summaryrefslogtreecommitdiffstats
path: root/debian/grub-extras/disabled/gpxe/src/drivers/net/etherfabric.h
blob: 9657eb7e8084ec8c63bddc210f2c74da90cc5be2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
/**************************************************************************
 *
 * GPL net driver for Level 5 Etherfabric network cards
 *
 * Written by Michael Brown <mbrown@fensystems.co.uk>
 *
 * Copyright Fen Systems Ltd. 2005
 * Copyright Level 5 Networks Inc. 2005
 *
 * This software may be used and distributed according to the terms of
 * the GNU General Public License (GPL), incorporated herein by
 * reference.  Drivers based on or derived from this code fall under
 * the GPL and must retain the authorship, copyright and license
 * notice.  This file is not a complete program and may only be used
 * when the entire operating system is licensed under the GPL.
 *
 **************************************************************************
 */

FILE_LICENCE ( GPL_ANY );

#ifndef EFAB_BITFIELD_H
#define EFAB_BITFIELD_H

/** @file
 *
 * Etherfabric bitfield access
 *
 * Etherfabric NICs make extensive use of bitfields up to 128 bits
 * wide.  Since there is no native 128-bit datatype on most systems,
 * and since 64-bit datatypes are inefficient on 32-bit systems and
 * vice versa, we wrap accesses in a way that uses the most efficient
 * datatype.
 *
 * The NICs are PCI devices and therefore little-endian.  Since most
 * of the quantities that we deal with are DMAed to/from host memory,
 * we define our datatypes (efab_oword_t, efab_qword_t and
 * efab_dword_t) to be little-endian.
 *
 * In the less common case of using PIO for individual register
 * writes, we construct the little-endian datatype in host memory and
 * then use non-swapping equivalents of writel/writeq, rather than
 * constructing a native-endian datatype and relying on the implicit
 * byte-swapping done by writel/writeq.  (We use a similar strategy
 * for register reads.)
 */

/** Dummy field low bit number */
#define EFAB_DUMMY_FIELD_LBN 0
/** Dummy field width */
#define EFAB_DUMMY_FIELD_WIDTH 0
/** Dword 0 low bit number */
#define EFAB_DWORD_0_LBN 0
/** Dword 0 width */
#define EFAB_DWORD_0_WIDTH 32
/** Dword 1 low bit number */
#define EFAB_DWORD_1_LBN 32
/** Dword 1 width */
#define EFAB_DWORD_1_WIDTH 32
/** Dword 2 low bit number */
#define EFAB_DWORD_2_LBN 64
/** Dword 2 width */
#define EFAB_DWORD_2_WIDTH 32
/** Dword 3 low bit number */
#define EFAB_DWORD_3_LBN 96
/** Dword 3 width */
#define EFAB_DWORD_3_WIDTH 32

/** Specified attribute (e.g. LBN) of the specified field */
#define EFAB_VAL(field,attribute) field ## _ ## attribute
/** Low bit number of the specified field */
#define EFAB_LOW_BIT( field ) EFAB_VAL ( field, LBN )
/** Bit width of the specified field */
#define EFAB_WIDTH( field ) EFAB_VAL ( field, WIDTH )
/** High bit number of the specified field */
#define EFAB_HIGH_BIT(field) ( EFAB_LOW_BIT(field) + EFAB_WIDTH(field) - 1 )
/** Mask equal in width to the specified field.
 *
 * For example, a field with width 5 would have a mask of 0x1f.
 *
 * The maximum width mask that can be generated is 64 bits.
 */
#define EFAB_MASK64( field )						\
	( EFAB_WIDTH(field) == 64 ? ~( ( uint64_t ) 0 ) :		\
	  ( ( ( ( ( uint64_t ) 1 ) << EFAB_WIDTH(field) ) ) - 1 ) )

/** Mask equal in width to the specified field.
 *
 * For example, a field with width 5 would have a mask of 0x1f.
 *
 * The maximum width mask that can be generated is 32 bits.  Use
 * EFAB_MASK64 for higher width fields.
 */
#define EFAB_MASK32( field )						\
	( EFAB_WIDTH(field) == 32 ? ~( ( uint32_t ) 0 ) :		\
	  ( ( ( ( ( uint32_t ) 1 ) << EFAB_WIDTH(field) ) ) - 1 ) )

