart(x_diff, 1, x1, cp.y1, x2, cp.y1))
        self.parts.append(StraightPart(y_diff, 1, cp.x2, y1, cp.x2, y2))
        self.parts.finish()


class SelectionToPath:
    """ Converts a selection to a path """

    def __init__(self, image):
        self.image = image

        # Compute hash of selection, so we can detect when it was modified.
        self.last_selection_hash = self.compute_selection_hash()

        self.convert_selection_to_path()

    def convert_selection_to_path(self):

        if pdb.gimp_selection_is_empty(self.image):
            selection_was_empty = True
            pdb.gimp_selection_all(self.image)
        else:
            selection_was_empty = False

        pdb.plug_in_sel2path(self.image, self.image.active_layer)

        self.path = self.image.vectors[0]

        self.num_strokes, self.stroke_ids = pdb.gimp_vectors_get_strokes(self.path)
        self.stroke_ids = list(self.stroke_ids)

        # A path may contain several strokes. If so lets throw away a stroke that
        # simply describes the borders of the image, if one exists.
        if self.num_strokes > 1:
            # Lets compute what a stroke of the image borders should look like.
            w, h = float(self.image.width), float(self.image.height)
            frame_strokes = [0.0] * 6 + [0.0, h] * 3 + [w, h] * 3 + [w, 0.0] * 3

            for stroke in range(self.num_strokes):
                strokes = self.path.strokes[stroke].points[0]
                if strokes == frame_strokes:
                    del self.stroke_ids[stroke]
                    self.num_strokes -= 1
                    break

        self.set_current_stroke(0)

        if selection_was_empty:
            # Restore empty selection if it was empty.
            pdb.gimp_selection_none(self.image)

    def compute_selection_hash(self):
        px = self.image.selection.get_pixel_rgn(0, 0, self.image.width, self.image.height)
        return px[0:self.image.width, 0:self.image.height].__hash__()

    def regenerate_path_if_selection_changed(self):
        current_selection_hash = self.compute_selection_hash()
        if self.last_selection_hash != current_selection_hash:
            self.last_selection_hash = current_selection_hash
            self.convert_selection_to_path()

    def get_num_strokes(self):
        return self.num_strokes

    def set_current_stroke(self, stroke_id=0):
        # Compute path length.
        self.path_length = pdb.gimp_vectors_stroke_get_length(self.path, self.stroke_ids[stroke_id], 1.0)
        self.current_stroke = stroke_id

    def point_at_angle(self, oangle):
        oangle_mod = fmod(oangle, two_pi)
        dist = self.path_length * oangle_mod / two_pi
        return pdb.gimp_vectors_stroke_get_point_at_dist(self.path, self.stroke_ids[self.current_stroke], dist, 1.0)


class SelectionShape(Shape):
    name = _("Selection")

    def __init__(self):
        self.path = None

    def process_selection(self, img):
        if self.path is None:
            self.path = SelectionToPath(img)
        else:
            self.path.regenerate_path_if_selection_changed()

    def configure(self, img, pp, cp):
        """ Set bounds of pattern """
        Shape.configure(self, img, pp, cp)
        self.drawing_no = cp.current_drawing
        self.path.set_current_stroke(self.drawing_no)

    def get_num_drawings(self):
        return self.path.get_num_strokes()

    def can_equal_w_h(self):
        return False

    def get_center_of_moving_gear(self, oangle, dist=None):
        """
        :param oangle: an angle in radians, between 0 and 2*pi
        :return: x,y - position where the center of the moving gear should be,
                     after going over oangle/two_pi of a full cycle over the outer gear.
        """
        cp = self.cp
        if dist is None:
            dist = cp.moving_gear_radius
        x, y, slope, valid = self.path.point_at_angle(oangle)
        slope_angle = atan(slope)
        # We want to find an angle perpendicular to the slope, but in which direction?
        # Lets try both sides and see which of them is inside the selection.
        perpendicular_p, perpendicular_m = slope_angle + half_pi, slope_angle - half_pi
        step_size = 2   # The distance we are going to go in the direction of each angle.
        xp, yp = x + step_size * cos(perpendicular_p), y + step_size * sin(perpendicular_p)
        value_plus = pdb.gimp_selection_value(self.image, xp, yp)
        xp, yp = x + step_size * cos(perpendicular_m), y + step_size * sin(perpendicular_m)
        value_minus = pdb.gimp_selection_value(self.image, xp, yp)

        perpendicular = perpendicular_p if value_plus > value_minus else perpendicular_m
        return x + dist * cos(perpendicular), y + dist * sin(perpendicular)


shapes = [
    CircleShape(), RackShape(), FrameShape(), SelectionShape(),
    PolygonShape(), SineShape(), BumpShape()
]


### Tools


def get_gradient_samples(num_samples):
    gradient_name = pdb.gimp_context_get_gradient()
    reverse_mode = pdb.gimp_context_get_gradient_reverse()
    repeat_mode = pdb.gimp_context_get_gradient_repeat_mode()

    if repeat_mode == REPEAT_TRIANGULAR:
        # Get two uniform samples, which are reversed from each other, and connect them.

        samples = num_samples/2 + 1
        num, color_samples = pdb.gimp_gradient_get_uniform_samples(gradient_name,
             samples, reverse_mode)

        color_samples = list(color_samples)
        del color_samples[-4:]   # Delete last color because it will appear in the next sample

        # If num_samples is odd, lets get an extra sample this time.
        if num_samples % 2 == 1:
            samples += 1

        num, color_samples2 = pdb.gimp_gradient_get_uniform_samples(gradient_name,
             samples, 1 - reverse_mode)

        color_samples2 = list(color_samples2)
        del color_samples2[-4:]  # Delete last color because it will appear in the very first sample

        color_samples.extend(color_samples2)
        color_samples = tuple(color_samples)
    else:
        num, color_samples = pdb.gimp_gradient_get_uniform_samples(gradient_name, num_samples, reverse_mode)

    return color_samples


class PencilTool():
    name = _("Pencil")
    can_color = True

    def draw(self, layer, strokes, color=None):
        if color:
            pdb.gimp_context_push()
            pdb.gimp_context_set_dynamics('Dynamics Off')
            pdb.gimp_context_set_foreground(color)

        pdb.gimp_pencil(layer, len(strokes), strokes)

        if color:
            pdb.gimp_context_pop()


class AirBrushTool():
    name = _("AirBrush")
    can_color = True

    def draw(self, layer, strokes, color=None):
        if color:
            pdb.gimp_context_push()
            pdb.gimp_context_set_dynamics('Dynamics Off')
            pdb.gimp_context_set_foreground(color)

        pdb.gimp_airbrush_default(layer, len(strokes), strokes)

        if color:
            pdb.gimp_context_pop()


class AbstractStrokeTool():

    def draw(self, layer, strokes, color=None):
        # We need to multiply every point by 3, because we are creating a path,
        #  where each point has two additional control points.
        control_points = []
        for i, k in zip(strokes[0::2], strokes[1::2]):
            control_points += [i, k] * 3

        # Create path
        path = pdb.gimp_vectors_new(layer.image, 'temp_path')
        pdb.gimp_image_add_vectors(layer.image, path, 0)
        sid = pdb.gimp_vectors_stroke_new_from_points(path, 0, len(control_points),
                                                      control_points, False)

        # Draw it.

        pdb.gimp_context_push()

        # Call template method to set the kind of stroke to draw.
        self.prepare_stroke_context(color)

        pdb.gimp_drawable_edit_stroke_item(layer, path)
        pdb.gimp_context_pop()

        # Get rid of the path.
        pdb.gimp_image_remove_vectors(layer.image, path)


# Drawing tool that should be quick, for purposes of previewing the pattern.
class PreviewTool:

    # Implementation using pencil.  (A previous implementation using stroke was slower, and thus removed).
    def draw(self, layer, strokes, color=None):
        foreground = pdb.gimp_context_get_foreground()
        pdb.gimp_context_push()
        pdb.gimp_context_set_defaults()
        pdb.gimp_context_set_foreground(foreground)
        pdb.gimp_context_set_dynamics('Dynamics Off')
        pdb.gimp_context_set_brush('1. Pixel')
        pdb.gimp_context_set_brush_size(1.0)
        pdb.gimp_context_set_brush_spacing(3.0)
        pdb.gimp_pencil(layer, len(strokes), strokes)
        pdb.gimp_context_pop()

    name = _("Preview")
    can_color = False


class StrokeTool(AbstractStrokeTool):
    name = _("Stroke")
    can_color = True

    def prepare_stroke_context(self, color):
        if color:
            pdb.gimp_context_set_dynamics('Dynamics Off')
            pdb.gimp_context_set_foreground(color)

        pdb.gimp_context_set_stroke_method(STROKE_LINE)


class StrokePaintTool(AbstractStrokeTool):
    def __init__(self, name, paint_method, can_color=True):
        self.name = name
        self.paint_method = paint_method
        self.can_color = can_color

