summaryrefslogtreecommitdiffstats
path: root/grub-core/lib/libgcrypt-grub/cipher/des.c
blob: 09521e8e8986ecf82794d6c375d217999e65dde9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/* This file was automatically imported with 
   import_gcry.py. Please don't modify it */
#include <grub/dl.h>
GRUB_MOD_LICENSE ("GPLv3+");
/* des.c - DES and Triple-DES encryption/decryption Algorithm
 * Copyright (C) 1998, 1999, 2001, 2002, 2003,
 *               2008  Free Software Foundation, Inc.
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser general Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 *
 * For a description of triple encryption, see:
 *   Bruce Schneier: Applied Cryptography. Second Edition.
 *   John Wiley & Sons, 1996. ISBN 0-471-12845-7. Pages 358 ff.
 * This implementation is according to the definition of DES in FIPS
 * PUB 46-2 from December 1993.
 */


/*
 * Written by Michael Roth <mroth@nessie.de>, September 1998
 */


/*
 *  U S A G E
 * ===========
 *
 * For DES or Triple-DES encryption/decryption you must initialize a proper
 * encryption context with a key.
 *
 * A DES key is 64bit wide but only 56bits of the key are used. The remaining
 * bits are parity bits and they will _not_ checked in this implementation, but
 * simply ignored.
 *
 * For Triple-DES you could use either two 64bit keys or three 64bit keys.
 * The parity bits will _not_ checked, too.
 *
 * After initializing a context with a key you could use this context to
 * encrypt or decrypt data in 64bit blocks in Electronic Codebook Mode.
 *
 * (In the examples below the slashes at the beginning and ending of comments
 * are omited.)
 *
 * DES Example
 * -----------
 *     unsigned char key[8];
 *     unsigned char plaintext[8];
 *     unsigned char ciphertext[8];
 *     unsigned char recoverd[8];
 *     des_ctx context;
 *
 *     * Fill 'key' and 'plaintext' with some data *
 *     ....
 *
 *     * Set up the DES encryption context *
 *     des_setkey(context, key);
 *
 *     * Encrypt the plaintext *
 *     des_ecb_encrypt(context, plaintext, ciphertext);
 *
 *     * To recover the orginal plaintext from ciphertext use: *
 *     des_ecb_decrypt(context, ciphertext, recoverd);
 *
 *
 * Triple-DES Example
 * ------------------
 *     unsigned char key1[8];
 *     unsigned char key2[8];
 *     unsigned char key3[8];
 *     unsigned char plaintext[8];
 *     unsigned char ciphertext[8];
 *     unsigned char recoverd[8];
 *     tripledes_ctx context;
 *
 *     * If you would like to use two 64bit keys, fill 'key1' and'key2'
 *	 then setup the encryption context: *
 *     tripledes_set2keys(context, key1, key2);
 *
 *     * To use three 64bit keys with Triple-DES use: *
 *     tripledes_set3keys(context, key1, key2, key3);
 *
 *     * Encrypting plaintext with Triple-DES *
 *     tripledes_ecb_encrypt(context, plaintext, ciphertext);
 *
 *     * Decrypting ciphertext to recover the plaintext with Triple-DES *
 *     tripledes_ecb_decrypt(context, ciphertext, recoverd);
 *
 *
 * Selftest
 * --------
 *     char *error_msg;
 *
 *     * To perform a selftest of this DES/Triple-DES implementation use the
 *	 function selftest(). It will return an error string if there are
 *	 some problems with this library. *
 *
 *     if ( (error_msg = selftest()) )
 *     {
 *	   fprintf(stderr, "An error in the DES/Triple-DES implementation occurred: %s\n", error_msg);
 *	   abort();
 *     }
 */


#include "types.h"             /* for byte and u32 typedefs */
#include "g10lib.h"
#include "cipher.h"

#if defined(__GNUC__) && defined(__GNU_LIBRARY__)
#define working_memcmp memcmp
#else
/*
 * According to the SunOS man page, memcmp returns indeterminate sign
 * depending on whether characters are signed or not.
 */
static int
working_memcmp( const char *a, const char *b, size_t n )
{
    for( ; n; n--, a++, b++ )
	if( *a != *b )
	    return (int)(*(byte*)a) - (int)(*(byte*)b);
    return 0;
}
#endif

/*
 * Encryption/Decryption context of DES
 */
typedef struct _des_ctx
  {
    u32 encrypt_subkeys[32];
    u32 decrypt_subkeys[32];
  }
des_ctx[1];

/*
 * Encryption/Decryption context of Triple-DES
 */
typedef struct _tripledes_ctx
  {
    u32 encrypt_subkeys[96];
    u32 decrypt_subkeys[96];
    struct {
      int no_weak_key;
    } flags;
  }
tripledes_ctx[1];

static void des_key_schedule (const byte *, u32 *);
static int des_setkey (struct _des_ctx *, const byte *);
static int des_ecb_crypt (struct _des_ctx *, const byte *, byte *, int);
static int tripledes_ecb_crypt (struct _tripledes_ctx *,
                                const byte *, byte *, int);
static int is_weak_key ( const byte *key );

static int initialized;