/** A doubleword (i.e. 4 byte) datatype
 *
 * This datatype is defined to be little-endian.
 */
typedef union efab_dword {
	uint32_t u32[1];
	uint32_t opaque; /* For bitwise operations between two efab_dwords */
} efab_dword_t;

/** A quadword (i.e. 8 byte) datatype
 *
 * This datatype is defined to be little-endian.
 */
typedef union efab_qword {
	uint64_t u64[1];
	uint32_t u32[2];
	efab_dword_t dword[2];
} efab_qword_t;

/**
 * An octword (eight-word, i.e. 16 byte) datatype
 *
 * This datatype is defined to be little-endian.
 */
typedef union efab_oword {
	uint64_t u64[2];
	efab_qword_t qword[2];
	uint32_t u32[4];
	efab_dword_t dword[4];
} efab_oword_t;

/** Format string for printing an efab_dword_t */
#define EFAB_DWORD_FMT "%08x"

/** Format string for printing an efab_qword_t */
#define EFAB_QWORD_FMT "%08x:%08x"

/** Format string for printing an efab_oword_t */
#define EFAB_OWORD_FMT "%08x:%08x:%08x:%08x"

/** printk parameters for printing an efab_dword_t */
#define EFAB_DWORD_VAL(dword)					\
	( ( unsigned int ) le32_to_cpu ( (dword).u32[0] ) )

/** printk parameters for printing an efab_qword_t */
#define EFAB_QWORD_VAL(qword)					\
	( ( unsigned int ) le32_to_cpu ( (qword).u32[1] ) ),	\
	( ( unsigned int ) le32_to_cpu ( (qword).u32[0] ) )

/** printk parameters for printing an efab_oword_t */
#define EFAB_OWORD_VAL(oword)					\
	( ( unsigned int ) le32_to_cpu ( (oword).u32[3] ) ),	\
	( ( unsigned int ) le32_to_cpu ( (oword).u32[2] ) ),	\
	( ( unsigned int ) le32_to_cpu ( (oword).u32[1] ) ),	\
	( ( unsigned int ) le32_to_cpu ( (oword).u32[0] ) )

/**
 * Extract bit field portion [low,high) from the native-endian element
 * which contains bits [min,max).
 *
 * For example, suppose "element" represents the high 32 bits of a
 * 64-bit value, and we wish to extract the bits belonging to the bit
 * field occupying bits 28-45 of this 64-bit value.
 *
 * Then EFAB_EXTRACT ( element, 32, 63, 28, 45 ) would give
 *
 *   ( element ) << 4
 *
 * The result will contain the relevant bits filled in in the range
 * [0,high-low), with garbage in bits [high-low+1,...).
 */
#define EFAB_EXTRACT_NATIVE( native_element, min ,max ,low ,high )	\
	( ( ( low > max ) || ( high < min ) ) ? 0 :			\
	  ( ( low > min ) ?						\
	    ( (native_element) >> ( low - min ) ) :			\
	    ( (native_element) << ( min - low ) ) ) )

/**
 * Extract bit field portion [low,high) from the 64-bit little-endian
 * element which contains bits [min,max)
 */
#define EFAB_EXTRACT64( element, min, max, low, high )			\
	EFAB_EXTRACT_NATIVE ( le64_to_cpu(element), min, max, low, high )

/**
 * Extract bit field portion [low,high) from the 32-bit little-endian
 * element which contains bits [min,max)
 */
#define EFAB_EXTRACT32( element, min, max, low, high )			\
	EFAB_EXTRACT_NATIVE ( le32_to_cpu(element), min, max, low, high )

#define EFAB_EXTRACT_OWORD64( oword, low, high )			\
	( EFAB_EXTRACT64 ( (oword).u64[0],   0,  63, low, high ) |	\
	  EFAB_EXTRACT64 ( (oword).u64[1],  64, 127, low, high ) )