    def prepare_stroke_context(self, color):
        if self.can_color and color is not None:
            pdb.gimp_context_set_dynamics('Dynamics Off')
            pdb.gimp_context_set_foreground(color)

        pdb.gimp_context_set_stroke_method(STROKE_PAINT_METHOD)
        pdb.gimp_context_set_paint_method(self.paint_method)


class SaveToPathTool():
    """ This tool cannot be chosen by the user from the tools menu.
        We dont add this to the list of tools. """

    def __init__(self, img):
        self.path = pdb.gimp_vectors_new(img, path_name)
        pdb.gimp_image_add_vectors(img, self.path, 0)

    def draw(self, layer, strokes, color=None):
        # We need to multiply every point by 3, because we are creating a path,
        #  where each point has two additional control points.
        control_points = []
        for i, k in zip(strokes[0::2], strokes[1::2]):
            control_points += [i, k] * 3

        sid = pdb.gimp_vectors_stroke_new_from_points(self.path, 0, len(control_points),
                                                      control_points, False)


tools = [
    PreviewTool(),
    StrokePaintTool(_("PaintBrush"), "gimp-paintbrush"),
    PencilTool(), AirBrushTool(), StrokeTool(),
    StrokePaintTool(_("Ink"), 'gimp-ink'),
    StrokePaintTool(_("MyPaintBrush"), 'gimp-mybrush')
    # Clone does not work properly when an image is not set.  When that happens, drawing fails, and
    # I am unable to catch the error. This causes the plugin to crash, and subsequent problems with undo.
    # StrokePaintTool("Clone", 'gimp-clone', False)
]


class PatternParameters:
    """
    All the parameters that define a pattern live in objects of this class.
    If you serialize and saved this class, you should reproduce
    the pattern that the plugin would draw.
    """
    def __init__(self):
        if not hasattr(self, 'curve_type'):
            self.curve_type = 0

        # Pattern
        if not hasattr(self, 'pattern_notation'):
            self.pattern_notation = 0
        if not hasattr(self, 'outer_teeth'):
            self.outer_teeth = 96
        if not hasattr(self, 'inner_teeth'):
            self.inner_teeth = 36
        if not hasattr(self, 'pattern_rotation'):
            self.pattern_rotation = 0
        # Location of hole as a percent of the radius of the inner gear - runs between 0 and 100.
        # A value of 0 means, the hole is at the center of the wheel, which would produce a boring circle.
        # A value of 100 means the edge of the wheel.
        if not hasattr(self, 'hole_percent'):
            self.hole_percent = 100.0

        # Toy Kit parameters
        # Hole number in Toy Kit notation. Hole #1 is at the edge of the wheel, and the last hole is
        # near the center of the wheel, but not exactly at the center.
        if not hasattr(self, 'hole_number'):
            self.hole_number = 1
        if not hasattr(self, 'kit_fixed_gear_index'):
            self.kit_fixed_gear_index = 1
        if not hasattr(self, 'kit_moving_gear_index'):
            self.kit_moving_gear_index = 1

        # Visual notation parameters
        if not hasattr(self, 'petals'):
            self.petals = 5
        if not hasattr(self, 'petal_skip'):
            self.petal_skip = 2
        if not hasattr(self, 'doughnut_hole'):
            self.doughnut_hole = 50.0
        if not hasattr(self, 'doughnut_width'):
            self.doughnut_width = 50.0

        # Shape
        if not hasattr(self, 'shape_index'):
            self.shape_index = 0  # Index in the shapes array
        if not hasattr(self, 'sides'):
            self.sides = 5
        if not hasattr(self, 'morph'):
            self.morph = 0.5
        if not hasattr(self, 'shape_rotation'):
            self.shape_rotation = 0

        if not hasattr(self, 'equal_w_h'):
            self.equal_w_h = False
        if not hasattr(self, 'margin_pixels'):
            self.margin_pixels = 0  # Distance between the drawn shape, and the selection borders.

        # Drawing style
        if not hasattr(self, 'tool_index'):
            self.tool_index = 0   # Index in the tools array.
        if not hasattr(self, 'long_gradient'):
            self.long_gradient = False

        if not hasattr(self, 'save_option'):
            self.save_option = SAVE_AS_NEW_LAYER

    def kit_max_hole_number(self):
        return wheel[self.kit_moving_gear_index][1]


# Handle shelving of plugin parameters

def unshelf_parameters():
    if shelf.has_key("p"):
        parameters = shelf["p"]
        parameters.__init__()  # Fill in missing values with defaults.
        return parameters

    return PatternParameters()


def shelf_parameters(pp):
    shelf["p"] = pp


class ComputedParameters:
    """
    Stores computations performed on a PatternParameters object.
    The results of these computations are used to perform the drawing.
    Having all these computations in one place makes it convenient to pass
    around as a parameter.

    If the pattern parameters should result in multiple pattern to be drawn, the
    compute parameters also stores which one is currently being drawn.
    """

    def __init__(self, pp, img):

        def compute_gradients():
            self.use_gradient = self.pp.long_gradient and tools[self.pp.tool_index].can_color

            # If gradient is used, determine how the lines are two be split to different colors.
            if self.use_gradient:
                # We want to use enough samples to be beautiful, but not too many, that would
                # force us to make many separate calls for drawing the pattern.
                if self.rotations > 30:
                    self.chunk_num = self.rotations
                    self.chunk_size_lines = self.fixed_gear_teeth
                else:
                    # Lets try to find a chunk size, such that it divides num_lines, and we get at least 30 chunks.
                    # In the worse case, we will just use "1"
                    for chunk_size in range(self.fixed_gear_teeth - 1, 0, -1):
                        if self.num_lines % chunk_size == 0:
                            if self.num_lines / chunk_size > 30:
                                break

                    self.chunk_num = self.num_lines / chunk_size
                    self.chunk_size_lines = chunk_size

                self.gradients = get_gradient_samples(self.chunk_num)
            else:
                self.chunk_num, self.chunk_size_lines = None, None

        def compute_sizes():
            # Get rid of the margins.
            self.x1 = x1 + pp.margin_pixels
            self.y1 = y1 + pp.margin_pixels
            self.x2 = x2 - pp.margin_pixels
            self.y2 = y2 - pp.margin_pixels

            # Compute size and position of the pattern
            self.x_half_size, self.y_half_size = (self.x2 - self.x1) / 2, (self.y2 - self.y1) / 2
            self.x_center, self.y_center = (self.x1 + self.x2) / 2.0, (self.y1 + self.y2) / 2.0

            if pp.equal_w_h:
                if self.x_half_size < self.y_half_size:
                    self.y_half_size = self.x_half_size
                    self.y1, self.y2 = self.y_center - self.y_half_size, self.y_center + self.y_half_size
                elif self.x_half_size > self.y_half_size:
                    self.x_half_size = self.y_half_size
                    self.x1, self.x2 = self.x_center - self.x_half_size, self.x_center + self.x_half_size

            # Find the distance between the hole and the center of the inner circle.
            # To do this, we compute the size of the gears, by the number of teeth.
            # The circumference of the outer ring is 2 * pi * outer_R = #fixed_gear_teeth * tooth size.
            outer_R = min(self.x_half_size, self.y_half_size)
            if self.pp.pattern_notation == VISUAL_NOTATION:
                doughnut_width = self.pp.doughnut_width
                if doughnut_width + self.pp.doughnut_hole > 100:
                    doughnut_width = 100.0 - self.pp.doughnut_hole

                # Let R, r be the radius of fixed and moving gear, and let hp be the hole percent.
                # Let dwp, dhp be the doughnut width and hole in percents of R.
                # The two sides of the following equation calculate how to reach the center of the moving
                # gear from the center of the fixed gear:
                #  I)     R * (dhp/100 + dwp/100/2) = R - r
                # The following equation expresses which r and hp would generate a doughnut of width dw.
                #  II)    R * dw/100 = 2 * r * hp/100
                # We solve the two above equations to calculate hp and r:
                self.hole_percent = doughnut_width / (2.0 * (1 - (self.pp.doughnut_hole + doughnut_width/2.0)/100.0))
                self.moving_gear_radius = outer_R * doughnut_width / (2 * self.hole_percent)
            else:
                size_of_tooth_in_pixels = two_pi * outer_R / self.fixed_gear_teeth
                self.moving_gear_radius = size_of_tooth_in_pixels * self.moving_gear_teeth / two_pi

            self.hole_dist_from_center = self.hole_percent / 100.0 * self.moving_gear_radius

        self.pp = pp

        # Check if the shape is made of multiple shapes, as in using Selection as fixed gear.
        if (isinstance(shapes[self.pp.shape_index], SelectionShape) and
            curve_types[self.pp.curve_type].supports_shapes()):
            shapes[self.pp.shape_index].process_selection(img)
            pdb.gimp_displays_flush()
            self.num_drawings = shapes[self.pp.shape_index].get_num_drawings()
        else:
            self.num_drawings = 1
        self.current_drawing = 0

