summaryrefslogtreecommitdiffstats
path: root/plug-ins/script-fu/tinyscheme/hack.txt
blob: 6aba7a7dfeb7215dd41505e48da6fbbddd019b57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
                              How to hack TinyScheme
                              ----------------------

     TinyScheme is easy to learn and modify. It is structured like a
     meta-interpreter, only it is written in C. All data are Scheme
     objects, which facilitates both understanding/modifying the
     code and reifying the interpreter workings.

     In place of a dry description, we will pace through the addition
     of a useful new datatype: garbage-collected memory blocks.
     The interface will be:

          (make-block <n> [<fill>]) makes a new block of the specified size
               optionally filling it with a specified byte
          (block? <obj>)
          (block-length <block>)
          (block-ref <block> <index>) retrieves byte at location
          (block-set! <block> <index> <byte>) modifies byte at location
     
     In the sequel, lines that begin with '>' denote lines to add to the
     code. Lines that begin with '|' are just citations of existing code.
     Lines that begin with X are deleted.

     First of all, we need to assign a typeid to our new type. Typeids
     in TinyScheme are small integers declared in an enum, very close to
     the top of scheme.c; it begins with T_STRING. Add a new one before the
     end, call it T_MEMBLOCK. Adjust T_LAST_SYSTEM_TYPE.

|      T_ENVIRONMENT=14,
X      T_LAST_SYSTEM_TYPE=14
>      T_MEMBLOCK=15,
>      T_LAST_SYSTEM_TYPE=15
|    };

     Then, some helper macros would be useful. Go to where is_string() and
     the rest are defined and define:

>    int is_memblock(pointer p)      { return (type(p)==T_MEMBLOCK); }

     This actually is a function, because it is meant to be exported by
     scheme.h. If no foreign function will ever manipulate a memory block,
     you can instead define it as a macro

>    #define is_memblock(p) (type(p)==T_MEMBLOCK)

     Then we make space for the new type in the main data structure:
     struct cell. As it happens, the _string part of the union _object
     (that is used to hold character strings) has two fields that suit us:

|         struct {
|              char   *_svalue;
|              int   _keynum;
|         } _string;

     We can use _svalue to hold the actual pointer and _keynum to hold its
     length. If we couldn't reuse existing fields, we could always add other
     alternatives in union _object.

     We then proceed to write the function that actually makes a new block.
     For conformance reasons, we name it mk_memblock

>     static pointer mk_memblock(scheme *sc, int len, char fill) {
>          pointer x;
>          char *p=(char*)sc->malloc(len);
>
>          if(p==0) {
>               return sc->NIL;
>          }
>          x = get_cell(sc, sc->NIL, sc->NIL);
>
>          typeflag(x) = T_MEMBLOCK|T_ATOM;
>          strvalue(x)=p;
>          keynum(x)=len;
>          memset(p,fill,len);
>          return (x);
>     }

     The memory used by the MEMBLOCK will have to be freed when the cell
     is reclaimed during garbage collection. There is a placeholder for
     that staff, function finalize_cell(), currently handling strings only.

|     static void finalize_cell(scheme *sc, pointer a) {
|          if(is_string(a)) {
|               sc->free(strvalue(a));
>          else if(is_memblock(a)) {
>               sc->free(strvalue(a));
|          } else if(is_port(a)) {

     There are no MEMBLOCK literals, so we don't concern ourselves with
     the READER part (yet!). We must cater to the PRINTER, though. We
     add one case more in atom2str().

|    } else if (is_foreign(l)) {
|         p = sc->strbuff;
|         snprintf(p,STRBUFFSIZE,"#<FOREIGN PROCEDURE %ld>", procnum(l));
>    } else if (ismemblock(l)) {
>         p = "#<MEMBLOCK>";
|    } else if (is_continuation(l)) {
|         p = "#<CONTINUATION>";
|    } else {

     Whenever a MEMBLOCK is displayed, it will look like that.

     Now, we must add the interface functions: constructor, predicate,
     accessor, modifier. We must in fact create new op-codes for the
     virtual machine underlying TinyScheme. Since version 1.30, TinyScheme
     uses macros and a single source text to keep the enums and the
     dispatch table in sync. That's where the op-codes are declared. Note
     that the opdefines.h file uses unusually long lines to accommodate
     all the information; adjust your editor to handle this. The file has
     six columns: A to Z. they contain:
       - Column A is the name of a routine to handle the scheme function.
       - Column B is the name the scheme function.
       - Columns C and D are the minimum and maximum number of arguments
         that are accepted by the scheme function.
       - Column E is a set of flags that are used when the interpreter
         verifies that the passed parameters are of the correct type.
       - Column F is used to create a set of enums. The enum is used in a
         switch in the routine listed in column A to get to the code that
	 does the work needed for the scheme function.
     For reasons of cohesion, we add the new op-codes right after those
     for vectors:

|   _OP_DEF(opexe_2, "vector-set!",                    3,  3,       TST_VECTOR TST_NATURAL TST_ANY,  OP_VECSET           )
>   _OP_DEF(opexe_2, "make-block",                     1,  2,       TST_NATURAL TST_CHAR,            OP_MKBLOCK          )
>   _OP_DEF(opexe_2, "block-length",                   1,  1,       T_MEMBLOCK,                      OP_BLOCKLEN         )
>   _OP_DEF(opexe_2, "block-ref",                      2,  2,       T_MEMBLOCK TST_NATURAL,          OP_BLOCKREF         )
>   _OP_DEF(opexe_2, "block-set!",                     1,  1,       T_MEMBLOCK TST_NATURAL TST_CHAR, OP_BLOCKSET         )
|   _OP_DEF(opexe_3, "not",                            1,  1,       TST_NONE,                        OP_NOT              )

     We add the predicate along the other predicates:

|   _OP_DEF(opexe_3, "vector?",                        1,  1,       TST_ANY,                         OP_VECTORP          )
>   _OP_DEF(opexe_3, "block?",                         1,  1,       TST_ANY,                         OP_BLOCKP           )
|   _OP_DEF(opexe_3, "eq?",                            2,  2,       TST_ANY,                         OP_EQ               )

     All that remains is to write the actual processing in opexe_2, right
     after OP_VECSET.

>     case OP_MKBLOCK: { /* make-block */
>          int fill=0;
>          int len;
>
>          if(!isnumber(car(sc->args))) {
>               Error_1(sc,"make-block: not a number:",car(sc->args));
>          }
>          len=ivalue(car(sc->args));
>          if(len<=0) {
>               Error_1(sc,"make-block: not positive:",car(sc->args));
>          }
>
>          if(cdr(sc->args)!=sc->NIL) {
>               if(!isnumber(cadr(sc->args)) || ivalue(cadr(sc->args))<0) {
>                    Error_1(sc,"make-block: not a positive number:",cadr(sc->args));
>               }
>               fill=charvalue(cadr(sc->args))%255;
>          }
>          s_return(sc,mk_memblock(sc,len,(char)fill));
>     }
>
>     case OP_BLOCKLEN:  /* block-length */
>          if(!ismemblock(car(sc->args))) {
>               Error_1(sc,"block-length: not a memory block:",car(sc->args));
>          }
>          s_return(sc,mk_integer(sc,keynum(car(sc->args))));
>
>     case OP_BLOCKREF: { /* block-ref */
>          char *str;
>          int index;
>
>          if(!ismemblock(car(sc->args))) {
>               Error_1(sc,"block-ref: not a memory block:",car(sc->args));
>          }
>          str=strvalue(car(sc->args));
>
>          if(cdr(sc->args)==sc->NIL) {
>               Error_0(sc,"block-ref: needs two arguments");
>          }
>          if(!isnumber(cadr(sc->args))) {
>               Error_1(sc,"block-ref: not a number:",cadr(sc->args));
>          }
>          index=ivalue(cadr(sc->args));
>
>          if(index<0 || index>=keynum(car(sc->args))) {
>               Error_1(sc,"block-ref: out of bounds:",cadr(sc->args));
>          }
>
>          s_return(sc,mk_integer(sc,str[index]));
>     }
>
>     case OP_BLOCKSET: { /* block-set! */
>          char *str;
>          int index;
>          int c;
>
>          if(!ismemblock(car(sc->args))) {
>               Error_1(sc,"block-set!: not a memory block:",car(sc->args));
>          }
>          if(isimmutable(car(sc->args))) {
>               Error_1(sc,"block-set!: unable to alter immutable memory block:",car(sc->args));
>          }
>          str=strvalue(car(sc->args));
>
>          if(cdr(sc->args)==sc->NIL) {
>               Error_0(sc,"block-set!: needs three arguments");
>          }
>          if(!isnumber(cadr(sc->args))) {
>               Error_1(sc,"block-set!: not a number:",cadr(sc->args));
>          }
>          index=ivalue(cadr(sc->args));
>          if(index<0 || index>=keynum(car(sc->args))) {
>               Error_1(sc,"block-set!: out of bounds:",cadr(sc->args));
>          }
>
>          if(cddr(sc->args)==sc->NIL) {
>               Error_0(sc,"block-set!: needs three arguments");
>          }
>          if(!isinteger(caddr(sc->args))) {
>               Error_1(sc,"block-set!: not an integer:",caddr(sc->args));
>          }
>          c=ivalue(caddr(sc->args))%255;
>
>          str[index]=(char)c;
>          s_return(sc,car(sc->args));
>     }

     Same for the predicate in opexe_3.

|     case OP_VECTORP:     /* vector? */
|          s_retbool(isvector(car(sc->args)));
>     case OP_BLOCKP:     /* block? */
>          s_retbool(ismemblock(car(sc->args)));