#define EFAB_EXTRACT_QWORD64( qword, low, high )			\
	( EFAB_EXTRACT64 ( (qword).u64[0],   0,  63, low, high ) )

#define EFAB_EXTRACT_OWORD32( oword, low, high )			\
	( EFAB_EXTRACT32 ( (oword).u32[0],   0,  31, low, high ) |	\
	  EFAB_EXTRACT32 ( (oword).u32[1],  32,  63, low, high ) |	\
	  EFAB_EXTRACT32 ( (oword).u32[2],  64,  95, low, high ) |	\
	  EFAB_EXTRACT32 ( (oword).u32[3],  96, 127, low, high ) )

#define EFAB_EXTRACT_QWORD32( qword, low, high )			\
	( EFAB_EXTRACT32 ( (qword).u32[0],   0,  31, low, high ) |	\
	  EFAB_EXTRACT32 ( (qword).u32[1],  32,  63, low, high ) )

#define EFAB_EXTRACT_DWORD( dword, low, high )				\
	( EFAB_EXTRACT32 ( (dword).u32[0],   0,  31, low, high ) )

#define EFAB_OWORD_FIELD64( oword, field )				\
	( EFAB_EXTRACT_OWORD64 ( oword, EFAB_LOW_BIT ( field ),		\
				 EFAB_HIGH_BIT ( field ) ) &		\
	  EFAB_MASK64 ( field ) )

#define EFAB_QWORD_FIELD64( qword, field )				\
	( EFAB_EXTRACT_QWORD64 ( qword, EFAB_LOW_BIT ( field ),		\
				 EFAB_HIGH_BIT ( field ) ) &		\
	  EFAB_MASK64 ( field ) )

#define EFAB_OWORD_FIELD32( oword, field )				\
	( EFAB_EXTRACT_OWORD32 ( oword, EFAB_LOW_BIT ( field ),		\
				 EFAB_HIGH_BIT ( field ) ) &		\
	  EFAB_MASK32 ( field ) )

#define EFAB_QWORD_FIELD32( qword, field )				\
	( EFAB_EXTRACT_QWORD32 ( qword, EFAB_LOW_BIT ( field ),		\
				 EFAB_HIGH_BIT ( field ) ) &		\
	  EFAB_MASK32 ( field ) )

#define EFAB_DWORD_FIELD( dword, field )				\
	( EFAB_EXTRACT_DWORD ( dword, EFAB_LOW_BIT ( field ),		\
			       EFAB_HIGH_BIT ( field ) ) &		\
	  EFAB_MASK32 ( field ) )

#define EFAB_OWORD_IS_ZERO64( oword )					\
	( ! ( (oword).u64[0] || (oword).u64[1] ) )

#define EFAB_QWORD_IS_ZERO64( qword )					\
	( ! ( (qword).u64[0] ) )

#define EFAB_OWORD_IS_ZERO32( oword )					\
	( ! ( (oword).u32[0] || (oword).u32[1] ||			\
	      (oword).u32[2] || (oword).u32[3] ) )

#define EFAB_QWORD_IS_ZERO32( qword )					\
	( ! ( (qword).u32[0] || (qword).u32[1] ) )

#define EFAB_DWORD_IS_ZERO( dword )					\
	( ! ( (dword).u32[0] ) )

#define EFAB_OWORD_IS_ALL_ONES64( oword )				\
	( ( (oword).u64[0] & (oword).u64[1] ) == ~( ( uint64_t ) 0 ) )

#define EFAB_QWORD_IS_ALL_ONES64( qword )				\
	( (qword).u64[0] == ~( ( uint64_t ) 0 ) )

#define EFAB_OWORD_IS_ALL_ONES32( oword )				\
	( ( (oword).u32[0] & (oword).u32[1] &				\
	    (oword).u32[2] & (oword).u32[3] ) == ~( ( uint32_t ) 0 ) )

#define EFAB_QWORD_IS_ALL_ONES32( qword )				\
	( ( (qword).u32[0] & (qword).u32[1] ) == ~( ( uint32_t ) 0 ) )