        # Get bounds. We don't care weather a selection exists or not.
        exists, x1, y1, x2, y2 = pdb.gimp_selection_bounds(img)

        # Combine different ways to specify patterns, into a unified set of computed parameters.
        self.num_notation_drawings = 1
        self.current_notation_drawing = 0
        if self.pp.pattern_notation == GEAR_NOTATION:
            self.fixed_gear_teeth = int(round(pp.outer_teeth))
            self.moving_gear_teeth = int(round(pp.inner_teeth))
            self.petals = self.num_petals()
            self.hole_percent = pp.hole_percent
        elif self.pp.pattern_notation == TOY_KIT_NOTATION:
            self.fixed_gear_teeth = ring_teeth[pp.kit_fixed_gear_index]
            self.moving_gear_teeth = wheel[pp.kit_moving_gear_index][0]
            self.petals = self.num_petals()
            # We want to map hole #1 to 100% and hole of max_hole_number to 2.5%
            # We don't want 0% because that would be the exact center of the moving gear,
            # and that would create a boring pattern.
            max_hole_number = wheel[pp.kit_moving_gear_index][1]
            self.hole_percent = (max_hole_number - pp.hole_number) / float(max_hole_number - 1) * 97.5 + 2.5
        elif self.pp.pattern_notation == VISUAL_NOTATION:
            self.petals = pp.petals
            self.fixed_gear_teeth = pp.petals
            self.moving_gear_teeth = pp.petals - pp.petal_skip
            if self.moving_gear_teeth < 20:
                self.fixed_gear_teeth *= 10
                self.moving_gear_teeth *= 10
            self.hole_percent = 100.0
            self.num_notation_drawings = fractions.gcd(pp.petals, pp.petal_skip)
            self.notation_drawings_rotation = two_pi/pp.petals

        # Rotations
        self.shape_rotation_radians = self.radians_from_degrees(pp.shape_rotation)
        self.pattern_rotation_start_radians = self.radians_from_degrees(pp.pattern_rotation)
        self.pattern_rotation_radians = self.pattern_rotation_start_radians
        # Additional fixed pattern rotation for lissajous.
        self.lissajous_rotation = two_pi/self.petals/4.0

        # Compute the total number of teeth we have to go over.
        # Another way to view it is the total of lines we are going to draw.
        # To find this we compute the Least Common Multiplier.
        self.num_lines = lcm(self.fixed_gear_teeth, self.moving_gear_teeth)
        # The number of points we are going to compute. This is the number of lines, plus 1, because to draw
        # a line we need two points.
        self.num_points = self.num_lines + 1

        # Compute gradients.

        # The number or rotations needed in order to complete the pattern.
        # Each rotation has cp.fixed_gear_teeth points + 1 points.
        self.rotations = self.num_lines / self.fixed_gear_teeth

        compute_gradients()

        # Computations needed for the actual drawing of the patterns - how much should we advance each angle
        # in each step of the computation.

        # How many radians is each tooth of outer gear.  This is also the amount that we
        # will step in the iterations that generate the points of the pattern.
        self.oangle_factor = two_pi / self.fixed_gear_teeth
        # How many radians should the moving gear be moved, for each tooth of the fixed gear
        angle_factor = curve_types[pp.curve_type].get_angle_factor(self)
        self.iangle_factor = self.oangle_factor * angle_factor

        compute_sizes()

    def num_petals(self):
        """ The number of 'petals' (or points) that will be produced by a spirograph drawing. """
        return lcm(self.fixed_gear_teeth, self.moving_gear_teeth) / self.moving_gear_teeth

    def radians_from_degrees(self, degrees):
        positive_degrees = degrees if degrees >= 0 else degrees + 360
        return radians(positive_degrees)

    def get_color(self, n):
        return self.gradients[4*n:4*(n+1)]

    def next_drawing(self):
        """ Multiple drawings can be drawn either when the selection is used as a fixed
            gear, and/or the visual tab is used, which causes multiple drawings
            to be drawn at different rotations. """
        if self.current_notation_drawing < self.num_notation_drawings - 1:
            self.current_notation_drawing += 1
            self.pattern_rotation_radians = self.pattern_rotation_start_radians + (
                    self.current_notation_drawing * self.notation_drawings_rotation)
        else:
            self.current_drawing += 1
            self.current_notation_drawing = 0
            self.pattern_rotation_radians = self.pattern_rotation_start_radians

    def has_more_drawings(self):
        return (self.current_notation_drawing < self.num_notation_drawings - 1 or
                self.current_drawing < self.num_drawings - 1)


### Curve types


class CurveType:

    def supports_shapes(self):
        return True

class RouletteCurveType(CurveType):

    def get_strokes(self, p, cp):
        strokes = []
        for curr_tooth in range(cp.num_points):
            iangle = fmod(curr_tooth * cp.iangle_factor + cp.pattern_rotation_radians, two_pi)
            oangle = fmod(curr_tooth * cp.oangle_factor + cp.pattern_rotation_radians, two_pi)

            x, y = shapes[p.shape_index].get_center_of_moving_gear(oangle)
            strokes.append(x + cp.hole_dist_from_center * cos(iangle))
            strokes.append(y + cp.hole_dist_from_center * sin(iangle))

        return strokes


class SpyroCurveType(RouletteCurveType):
    name = _("Spyrograph")

    def get_angle_factor(self, cp):
        return - (cp.fixed_gear_teeth - cp.moving_gear_teeth) / float(cp.moving_gear_teeth)


class EpitrochoidCurvetype(RouletteCurveType):
    name = _("Epitrochoid")

    def get_angle_factor(self, cp):
        return (cp.fixed_gear_teeth + cp.moving_gear_teeth) / float(cp.moving_gear_teeth)


class SineCurveType(CurveType):
    name = _("Sine")

    def get_angle_factor(self, cp):
        return cp.fixed_gear_teeth / float(cp.moving_gear_teeth)

    def get_strokes(self, p, cp):
        strokes = []
        for curr_tooth in range(cp.num_points):
            iangle = curr_tooth * cp.iangle_factor
            oangle = fmod(curr_tooth * cp.oangle_factor + cp.pattern_rotation_radians, two_pi)

            dist = cp.moving_gear_radius + sin(iangle) * cp.hole_dist_from_center
            x, y = shapes[p.shape_index].get_center_of_moving_gear(oangle, dist)
            strokes.append(x)
            strokes.append(y)

        return strokes


class LissaCurveType:
    name = _("Lissajous")

    def get_angle_factor(self, cp):
        return cp.fixed_gear_teeth / float(cp.moving_gear_teeth)

    def get_strokes(self, p, cp):
        strokes = []
        for curr_tooth in range(cp.num_points):
            iangle = curr_tooth * cp.iangle_factor
            # Adding the cp.lissajous_rotation rotation makes the pattern have the same number of curves
            # as the other curve types. Without it, many lissajous patterns would redraw the same lines twice,
            # and thus look less dense than the other curves.
            oangle = fmod(curr_tooth * cp.oangle_factor + cp.pattern_rotation_radians + cp.lissajous_rotation, two_pi)

            strokes.append(cp.x_center + cp.x_half_size * cos(oangle))
            strokes.append(cp.y_center + cp.y_half_size * cos(iangle))

        return strokes

    def supports_shapes(self):
        return False


curve_types = [SpyroCurveType(), EpitrochoidCurvetype(), SineCurveType(), LissaCurveType()]

# Drawing engine. Also implements drawing incrementally.
# We don't draw the entire stroke, because it could take several seconds,
# Instead, we break it into chunks.  Incremental drawing is also used for drawing gradients.
class DrawingEngine:

    def __init__(self, img, p):
        self.img, self.p = img, p
        self.cp = None

        # For incremental drawing
        self.strokes = []
        self.start = 0
        self.chunk_size_lines = 600
        self.chunk_no = 0
        # We are aiming for the drawing time of a chunk to be no longer than max_time.
        self.max_time_sec = 0.1

        self.dynamic_chunk_size = True

    def pre_draw(self):
        """ Needs to be called before starting to draw a pattern. """

        self.cp = ComputedParameters(self.p, self.img)

    def draw_full(self, layer):
        """ Non incremental drawing. """

        self.pre_draw()
        self.img.undo_group_start()

        while true:
            self.set_strokes()

            if self.cp.use_gradient:
                while self.has_more_strokes():
                    self.draw_next_chunk(layer, fetch_next_drawing=False)
            else:
                tools[self.p.tool_index].draw(layer, self.strokes)

            if self.cp.has_more_drawings():
                self.cp.next_drawing()
            else:
                break

        self.img.undo_group_end()

        pdb.gimp_displays_flush()

    # Methods for incremental drawing.

    def draw_next_chunk(self, layer, fetch_next_drawing=True, tool=None):
        stroke_chunk, color = self.next_chunk(fetch_next_drawing)
        if not tool:
            tool = tools[self.p.tool_index]
        tool.draw(layer, stroke_chunk, color)
        return len(stroke_chunk)

    def set_strokes(self):
        """ Compute the strokes of the current pattern. The heart of the plugin. """

        shapes[self.p.shape_index].configure(self.img, self.p, self.cp)

        self.strokes = curve_types[self.p.curve_type].get_strokes(self.p, self.cp)

        self.start = 0
        self.chunk_no = 0

        if self.cp.use_gradient:
            self.chunk_size_lines = self.cp.chunk_size_lines
            self.dynamic_chunk_size = False
        else:
            self.dynamic_chunk_size = True

    def reset_incremental(self):
        """ Setup incremental drawing to start drawing from scratch. """
        self.pre_draw()
        self.set_strokes()

    def next_chunk(self, fetch_next_drawing):

        # chunk_size_lines, is the number of lines we want to draw. We need 1 extra point to draw that.
        end = self.start + (self.chunk_size_lines + 1) * 2
        if end > len(self.strokes):
            end = len(self.strokes)
        result = self.strokes[self.start:end]
        # Promote the start to the last point. This is the start of the first line to draw next time.
        self.start = end - 2
        color = self.cp.get_color(self.chunk_no) if self.cp.use_gradient else None

        self.chunk_no += 1

        # If self.strokes has ended, lets fetch strokes for the next drawing.
        if fetch_next_drawing and not self.has_more_strokes():
            if self.cp.has_more_drawings():
                self.cp.next_drawing()
                self.set_strokes()

        return result, color

    def has_more_strokes(self):
        return self.start + 2 < len(self.strokes)

    # Used for displaying progress.
    def fraction_done(self):
        return (self.start + 2.0) / len(self.strokes)

    def report_time(self, time_sec):
        """
        Report the time it took, in seconds, to draw the last stroke chunk.
        This helps to determine the size of chunks to return in future calls of 'next_chunk',
        since we want the calls to be short, to not make the user interface feel stuck.
        """
        if time_sec != 0 and self.dynamic_chunk_size:
            self.chunk_size_lines = int(self.chunk_size_lines * self.max_time_sec / time_sec)
            # Don't let chunk size be too large or small.
            self.chunk_size_lines = max(10, self.chunk_size_lines)
            self.chunk_size_lines = min(1000, self.chunk_size_lines)


# Constants for DoughnutWidget

# Enum - When the mouse is pressed, which target value is being changed.
TARGET_NONE, TARGET_HOLE, TARGET_WIDTH = range(3)

CIRCLE_CENTER_X = 4
RIGHT_MARGIN = 2
TOTAL_MARGIN = CIRCLE_CENTER_X + RIGHT_MARGIN

# A widget for displaying and setting the pattern of a spirograph, using a "doughnut" as
# a visual metaphore.  This widget replaces two scale widgets.
class DoughnutWidget(gtk.DrawingArea):
    __gtype_name__ = 'DoughnutWidget'

    def __init__(self, *args, **kwds):
        super(DoughnutWidget, self).__init__(*args, **kwds)
        self.set_size_request(80, 40)

        self.add_events(
            gdk.BUTTON1_MOTION_MASK |
            gdk.BUTTON_PRESS_MASK |
            gdk.BUTTON_RELEASE_MASK |
            gdk.POINTER_MOTION_MASK
        )

        self.default_cursor = self.get_screen().get_root_window().get_cursor()
        self.resize_cursor = gdk.Cursor(gdk.SB_H_DOUBLE_ARROW)

        self.button_pressed = False
        self.target = TARGET_NONE

        self.hole_radius = 30
        self.doughnut_width = 30
        self.connect("expose-event", self.expose)

    def set_hole_radius(self, hole_radius):
        self.queue_draw()
        self.hole_radius = hole_radius

    def get_hole_radius(self):
        return self.hole_radius

    def set_width(self, width):
        self.queue_draw()
        self.doughnut_width = width

    def get_width(self):
        return self.doughnut_width

    def compute_doughnut(self):
        """ Compute the location of the doughnut circles.
            Returns (circle center x, circle center y, radius of inner circle, radius of outer circle) """
        allocation = self.get_allocation()
        alloc_width = allocation.width - TOTAL_MARGIN
        return (
            CIRCLE_CENTER_X, allocation.height / 2,
            alloc_width * self.hole_radius / 100.0,
            alloc_width * min(self.hole_radius + self.doughnut_width, 100.0) / 100.0
        )

    def set_cursor_h_resize(self):
        """Set the mouse to be a double arrow."""
        gdk_window = self.get_window()
        gdk_window.set_cursor(self.resize_cursor)

    def set_default_cursor(self):
        gdk_window = self.get_window()
        gdk_window.set_cursor(self.default_cursor)

    def get_target(self, x, y):
        # Find out if x, y is over one of the circle edges.

        center_x, center_y, hole_radius, outer_radius = self.compute_doughnut()

        # Compute distance from circle center to point
        dist = sqrt((center_x - x) ** 2 + (center_y - y) ** 2)

        if abs(dist - hole_radius) <= 3:
            return TARGET_HOLE
        if abs(dist - outer_radius) <= 3:
            return TARGET_WIDTH

        return TARGET_NONE

    def expose(self, widget, event):

        cr = widget.window.cairo_create()
        center_x, center_y, hole_radius, outer_radius = self.compute_doughnut()
        fg_color = gtk.widget_get_default_style().fg[gtk.STATE_NORMAL]

        # Draw doughnut interior
        arc = pi * 3 / 2.0
        cr.set_source_rgba(fg_color.red, fg_color.green, fg_color.blue, 0.5)
        cr.arc(center_x, center_y, hole_radius, -arc, arc)
        cr.arc_negative(center_x, center_y, outer_radius, arc, -arc)
        cr.close_path()
        cr.fill()

        # Draw doughnut border.
        cr.set_source_rgb(fg_color.red, fg_color.green, fg_color.blue)
        cr.set_line_width(3)
        cr.arc_negative(center_x, center_y, outer_radius, arc, -arc)
        cr.stroke()
        if hole_radius < 1.0:
            # If the radius is too small, nothing will be drawn, so draw a small cross marker instead.
            cr.set_line_width(2)
            cr.move_to(center_x - 4, center_y)
            cr.line_to(center_x + 4, center_y)
            cr.move_to(center_x, center_y - 4)
            cr.line_to(center_x, center_y + 4)
        else:
            cr.arc(center_x, center_y, hole_radius, -arc, arc)
        cr.stroke()

    def compute_new_radius(self, x):
        """ This method is called during mouse dragging of the widget.
            Compute the new radius based on the current x location of the mouse pointer. """
        allocation = self.get_allocation()

        # How much does a single pixel difference in x, change the radius?
        # Note that: allocation.width - TOTAL_MARGIN = 100 radius units,
        radius_per_pixel = 100.0 / (allocation.width - TOTAL_MARGIN)
        new_radius = self.start_radius + (x - self.start_x) * radius_per_pixel

        if self.target == TARGET_HOLE:
            self.hole_radius = max(min(new_radius, 99.0), 0.0)
        else:
            self.doughnut_width = max(min(new_radius, 100.0), 1.0)

        self.queue_draw()

    def do_button_press_event(self, event):
        self.button_pressed = True

        # If we clicked on one of the doughnut borders, remember which
        # border we clicked on, and setup variable to start dragging it.
        target = self.get_target(event.x, event.y)
        if target == TARGET_HOLE or target == TARGET_WIDTH:
            self.target = target
            self.start_x = event.x
            self.start_radius = (
                self.hole_radius if target == TARGET_HOLE else
                self.doughnut_width
            )

    def do_button_release_event(self, event):
        # If one the doughnut borders was being dragged, recompute the doughnut size.
        if self.target != TARGET_NONE:
            self.compute_new_radius(event.x)
            # Clip the width, if it is too large to fit.
            if self.hole_radius + self.doughnut_width > 100:
                self.doughnut_width = 100 - self.hole_radius
            self.emit("values_changed", self.hole_radius, self.doughnut_width)

        self.button_pressed = False
        self.target = TARGET_NONE

    def do_motion_notify_event(self, event):
        if self.button_pressed:
            # We are dragging one of the doughnut borders; recompute its size.
            if self.target != TARGET_NONE:
                self.compute_new_radius(event.x)
        else:
            # Set cursor according to whether we are over one of the
            # doughnut borders.
            target = self.get_target(event.x, event.y)
            if target == TARGET_NONE:
                self.set_default_cursor()
            else:
                self.set_cursor_h_resize()