#define EFAB_DWORD_IS_ALL_ONES( dword )					\
	( (dword).u32[0] == ~( ( uint32_t ) 0 ) )

#if ( BITS_PER_LONG == 64 )
#define EFAB_OWORD_FIELD	EFAB_OWORD_FIELD64
#define EFAB_QWORD_FIELD	EFAB_QWORD_FIELD64
#define EFAB_OWORD_IS_ZERO	EFAB_OWORD_IS_ZERO64
#define EFAB_QWORD_IS_ZERO	EFAB_QWORD_IS_ZERO64
#define EFAB_OWORD_IS_ALL_ONES	EFAB_OWORD_IS_ALL_ONES64
#define EFAB_QWORD_IS_ALL_ONES	EFAB_QWORD_IS_ALL_ONES64
#else
#define EFAB_OWORD_FIELD	EFAB_OWORD_FIELD32
#define EFAB_QWORD_FIELD	EFAB_QWORD_FIELD32
#define EFAB_OWORD_IS_ZERO	EFAB_OWORD_IS_ZERO32
#define EFAB_QWORD_IS_ZERO	EFAB_QWORD_IS_ZERO32
#define EFAB_OWORD_IS_ALL_ONES	EFAB_OWORD_IS_ALL_ONES32
#define EFAB_QWORD_IS_ALL_ONES	EFAB_QWORD_IS_ALL_ONES32
#endif

/**
 * Construct bit field portion
 *
 * Creates the portion of the bit field [low,high) that lies within
 * the range [min,max).
 */
#define EFAB_INSERT_NATIVE64( min, max, low, high, value )	\
	( ( ( low > max ) || ( high < min ) ) ? 0 :		\
	  ( ( low > min ) ?					\
	    ( ( ( uint64_t ) (value) ) << ( low - min ) ) :	\
	    ( ( ( uint64_t ) (value) ) >> ( min - low ) ) ) )

#define EFAB_INSERT_NATIVE32( min, max, low, high, value )	\
	( ( ( low > max ) || ( high < min ) ) ? 0 :		\
	  ( ( low > min ) ?					\
	    ( ( ( uint32_t ) (value) ) << ( low - min ) ) :	\
	    ( ( ( uint32_t ) (value) ) >> ( min - low ) ) ) )

#define EFAB_INSERT_NATIVE( min, max, low, high, value )	\
	( ( ( ( max - min ) >= 32 ) ||				\
	    ( ( high - low ) >= 32 ) )	 			\
	  ? EFAB_INSERT_NATIVE64 ( min, max, low, high, value )	\
	  : EFAB_INSERT_NATIVE32 ( min, max, low, high, value ) )

/**
 * Construct bit field portion
 *
 * Creates the portion of the named bit field that lies within the
 * range [min,max).
 */
#define EFAB_INSERT_FIELD_NATIVE( min, max, field, value )	\
	EFAB_INSERT_NATIVE ( min, max, EFAB_LOW_BIT ( field ),	\
			     EFAB_HIGH_BIT ( field ), value )

/**
 * Construct bit field
 *
 * Creates the portion of the named bit fields that lie within the
 * range [min,max).
 */
#define EFAB_INSERT_FIELDS_NATIVE( min, max,				\
				   field1, value1,			\
				   field2, value2,			\
				   field3, value3,			\
				   field4, value4,			\
				   field5, value5,			\
				   field6, value6,			\
				   field7, value7,			\
				   field8, value8,			\
				   field9, value9,			\
				   field10, value10 )			\
	( EFAB_INSERT_FIELD_NATIVE ( min, max, field1, value1 ) |	\
	  EFAB_INSERT_FIELD_NATIVE ( min, max, field2, value2 ) |	\
	  EFAB_INSERT_FIELD_NATIVE ( min, max, field3, value3 ) |	\
	  EFAB_INSERT_FIELD_NATIVE ( min, max, field4, value4 ) |	\
	  EFAB_INSERT_FIELD_NATIVE ( min, max, field5, value5 ) |	\
	  EFAB_INSERT_FIELD_NATIVE ( min, max, field6, value6 ) |	\
	  EFAB_INSERT_FIELD_NATIVE ( min, max, field7, value7 ) |	\
	  EFAB_INSERT_FIELD_NATIVE ( min, max, field8, value8 ) |	\
	  EFAB_INSERT_FIELD_NATIVE ( min, max, field9, value9 ) |	\
	  EFAB_INSERT_FIELD_NATIVE ( min, max, field10, value10 ) )