# Create signal that returns change parameters.
gobject.type_register(DoughnutWidget)
gobject.signal_new("values_changed", DoughnutWidget, gobject.SIGNAL_RUN_LAST,
                   gobject.TYPE_NONE, (gobject.TYPE_INT, gobject.TYPE_INT))


class SpyroWindow(gtk.Window):

    # Define signal to catch escape key.
    __gsignals__ = dict(
        myescape=(gobject.SIGNAL_RUN_LAST | gobject.SIGNAL_ACTION,
                  None,  # return type
                  (str,))  # arguments
    )

    class MyScale():
        """ Combintation of scale and spin that control the same adjuster. """
        def __init__(self, scale, spin):
            self.scale, self.spin = scale, spin

        def set_sensitive(self, val):
            self.scale.set_sensitive(val)
            self.spin.set_sensitive(val)

    def __init__(self, img, layer):

        def add_horizontal_separator(vbox):
            hsep = gtk.HSeparator()
            vbox.add(hsep)
            hsep.show()

        def add_vertical_space(vbox, height):
            hbox = gtk.HBox()
            hbox.set_border_width(height/2)
            vbox.add(hbox)
            hbox.show()

        def add_to_box(box, w):
            box.add(w)
            w.show()

        def create_table(rows, columns, border_width):
            table = gtk.Table(rows=rows, columns=columns, homogeneous=False)
            table.set_border_width(border_width)
            table.set_col_spacings(10)
            table.set_row_spacings(10)
            return table

        def label_in_table(label_text, table, row, tooltip_text=None, col=0, col_add=1):
            """ Create a label and set it in first col of table. """
            label = gtk.Label(label_text)
            label.set_alignment(xalign=0.0, yalign=1.0)
            if tooltip_text:
                label.set_tooltip_text(tooltip_text)
            table.attach(label, col, col + col_add, row, row + 1, xoptions=gtk.FILL, yoptions=0)
            label.show()

        def spin_in_table(adj, table, row, callback, digits=0, col=0):
            spin = gtk.SpinButton(adj, climb_rate=0.5, digits=digits)
            spin.set_numeric(True)
            spin.set_snap_to_ticks(True)
            spin.set_max_length(5)
            spin.set_width_chars(5)
            table.attach(spin, col, col + 1, row, row + 1, xoptions=0, yoptions=0)
            spin.show()
            adj.connect("value_changed", callback)
            return spin

        def hscale_in_table(adj, table, row, callback, digits=0, col=1, cols=1):
            """ Create an hscale and a spinner using the same Adjustment, and set it in table. """
            scale = gtk.HScale(adj)
            scale.set_size_request(150, -1)
            scale.set_digits(digits)
            scale.set_update_policy(gtk.UPDATE_DISCONTINUOUS)
            table.attach(scale, col, col + cols, row, row + 1, xoptions=gtk.EXPAND|gtk.FILL, yoptions=0)
            scale.show()

            spin = gtk.SpinButton(adj, climb_rate=0.5, digits=digits)
            spin.set_numeric(True)
            spin.set_snap_to_ticks(True)
            spin.set_max_length(5)
            spin.set_width_chars(5)
            table.attach(spin, col + cols , col + cols + 1, row, row + 1, xoptions=0, yoptions=0)
            spin.show()

            adj.connect("value_changed", callback)

            return self.MyScale(scale, spin)

        def rotation_in_table(val, table, row, callback):
            adj = gtk.Adjustment(val, -180.0, 180.0, 1.0)
            myscale = hscale_in_table(adj, table, row, callback, digits=1)
            myscale.scale.add_mark(0.0, gtk.POS_BOTTOM, None)
            myscale.spin.set_max_length(6)
            myscale.spin.set_width_chars(6)
            return adj, myscale

        def set_combo_in_table(txt_list, table, row, callback):
            combo = gtk.combo_box_new_text()
            for txt in txt_list:
                combo.append_text(txt)
            table.attach(combo, 1, 2, row, row + 1, xoptions=gtk.FILL, yoptions=0)
            combo.show()
            combo.connect("changed", callback)
            return combo

        # Return table which is at the top of the dialog, and has several major input widgets.
        def top_table():

            # Add table for displaying attributes, each having a label and an input widget.
            table = create_table(2, 3, 10)

            # Curve type
            row = 0
            label_in_table(_("Curve Type"), table, row,
                           _("An Epitrochoid pattern is when the moving gear is on the outside of the fixed gear."))
            self.curve_type_combo = set_combo_in_table([ct.name for ct in curve_types], table, row,
                                                       self.curve_type_changed)

            row += 1
            label_in_table(_("Tool"), table, row,
                           _("The tool with which to draw the pattern. "
                             "The Preview tool just draws quickly."))
            self.tool_combo = set_combo_in_table([tool.name for tool in tools], table, row,
                                                 self.tool_combo_changed)

            self.long_gradient_checkbox = gtk.CheckButton(_("Long Gradient"))
            self.long_gradient_checkbox.set_tooltip_text(
                _("When unchecked, the current tool settings will be used. "
                  "When checked, will use a long gradient to match the length of the pattern, "
                  "based on current gradient and repeat mode from the gradient tool settings.")
            )
            self.long_gradient_checkbox.set_border_width(0)
            table.attach(self.long_gradient_checkbox, 2, 3, row, row + 1, xoptions=0, yoptions=0)
            self.long_gradient_checkbox.show()
            self.long_gradient_checkbox.connect("toggled", self.long_gradient_changed)

            return table

        def pattern_notation_frame():

            vbox = gtk.VBox(spacing=0, homogeneous=False)

            add_vertical_space(vbox, 14)

            hbox = gtk.HBox(spacing=5)
            hbox.set_border_width(5)

            label = gtk.Label(_("Specify pattern using one of the following tabs:"))
            label.set_tooltip_text(_(
                "The pattern is specified only by the active tab. Toy Kit is similar to Gears, "
                "but it uses gears and hole numbers which are found in toy kits. "
                "If you follow the instructions from the toy kit manuals, results should be similar."))
            hbox.pack_start(label)
            label.show()

            alignment = gtk.Alignment(xalign=0.0, yalign=0.0, xscale=0.0, yscale=0.0)
            alignment.add(hbox)
            hbox.show()
            vbox.add(alignment)
            alignment.show()

            self.pattern_notebook = gtk.Notebook()
            self.pattern_notebook.set_border_width(0)
            self.pattern_notebook.connect('switch-page', self.pattern_notation_tab_changed)

            # "Gear" pattern notation.

            # Add table for displaying attributes, each having a label and an input widget.
            gear_table = create_table(3, 3, 5)

            # Teeth
            row = 0
            fixed_gear_tooltip = _(
                "Number of teeth of fixed gear. The size of the fixed gear is "
                "proportional to the number of teeth."
            )
            label_in_table(_("Fixed Gear Teeth"), gear_table, row, fixed_gear_tooltip)
            self.outer_teeth_adj = gtk.Adjustment(self.p.outer_teeth, 10, 180, 1)
            hscale_in_table(self.outer_teeth_adj, gear_table, row, self.outer_teeth_changed)

            row += 1
            moving_gear_tooltip = _(
                "Number of teeth of moving gear. The size of the moving gear is "
                "proportional to the number of teeth."
            )
            label_in_table(_("Moving Gear Teeth"), gear_table, row, moving_gear_tooltip)
            self.inner_teeth_adj = gtk.Adjustment(self.p.inner_teeth, 2, 100, 1)
            hscale_in_table(self.inner_teeth_adj, gear_table, row, self.inner_teeth_changed)

            row += 1
            label_in_table(_("Hole percent"), gear_table, row,
                           _("How far is the hole from the center of the moving gear. "
                             "100% means that the hole is at the gear's edge."))
            self.hole_percent_adj = gtk.Adjustment(self.p.hole_percent, 2.5, 100.0, 0.5)
            self.hole_percent_myscale = hscale_in_table(self.hole_percent_adj, gear_table,
                                                        row, self.hole_percent_changed, digits=1)

            # "Kit" pattern notation.

            kit_table = create_table(3, 3, 5)

            row = 0
            label_in_table(_("Fixed Gear Teeth"), kit_table, row, fixed_gear_tooltip)
            self.kit_outer_teeth_combo = set_combo_in_table([str(t) for t in ring_teeth], kit_table, row,
                                                            self.kit_outer_teeth_combo_changed)

            row += 1
            label_in_table(_("Moving Gear Teeth"), kit_table, row, moving_gear_tooltip)
            self.kit_inner_teeth_combo = set_combo_in_table([str(t) for t in wheel_teeth], kit_table, row,
                                                            self.kit_inner_teeth_combo_changed)

            row += 1
            label_in_table(_("Hole Number"), kit_table, row,
                           _("Hole #1 is at the edge of the gear. "
                             "The maximum hole number is near the center. "
                             "The maximum hole number is different for each gear."))
            self.kit_hole_adj = gtk.Adjustment(self.p.hole_number, 1, self.p.kit_max_hole_number(), 1)
            self.kit_hole_myscale = hscale_in_table(self.kit_hole_adj, kit_table, row, self.kit_hole_changed)