#define EFAB_INSERT_FIELDS64( ... )					\
	cpu_to_le64 ( EFAB_INSERT_FIELDS_NATIVE ( __VA_ARGS__ ) )

#define EFAB_INSERT_FIELDS32( ... )					\
	cpu_to_le32 ( EFAB_INSERT_FIELDS_NATIVE ( __VA_ARGS__ ) )

#define EFAB_POPULATE_OWORD64( oword, ... ) do {			\
	(oword).u64[0] = EFAB_INSERT_FIELDS64 (   0,  63, __VA_ARGS__ );\
	(oword).u64[1] = EFAB_INSERT_FIELDS64 (  64, 127, __VA_ARGS__ );\
	} while ( 0 )

#define EFAB_POPULATE_QWORD64( qword, ... ) do {			\
	(qword).u64[0] = EFAB_INSERT_FIELDS64 (   0,  63, __VA_ARGS__ );\
	} while ( 0 )

#define EFAB_POPULATE_OWORD32( oword, ... ) do {			\
	(oword).u32[0] = EFAB_INSERT_FIELDS32 (   0,  31, __VA_ARGS__ );\
	(oword).u32[1] = EFAB_INSERT_FIELDS32 (  32,  63, __VA_ARGS__ );\
	(oword).u32[2] = EFAB_INSERT_FIELDS32 (  64,  95, __VA_ARGS__ );\
	(oword).u32[3] = EFAB_INSERT_FIELDS32 (  96, 127, __VA_ARGS__ );\
	} while ( 0 )

#define EFAB_POPULATE_QWORD32( qword, ... ) do {			\
	(qword).u32[0] = EFAB_INSERT_FIELDS32 (   0,  31, __VA_ARGS__ );\
	(qword).u32[1] = EFAB_INSERT_FIELDS32 (  32,  63, __VA_ARGS__ );\
	} while ( 0 )

#define EFAB_POPULATE_DWORD( dword, ... ) do {				\
	(dword).u32[0] = EFAB_INSERT_FIELDS32 (   0,  31, __VA_ARGS__ );\
	} while ( 0 )

#if ( BITS_PER_LONG == 64 )
#define EFAB_POPULATE_OWORD EFAB_POPULATE_OWORD64
#define EFAB_POPULATE_QWORD EFAB_POPULATE_QWORD64
#else
#define EFAB_POPULATE_OWORD EFAB_POPULATE_OWORD32
#define EFAB_POPULATE_QWORD EFAB_POPULATE_QWORD32
#endif

/* Populate an octword field with various numbers of arguments */
#define EFAB_POPULATE_OWORD_10 EFAB_POPULATE_OWORD
#define EFAB_POPULATE_OWORD_9( oword, ... ) \
	EFAB_POPULATE_OWORD_10 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_8( oword, ... ) \
	EFAB_POPULATE_OWORD_9 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_7( oword, ... ) \
	EFAB_POPULATE_OWORD_8 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_6( oword, ... ) \
	EFAB_POPULATE_OWORD_7 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_5( oword, ... ) \
	EFAB_POPULATE_OWORD_6 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_4( oword, ... ) \
	EFAB_POPULATE_OWORD_5 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_3( oword, ... ) \
	EFAB_POPULATE_OWORD_4 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_2( oword, ... ) \
	EFAB_POPULATE_OWORD_3 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_1( oword, ... ) \
	EFAB_POPULATE_OWORD_2 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_ZERO_OWORD( oword ) \
	EFAB_POPULATE_OWORD_1 ( oword, EFAB_DUMMY_FIELD, 0 )
#define EFAB_SET_OWORD( oword ) \
	EFAB_POPULATE_OWORD_4 ( oword, \
				EFAB_DWORD_0, 0xffffffff, \
				EFAB_DWORD_1, 0xffffffff, \
				EFAB_DWORD_2, 0xffffffff, \
				EFAB_DWORD_3, 0xffffffff )