            # "Visual" pattern notation.

            visual_table = create_table(3, 5, 5)

            row = 0
            label_in_table(_("Flower Petals"), visual_table, row, _("The number of petals in the pattern."))
            self.petals_adj = gtk.Adjustment(self.p.petals, 2, 100, 1)
            hscale_in_table(self.petals_adj, visual_table, row, self.petals_changed, cols=3)

            row += 1
            label_in_table(_("Petal Skip"), visual_table, row,
                           _("The number of petals to advance for drawing the next petal."))
            self.petal_skip_adj = gtk.Adjustment(self.p.petal_skip, 1, 50, 1)
            hscale_in_table(self.petal_skip_adj, visual_table, row, self.petal_skip_changed, cols=3)

            row += 1
            label_in_table(_("Hole Radius(%)"), visual_table, row,
                           _("The radius of the hole in the center of the pattern "
                             "where nothing will be drawn. Given as a percentage of the "
                             "size of the pattern. A value of 0 will produce no hole. "
                             "A Value of 99 will produce a thin line on the edge."))
            self.doughnut_hole_adj = gtk.Adjustment(self.p.doughnut_hole, 0.0, 99.0, 0.1)
            self.doughnut_hole_myscale = spin_in_table(self.doughnut_hole_adj,
                                                       visual_table, row, self.doughnut_hole_changed, 1, 1)

            self.doughnut = DoughnutWidget()
            visual_table.attach(self.doughnut, 2, 3, row, row+1, xoptions=gtk.EXPAND|gtk.FILL, yoptions=0)
            self.doughnut.connect('values_changed', self.doughnut_changed)
            self.doughnut.show()

            label_in_table(_("Width(%)"), visual_table, row,
                           _("The width of the pattern as a percentage of the "
                             "size of the pattern. A Value of 1 will just draw a thin pattern. "
                             "A Value of 100 will fill the entire fixed gear."), 3)
            self.doughnut_width_adj = gtk.Adjustment(self.p.doughnut_width, 1.0, 100.0, 0.1)
            self.doughnut_width_myscale = spin_in_table(self.doughnut_width_adj,
                                                        visual_table, row, self.doughnut_width_changed, 1, 4)

            # Add tables as children of the pattern notebook

            pattern_notation_page[VISUAL_NOTATION] = self.pattern_notebook.append_page(visual_table)
            self.pattern_notebook.set_tab_label_text(visual_table, _("Visual"))
            self.pattern_notebook.set_tab_label_packing(visual_table, 0, 0, gtk.PACK_END)
            visual_table.show()

            pattern_notation_page[TOY_KIT_NOTATION] = self.pattern_notebook.append_page(kit_table)
            self.pattern_notebook.set_tab_label_text(kit_table, _("Toy Kit"))
            self.pattern_notebook.set_tab_label_packing(kit_table, 0, 0, gtk.PACK_END)
            kit_table.show()

            pattern_notation_page[GEAR_NOTATION] = self.pattern_notebook.append_page(gear_table)
            self.pattern_notebook.set_tab_label_text(gear_table, _("Gears"))
            self.pattern_notebook.set_tab_label_packing(gear_table, 0, 0, gtk.PACK_END)
            gear_table.show()

            add_to_box(vbox, self.pattern_notebook)

            add_vertical_space(vbox, 14)

            hbox = gtk.HBox(spacing=5)
            pattern_table = create_table(1, 3, 5)

            row = 0
            label_in_table(_("Rotation"), pattern_table, row,
                           _("Rotation of the pattern, in degrees. "
                             "The starting position of the moving gear in the fixed gear."))
            self.pattern_rotation_adj, myscale = rotation_in_table(
                self.p.pattern_rotation, pattern_table, row, self.pattern_rotation_changed
            )

            hbox.pack_end(pattern_table, expand=True, fill=True, padding=0)
            pattern_table.show()

            vbox.add(hbox)
            hbox.show()

            return vbox

        def fixed_gear_page():

            vbox = gtk.VBox(spacing=0, homogeneous=False)

            add_vertical_space(vbox, 14)

            table = create_table(4, 2, 10)

            row = 0
            label_in_table(_("Shape"), table, row,
                           _("The shape of the fixed gear to be used inside current selection. "
                             "Rack is a long round-edged shape provided in the toy kits. "
                             "Frame hugs the boundaries of the rectangular selection, "
                             "use hole=100 in Gear notation to touch boundary. "
                             "Selection will hug boundaries of current selection - try something non-rectangular."))
            self.shape_combo = set_combo_in_table([shape.name for shape in shapes], table, row,
                                                  self.shape_combo_changed)

            row += 1
            label_in_table(_("Sides"), table, row, _("Number of sides of the shape."))
            self.sides_adj = gtk.Adjustment(self.p.sides, 3, 16, 1)
            self.sides_myscale = hscale_in_table(self.sides_adj, table, row, self.sides_changed)

            row += 1
            label_in_table(_("Morph"), table, row, _("Morph fixed gear shape. Only affects some of the shapes."))
            self.morph_adj = gtk.Adjustment(self.p.morph, 0.0, 1.0, 0.01)
            self.morph_myscale = hscale_in_table(self.morph_adj, table, row, self.morph_changed, digits=2)

            row += 1
            label_in_table(_("Rotation"), table, row, _("Rotation of the fixed gear, in degrees"))
            self.shape_rotation_adj, self.shape_rotation_myscale = rotation_in_table(
                self.p.shape_rotation, table, row, self.shape_rotation_changed
            )

            add_to_box(vbox, table)
            return vbox

        def size_page():

            vbox = gtk.VBox(spacing=0, homogeneous=False)
            add_vertical_space(vbox, 14)
            table = create_table(2, 2, 10)

            row = 0
            label_in_table(_("Margin (px)"), table, row, _("Margin from edge of selection."))
            self.margin_adj = gtk.Adjustment(self.p.margin_pixels, 0, max(img.height, img.width), 1)
            hscale_in_table(self.margin_adj, table, row, self.margin_changed)

            row += 1
            self.equal_w_h_checkbox = gtk.CheckButton(_("Make width and height equal"))
            self.equal_w_h_checkbox.set_tooltip_text(
                _("When unchecked, the pattern will fill the current image or selection. "
                  "When checked, the pattern will have same width and height, and will be centered.")
            )
            self.equal_w_h_checkbox.set_border_width(15)
            table.attach(self.equal_w_h_checkbox, 0, 2, row, row + 1)
            self.equal_w_h_checkbox.show()
            self.equal_w_h_checkbox.connect("toggled", self.equal_w_h_checkbox_changed)


            add_to_box(vbox, table)
            return vbox

        def add_button_to_box(box, text, callback, tooltip_text=None):
            btn = gtk.Button(text)
            if tooltip_text:
                btn.set_tooltip_text(tooltip_text)
            box.add(btn)
            btn.show()
            btn.connect("clicked", callback)
            return btn

        def dialog_button_box():
            hbox = gtk.HBox(homogeneous=True, spacing=20)

            add_button_to_box(hbox, _("Re_draw"), self.redraw,
                              _("If you change the settings of a tool, change color, or change the selection, "
                                "press this to preview how the pattern looks."))
            add_button_to_box(hbox, _("_Reset"), self.reset_params)
            add_button_to_box(hbox, _("_Cancel"), self.cancel_window)
            self.ok_btn = add_button_to_box(hbox, _("_OK"), self.ok_window)

            self.save_option_combo = gtk.combo_box_new_text()
            for txt in save_options:
                self.save_option_combo.append_text(txt)
            self.save_option_combo.set_tooltip_text(
                _("Choose whether to save as new layer, redraw on last active layer, or save to path")
            )
            hbox.add(self.save_option_combo)
            self.save_option_combo.show()
            self.save_option_combo.connect("changed", self.save_option_changed)

            return hbox

        def create_ui():

            # Create the dialog
            gtk.Window.__init__(self)
            self.set_title(_("Spyrogimp"))
            self.set_default_size(350, -1)
            self.set_border_width(10)
            # self.set_keep_above(True) # keep the window on top

            # Vertical box in which we will add all the UI elements.
            vbox = gtk.VBox(spacing=10, homogeneous=False)
            self.add(vbox)

            box = gimpui.HintBox(_("Draw spyrographs using current tool settings and selection."))
            vbox.pack_start(box, expand=False)
            box.show()

            add_horizontal_separator(vbox)

            add_to_box(vbox, top_table())

            self.main_notebook = gtk.Notebook()
            self.main_notebook.set_show_tabs(True)
            self.main_notebook.set_border_width(5)

            pattern_frame = pattern_notation_frame()
            self.main_notebook.append_page(pattern_frame, gtk.Label(_("Curve Pattern")))
            pattern_frame.show()
            fixed_g_page = fixed_gear_page()
            self.main_notebook.append_page(fixed_g_page, gtk.Label(_("Fixed Gear")))
            fixed_g_page.show()
            size_p = size_page()
            self.main_notebook.append_page(size_p, gtk.Label(_("Size")))
            size_p.show()

            vbox.add(self.main_notebook)
            self.main_notebook.show()

            add_horizontal_separator(vbox)

            self.progress_bar = gtk.ProgressBar()   # gimpui.ProgressBar() - causes gimppdbprogress error message.
            self.progress_bar.set_size_request(-1, 30)
            vbox.add(self.progress_bar)
            self.progress_bar.show()

            add_to_box(vbox, dialog_button_box())

            vbox.show()
            self.show()

        self.enable_incremental_drawing = False

        self.img = img
        # Remember active layer, so we can restore it when the plugin is done.
        self.active_layer = layer

        self.p = unshelf_parameters()  # Model

        self.engine = DrawingEngine(img, self.p)

        # Make a new GIMP layer to draw on
        self.spyro_layer = gimp.Layer(img, layer_name, img.width, img.height,
                                      layer.type_with_alpha, 100, NORMAL_MODE)
        img.add_layer(self.spyro_layer, 0)

        self.drawing_layer = self.spyro_layer

        gimpui.gimp_ui_init()
        create_ui()
        self.update_view()

        # Obey the window manager quit signal
        self.connect("destroy", self.cancel_window)
        # Connect Escape key to quit the window as well.
        self.connect('myescape', self.cancel_window)

        # Setup for Handling incremental/interactive drawing of pattern
        self.idle_task = None
        self.enable_incremental_drawing = True

        # Draw pattern of the current settings.
        self.start_new_incremental_drawing()

    # Callbacks for closing the plugin

    def clear_idle_task(self):
        if self.idle_task:
            gobject.source_remove(self.idle_task)
            # Close the undo group in the likely case the idle task left it open.
            self.img.undo_group_end()
            self.idle_task = None

    def ok_window(self, widget):
        """ Called when clicking on the 'close' button. """

        self.ok_btn.set_sensitive(False)

        shelf_parameters(self.p)

        if self.p.save_option == SAVE_AS_NEW_LAYER:
            if self.spyro_layer in self.img.layers:
                self.img.active_layer = self.spyro_layer

            # If we are in the middle of incremental draw, we want to complete it, and only then to exit.
            # However, in order to complete it, we need to create another idle task.
            if self.idle_task:
                def quit_dialog_on_completion():
                    while self.idle_task:
                        yield True

                    gtk.main_quit()  # This will quit the dialog.
                    yield False

                task = quit_dialog_on_completion()
                gobject.idle_add(task.next)
            else:
                gtk.main_quit()
        else:
            # If there is an incremental drawing taking place, lets stop it.
            self.clear_idle_task()

            if self.spyro_layer in self.img.layers:
                self.img.remove_layer(self.spyro_layer)
                self.img.active_layer = self.active_layer

            self.drawing_layer = self.active_layer

            def draw_full(tool):
                self.progress_start()
                yield True

                self.engine.reset_incremental()

                self.img.undo_group_start()

                while self.engine.has_more_strokes():
                    yield True
                    self.draw_next_chunk(tool=tool)

                self.img.undo_group_end()

                pdb.gimp_displays_flush()

                gtk.main_quit()
                yield False

            tool = SaveToPathTool(self.img) if self.p.save_option == SAVE_AS_PATH else None
            task = draw_full(tool)
            gobject.idle_add(task.next)

    def cancel_window(self, widget, what=None):
        self.clear_idle_task()

        # We want to delete the temporary layer, but as a precaution, lets ask first,
        # maybe it was already deleted by the user.
        if self.spyro_layer in self.img.layers:
            self.img.remove_layer(self.spyro_layer)
            pdb.gimp_displays_flush()
        gtk.main_quit()

    def update_view(self):
        """ Update the UI to reflect the values in the Pattern Parameters. """
        self.curve_type_combo.set_active(self.p.curve_type)
        self.curve_type_side_effects()

        self.pattern_notebook.set_current_page(pattern_notation_page[self.p.pattern_notation])

        self.outer_teeth_adj.set_value(self.p.outer_teeth)
        self.inner_teeth_adj.set_value(self.p.inner_teeth)
        self.hole_percent_adj.set_value(self.p.hole_percent)
        self.pattern_rotation_adj.set_value(self.p.pattern_rotation)

        self.kit_outer_teeth_combo.set_active(self.p.kit_fixed_gear_index)
        self.kit_inner_teeth_combo.set_active(self.p.kit_moving_gear_index)
        self.kit_hole_adj.set_value(self.p.hole_number)
        self.kit_inner_teeth_combo_side_effects()

        self.petals_adj.set_value(self.p.petals)
        self.petal_skip_adj.set_value(self.p.petal_skip)
        self.doughnut_hole_adj.set_value(self.p.doughnut_hole)
        self.doughnut.set_hole_radius(self.p.doughnut_hole)
        self.doughnut_width_adj.set_value(self.p.doughnut_width)
        self.doughnut.set_width(self.p.doughnut_width)
        self.petals_changed_side_effects()

        self.shape_combo.set_active(self.p.shape_index)
        self.shape_combo_side_effects()
        self.sides_adj.set_value(self.p.sides)
        self.morph_adj.set_value(self.p.morph)
        self.equal_w_h_checkbox.set_active(self.p.equal_w_h)
        self.shape_rotation_adj.set_value(self.p.shape_rotation)

        self.margin_adj.set_value(self.p.margin_pixels)
        self.tool_combo.set_active(self.p.tool_index)
        self.long_gradient_checkbox.set_active(self.p.long_gradient)
        self.save_option_combo.set_active(self.p.save_option)

    def reset_params(self, widget):
        self.engine.p = self.p = PatternParameters()
        self.update_view()

    # Callbacks to handle changes in dialog parameters.

    def curve_type_side_effects(self):
        if curve_types[self.p.curve_type].supports_shapes():
            self.shape_combo.set_sensitive(True)

            self.sides_myscale.set_sensitive(shapes[self.p.shape_index].has_sides())
            self.morph_myscale.set_sensitive(shapes[self.p.shape_index].can_morph())
            self.shape_rotation_myscale.set_sensitive(shapes[self.p.shape_index].can_rotate())

            self.hole_percent_myscale.set_sensitive(True)
            self.kit_hole_myscale.set_sensitive(True)

            self.doughnut_hole_myscale.set_sensitive(True)
            self.doughnut_width_myscale.set_sensitive(True)
        else:
            # Lissajous curves do not have shapes, or holes for moving gear
            self.shape_combo.set_sensitive(False)

            self.sides_myscale.set_sensitive(False)
            self.morph_myscale.set_sensitive(False)
            self.shape_rotation_myscale.set_sensitive(False)

            self.hole_percent_myscale.set_sensitive(False)
            self.kit_hole_myscale.set_sensitive(False)

            self.doughnut_hole_myscale.set_sensitive(False)
            self.doughnut_width_myscale.set_sensitive(False)

    def curve_type_changed(self, val):
        self.p.curve_type = val.get_active()
        self.curve_type_side_effects()
        self.redraw()

    def pattern_notation_tab_changed(self, notebook, page, page_num, user_param1=None):
        if self.enable_incremental_drawing:
            for notation in pattern_notation_page:
                if pattern_notation_page[notation] == page_num:
                    self.p.pattern_notation = notation

            self.redraw()

    # Callbacks: pattern changes using the Toy Kit notation.

    def kit_outer_teeth_combo_changed(self, val):
        self.p.kit_fixed_gear_index = val.get_active()
        self.redraw()

    def kit_inner_teeth_combo_side_effects(self):
        # Change the max hole number according to the newly activated wheel.
        # We might also need to update the hole value, if it is larger than the new max.
        max_hole_number = self.p.kit_max_hole_number()
        if self.p.hole_number > max_hole_number:
            self.p.hole_number = max_hole_number
            self.kit_hole_adj.set_value(max_hole_number)
        self.kit_hole_adj.set_upper(max_hole_number)

    def kit_inner_teeth_combo_changed(self, val):
        self.p.kit_moving_gear_index = val.get_active()
        self.kit_inner_teeth_combo_side_effects()
        self.redraw()

    def kit_hole_changed(self, val):
        self.p.hole_number = val.value
        self.redraw()

    # Callbacks: pattern changes using the Gears notation.

    def outer_teeth_changed(self, val):
        self.p.outer_teeth = val.value
        self.redraw()

    def inner_teeth_changed(self, val):
        self.p.inner_teeth = val.value
        self.redraw()

    def hole_percent_changed(self, val):
        self.p.hole_percent = val.value
        self.redraw()

    def pattern_rotation_changed(self, val):
        self.p.pattern_rotation = val.value
        self.redraw()

    # Callbacks: pattern changes using the Visual notation.

    def petals_changed_side_effects(self):
        max_petal_skip = int(self.p.petals/2)
        if self.p.petal_skip > max_petal_skip:
            self.p.petal_skip = max_petal_skip
            self.petal_skip_adj.set_value(max_petal_skip)
        self.petal_skip_adj.set_upper(max_petal_skip)

    def petals_changed(self, val):
        self.p.petals = int(val.value)
        self.petals_changed_side_effects()
        self.redraw()

    def petal_skip_changed(self, val):
        self.p.petal_skip = int(val.value)
        self.redraw()

    def doughnut_hole_changed(self, val):
        self.p.doughnut_hole = val.value
        self.doughnut.set_hole_radius(val.value)
        self.redraw()

    def doughnut_width_changed(self, val):
        self.p.doughnut_width = val.value
        self.doughnut.set_width(val.value)
        self.redraw()

    def doughnut_changed(self, widget, hole, width):
        self.doughnut_hole_adj.set_value(hole)
        self.doughnut_width_adj.set_value(width)
        # We don't need to redraw, because the callbacks of the doughnut hole and
        # width spinners will be triggered by the above lines.