/* Populate a quadword field with various numbers of arguments */
#define EFAB_POPULATE_QWORD_10 EFAB_POPULATE_QWORD
#define EFAB_POPULATE_QWORD_9( qword, ... ) \
	EFAB_POPULATE_QWORD_10 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_8( qword, ... ) \
	EFAB_POPULATE_QWORD_9 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_7( qword, ... ) \
	EFAB_POPULATE_QWORD_8 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_6( qword, ... ) \
	EFAB_POPULATE_QWORD_7 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_5( qword, ... ) \
	EFAB_POPULATE_QWORD_6 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_4( qword, ... ) \
	EFAB_POPULATE_QWORD_5 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_3( qword, ... ) \
	EFAB_POPULATE_QWORD_4 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_2( qword, ... ) \
	EFAB_POPULATE_QWORD_3 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_1( qword, ... ) \
	EFAB_POPULATE_QWORD_2 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_ZERO_QWORD( qword ) \
	EFAB_POPULATE_QWORD_1 ( qword, EFAB_DUMMY_FIELD, 0 )
#define EFAB_SET_QWORD( qword ) \
	EFAB_POPULATE_QWORD_2 ( qword, \
				EFAB_DWORD_0, 0xffffffff, \
				EFAB_DWORD_1, 0xffffffff )

/* Populate a dword field with various numbers of arguments */
#define EFAB_POPULATE_DWORD_10 EFAB_POPULATE_DWORD
#define EFAB_POPULATE_DWORD_9( dword, ... ) \
	EFAB_POPULATE_DWORD_10 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_8( dword, ... ) \
	EFAB_POPULATE_DWORD_9 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_7( dword, ... ) \
	EFAB_POPULATE_DWORD_8 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_6( dword, ... ) \
	EFAB_POPULATE_DWORD_7 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_5( dword, ... ) \
	EFAB_POPULATE_DWORD_6 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_4( dword, ... ) \
	EFAB_POPULATE_DWORD_5 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_3( dword, ... ) \
	EFAB_POPULATE_DWORD_4 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_2( dword, ... ) \
	EFAB_POPULATE_DWORD_3 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_1( dword, ... ) \
	EFAB_POPULATE_DWORD_2 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_ZERO_DWORD( dword ) \
	EFAB_POPULATE_DWORD_1 ( dword, EFAB_DUMMY_FIELD, 0 )
#define EFAB_SET_DWORD( dword ) \
	EFAB_POPULATE_DWORD_1 ( dword, EFAB_DWORD_0, 0xffffffff )

/*
 * Modify a named field within an already-populated structure.  Used
 * for read-modify-write operations.
 *
 */

#define EFAB_INSERT_FIELD64( ... )					\
	cpu_to_le64 ( EFAB_INSERT_FIELD_NATIVE ( __VA_ARGS__ ) )

#define EFAB_INSERT_FIELD32( ... )					\
	cpu_to_le32 ( EFAB_INSERT_FIELD_NATIVE ( __VA_ARGS__ ) )

#define EFAB_INPLACE_MASK64( min, max, field )				\
	EFAB_INSERT_FIELD64 ( min, max, field, EFAB_MASK64 ( field ) )

#define EFAB_INPLACE_MASK32( min, max, field )				\
	EFAB_INSERT_FIELD32 ( min, max, field, EFAB_MASK32 ( field ) )

#define EFAB_SET_OWORD_FIELD64( oword, field, value ) do {		      \
	(oword).u64[0] = ( ( (oword).u64[0] 				      \
			     & ~EFAB_INPLACE_MASK64 (  0,  63, field ) )      \
			   | EFAB_INSERT_FIELD64 (  0,  63, field, value ) ); \
	(oword).u64[1] = ( ( (oword).u64[1] 				      \
			     & ~EFAB_INPLACE_MASK64 ( 64, 127, field ) )      \
			   | EFAB_INSERT_FIELD64 ( 64, 127, field, value ) ); \
	} while ( 0 )