    # Callbacks: Fixed gear

    def shape_combo_side_effects(self):
        self.sides_myscale.set_sensitive(shapes[self.p.shape_index].has_sides())
        self.morph_myscale.set_sensitive(shapes[self.p.shape_index].can_morph())
        self.shape_rotation_myscale.set_sensitive(shapes[self.p.shape_index].can_rotate())
        self.equal_w_h_checkbox.set_sensitive(shapes[self.p.shape_index].can_equal_w_h())

    def shape_combo_changed(self, val):
        self.p.shape_index = val.get_active()
        self.shape_combo_side_effects()
        self.redraw()

    def sides_changed(self, val):
        self.p.sides = val.value
        self.redraw()

    def morph_changed(self, val):
        self.p.morph = val.value
        self.redraw()

    def equal_w_h_checkbox_changed(self, val):
        self.p.equal_w_h = val.get_active()
        self.redraw()

    def shape_rotation_changed(self, val):
        self.p.shape_rotation = val.value
        self.redraw()

    def margin_changed(self, val) :
        self.p.margin_pixels = val.value
        self.redraw()

    # Style callbacks

    def tool_changed_side_effects(self):
        self.long_gradient_checkbox.set_sensitive(tools[self.p.tool_index].can_color)

    def tool_combo_changed(self, val):
        self.p.tool_index = val.get_active()
        self.tool_changed_side_effects()
        self.redraw()

    def long_gradient_changed(self, val):
        self.p.long_gradient = val.get_active()
        self.redraw()

    def save_option_changed(self, val):
        self.p.save_option = self.save_option_combo.get_active()

    # Progress bar of plugin window.

    def progress_start(self):
        self.progress_bar.set_text(_("Rendering Pattern"))
        self.progress_bar.set_fraction(0.0)
        pdb.gimp_displays_flush()

    def progress_end(self):
        self.progress_bar.set_text("")
        self.progress_bar.set_fraction(0.0)

    def progress_update(self):
        self.progress_bar.set_fraction(self.engine.fraction_done())

    def progress_unknown(self):
        self.progress_bar.set_text(_("Please wait : Rendering Pattern"))
        self.progress_bar.pulse()
        pdb.gimp_displays_flush()

    # Incremental drawing.

    def draw_next_chunk(self, tool=None):
        """ Incremental drawing """

        t = time.time()

        chunk_size = self.engine.draw_next_chunk(self.drawing_layer, tool=tool)

        draw_time = time.time() - t
        self.engine.report_time(draw_time)
        print("Chunk size " + str(chunk_size) + " time " + str(draw_time))

        if self.engine.has_more_strokes():
            self.progress_update()
        else:
            self.progress_end()

        pdb.gimp_displays_flush()

    def start_new_incremental_drawing(self):
        """
        Compute strokes for the current pattern, and store then in the IncrementalDraw object,
        so they can be drawn in pieces without blocking the user.
        Finally, draw the first chunk of strokes.
        """

        def incremental_drawing():
            self.progress_start()
            yield True
            self.engine.reset_incremental()

            self.img.undo_group_start()
            while self.engine.has_more_strokes():
                yield True
                self.draw_next_chunk()
            self.img.undo_group_end()

            self.idle_task = None
            yield False

        # Start new idle task to perform incremental drawing in the background.
        self.clear_idle_task()
        task = incremental_drawing()
        self.idle_task = gobject.idle_add(task.next)

    def clear(self):
        """ Clear current drawing. """
        # pdb.gimp_edit_clear(self.spyro_layer)
        self.spyro_layer.fill(FILL_TRANSPARENT)

    def redraw(self, data=None):
        if self.enable_incremental_drawing:
            self.clear()
            self.start_new_incremental_drawing()


# Bind escape to the new signal we created, named "myescape".
gobject.type_register(SpyroWindow)
gtk.binding_entry_add_signal(SpyroWindow, gtk.keysyms.Escape, 0, 'myescape', str, 'escape')


class SpyrogimpPlusPlugin(gimpplugin.plugin):

    # Implementation of plugin.
    def plug_in_spyrogimp(self, run_mode, image, layer,
                          curve_type=0, shape=0, sides=3, morph=0.0,
                          fixed_teeth=96, moving_teeth=36, hole_percent=100.0,
                          margin=0, equal_w_h=0,
                          pattern_rotation=0.0, shape_rotation=0.0,
                          tool=1, long_gradient=False):
        if run_mode == RUN_NONINTERACTIVE:
            pp = PatternParameters()
            pp.curve_type = curve_type
            pp.shape_index = shape
            pp.sides = sides
            pp.morph = morph
            pp.outer_teeth = fixed_teeth
            pp.inner_teeth = moving_teeth
            pp.hole_percent = hole_percent
            pp.margin_pixels = margin
            pp.equal_w_h = equal_w_h
            pp.pattern_rotation = pattern_rotation
            pp.shape_rotation = shape_rotation
            pp.tool_index = tool
            pp.long_gradient = long_gradient

            engine = DrawingEngine(image, pp)
            engine.draw_full(layer)

        elif run_mode == RUN_INTERACTIVE:
            window = SpyroWindow(image, layer)
            gtk.main()

        elif run_mode == RUN_WITH_LAST_VALS:
            pp = unshelf_parameters()
            engine = DrawingEngine(image, pp)
            engine.draw_full(layer)

    def query(self):
        plugin_name = "plug_in_spyrogimp"
        label = N_("Spyrogimp...")
        menu = "<Image>/Filters/Render/"

        params = [
            # (type, name, description
            (PDB_INT32, "run-mode", "The run mode { RUN-INTERACTIVE (0), RUN-NONINTERACTIVE (1) }"),
            (PDB_IMAGE, "image", "Input image"),
            (PDB_DRAWABLE, "drawable", "Input drawable"),
            (PDB_INT32, "curve_type",
             "The curve type { Spyrograph (0), Epitrochoid (1), Sine (2), Lissajous(3) }"),
            (PDB_INT32, "shape", "Shape of fixed gear"),
            (PDB_INT32, "sides", "Number of sides of fixed gear (3 or greater). Only used by some shapes."),
            (PDB_FLOAT, "morph", "Morph shape of fixed gear, between 0 and 1. Only used by some shapes."),
            (PDB_INT32, "fixed_teeth", "Number of teeth for fixed gear"),
            (PDB_INT32, "moving_teeth", "Number of teeth for moving gear"),
            (PDB_FLOAT, "hole_percent", "Location of hole in moving gear in percent, where 100 means that "
             "the hole is at the edge of the gear, and 0 means the hole is at the center"),
            (PDB_INT32, "margin", "Margin from selection, in pixels"),
            (PDB_INT32, "equal_w_h", "Make height and width equal (TRUE or FALSE)"),
            (PDB_FLOAT, "pattern_rotation", "Pattern rotation, in degrees"),
            (PDB_FLOAT, "shape_rotation", "Shape rotation of fixed gear, in degrees"),
            (PDB_INT32, "tool", "Tool to use for drawing the pattern."),
            (PDB_INT32, "long_gradient",
             "Whether to apply a long gradient to match the length of the pattern (TRUE or FALSE). "
             "Only applicable to some of the tools.")
        ]

        gimp.domain_register("gimp20-python", gimp.locale_directory)

        gimp.install_procedure(
            plugin_name,
            N_("Draw spyrographs using current tool settings and selection."),
            "Uses current tool settings to draw Spyrograph patterns. "
            "The size and location of the pattern is based on the current selection.",
            "Elad Shahar",
            "Elad Shahar",
            "2018",
            label,
            "*",
            PLUGIN,
            params,
            []
        )

        gimp.menu_register(plugin_name, menu)


if __name__ == '__main__':
    SpyrogimpPlusPlugin().start()