#define EFAB_SET_QWORD_FIELD64( qword, field, value ) do {		      \
	(qword).u64[0] = ( ( (qword).u64[0] 				      \
			     & ~EFAB_INPLACE_MASK64 (  0,  63, field ) )      \
			   | EFAB_INSERT_FIELD64 (  0,  63, field, value ) ); \
	} while ( 0 )

#define EFAB_SET_OWORD_FIELD32( oword, field, value ) do {		      \
	(oword).u32[0] = ( ( (oword).u32[0] 				      \
			     & ~EFAB_INPLACE_MASK32 (  0,  31, field ) )      \
			   | EFAB_INSERT_FIELD32 (  0,  31, field, value ) ); \
	(oword).u32[1] = ( ( (oword).u32[1] 				      \
			     & ~EFAB_INPLACE_MASK32 ( 32,  63, field ) )      \
			   | EFAB_INSERT_FIELD32 ( 32,  63, field, value ) ); \
	(oword).u32[2] = ( ( (oword).u32[2] 				      \
			     & ~EFAB_INPLACE_MASK32 ( 64,  95, field ) )      \
			   | EFAB_INSERT_FIELD32 ( 64,  95, field, value ) ); \
	(oword).u32[3] = ( ( (oword).u32[3] 				      \
			     & ~EFAB_INPLACE_MASK32 ( 96, 127, field ) )      \
			   | EFAB_INSERT_FIELD32 ( 96, 127, field, value ) ); \
	} while ( 0 )

#define EFAB_SET_QWORD_FIELD32( qword, field, value ) do {		      \
	(qword).u32[0] = ( ( (qword).u32[0] 				      \
			     & ~EFAB_INPLACE_MASK32 (  0,  31, field ) )      \
			   | EFAB_INSERT_FIELD32 (  0,  31, field, value ) ); \
	(qword).u32[1] = ( ( (qword).u32[1] 				      \
			     & ~EFAB_INPLACE_MASK32 ( 32,  63, field ) )      \
			   | EFAB_INSERT_FIELD32 ( 32,  63, field, value ) ); \
	} while ( 0 )

#define EFAB_SET_DWORD_FIELD( dword, field, value ) do {		      \
	(dword).u32[0] = ( ( (dword).u32[0] 				      \
			     & ~EFAB_INPLACE_MASK32 (  0,  31, field ) )      \
			   | EFAB_INSERT_FIELD32 (  0,  31, field, value ) ); \
	} while ( 0 )

#if ( BITS_PER_LONG == 64 )
#define EFAB_SET_OWORD_FIELD EFAB_SET_OWORD_FIELD64
#define EFAB_SET_QWORD_FIELD EFAB_SET_QWORD_FIELD64
#else
#define EFAB_SET_OWORD_FIELD EFAB_SET_OWORD_FIELD32
#define EFAB_SET_QWORD_FIELD EFAB_SET_QWORD_FIELD32
#endif

/* Used to avoid compiler warnings about shift range exceeding width
 * of the data types when dma_addr_t is only 32 bits wide.
 */
#define DMA_ADDR_T_WIDTH	( 8 * sizeof ( dma_addr_t ) )
#define EFAB_DMA_TYPE_WIDTH( width ) \
	( ( (width) < DMA_ADDR_T_WIDTH ) ? (width) : DMA_ADDR_T_WIDTH )
#define EFAB_DMA_MAX_MASK ( ( DMA_ADDR_T_WIDTH == 64 ) ? \
			    ~( ( uint64_t ) 0 ) : ~( ( uint32_t ) 0 ) )
#define EFAB_DMA_MASK(mask) ( (mask) & EFAB_DMA_MAX_MASK )

#endif /* EFAB_BITFIELD_H */

/*
 * Local variables:
 *  c-basic-offset: 8
 *  c-indent-level: 8
 *  tab-width: 8
 * End:
 */