/*
 * The s-box values are permuted according to the 'primitive function P'
 * and are rotated one bit to the left.
 */
static u32 sbox1[64] =
{
  0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000,
  0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004,
  0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404,
  0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000,
  0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400,
  0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404,
  0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400,
  0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004
};

static u32 sbox2[64] =
{
  0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020,
  0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020,
  0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000,
  0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020,
  0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000,
  0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000,
  0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020,
  0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000
};

static u32 sbox3[64] =
{
  0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200,
  0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208,
  0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208,
  0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000,
  0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000,
  0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008,
  0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008,
  0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200
};

static u32 sbox4[64] =
{
  0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001,
  0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001,
  0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080,
  0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081,
  0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000,
  0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080,
  0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081,
  0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080
};

static u32 sbox5[64] =
{
  0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000,
  0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000,
  0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100,
  0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100,
  0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100,
  0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000,
  0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000,
  0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100
};

static u32 sbox6[64] =
{
  0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000,
  0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010,
  0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010,
  0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000,
  0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010,
  0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000,
  0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010,
  0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010
};

static u32 sbox7[64] =
{
  0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800,
  0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802,
  0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002,
  0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800,
  0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002,
  0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800,
  0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802,
  0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002
};

static u32 sbox8[64] =
{
  0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000,
  0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040,
  0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000,
  0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000,
  0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040,
  0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040,
  0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000,
  0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000
};


/*
 * These two tables are part of the 'permuted choice 1' function.
 * In this implementation several speed improvements are done.
 */
static u32 leftkey_swap[16] =
{
  0x00000000, 0x00000001, 0x00000100, 0x00000101,
  0x00010000, 0x00010001, 0x00010100, 0x00010101,
  0x01000000, 0x01000001, 0x01000100, 0x01000101,
  0x01010000, 0x01010001, 0x01010100, 0x01010101
};

static u32 rightkey_swap[16] =
{
  0x00000000, 0x01000000, 0x00010000, 0x01010000,
  0x00000100, 0x01000100, 0x00010100, 0x01010100,
  0x00000001, 0x01000001, 0x00010001, 0x01010001,
  0x00000101, 0x01000101, 0x00010101, 0x01010101,
};



/*
 * Numbers of left shifts per round for encryption subkeys.
 * To calculate the decryption subkeys we just reverse the
 * ordering of the calculated encryption subkeys. So their
 * is no need for a decryption rotate tab.
 */
static byte encrypt_rotate_tab[16] =
{
  1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};



/*
 * Table with weak DES keys sorted in ascending order.
 * In DES their are 64 known keys which are weak. They are weak
 * because they produce only one, two or four different
 * subkeys in the subkey scheduling process.
 * The keys in this table have all their parity bits cleared.
 */
static byte weak_keys[64][8] =
{
  { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, /*w*/
  { 0x00, 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e },
  { 0x00, 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0 },
  { 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe },
  { 0x00, 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e }, /*sw*/
  { 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00 },
  { 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe },
  { 0x00, 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0 },
  { 0x00, 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0 }, /*sw*/
  { 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe },
  { 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00 },
  { 0x00, 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e },
  { 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe }, /*sw*/
  { 0x00, 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0 },
  { 0x00, 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e },
  { 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00 },
  { 0x1e, 0x00, 0x00, 0x1e, 0x0e, 0x00, 0x00, 0x0e },
  { 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e, 0x00 }, /*sw*/
  { 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0, 0xfe },
  { 0x1e, 0x00, 0xfe, 0xe0, 0x0e, 0x00, 0xfe, 0xf0 },
  { 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00, 0x00 },
  { 0x1e, 0x1e, 0x1e, 0x1e, 0x0e, 0x0e, 0x0e, 0x0e }, /*w*/
  { 0x1e, 0x1e, 0xe0, 0xe0, 0x0e, 0x0e, 0xf0, 0xf0 },
  { 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe, 0xfe },
  { 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00, 0xfe },
  { 0x1e, 0xe0, 0x1e, 0xe0, 0x0e, 0xf0, 0x0e, 0xf0 }, /*sw*/
  { 0x1e, 0xe0, 0xe0, 0x1e, 0x0e, 0xf0, 0xf0, 0x0e },
  { 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe, 0x00 },
  { 0x1e, 0xfe, 0x00, 0xe0, 0x0e, 0xfe, 0x00, 0xf0 },
  { 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e, 0xfe }, /*sw*/
  { 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0, 0x00 },
  { 0x1e, 0xfe, 0xfe, 0x1e, 0x0e, 0xfe, 0xfe, 0x0e },
  { 0xe0, 0x00, 0x00, 0xe0, 0xf0, 0x00, 0x00, 0xf0 },
  { 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e, 0xfe },
  { 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0, 0x00 }, /*sw*/
  { 0xe0, 0x00, 0xfe, 0x1e, 0xf0, 0x00, 0xfe, 0x0e },
  { 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00, 0xfe },
  { 0xe0, 0x1e, 0x1e, 0xe0, 0xf0, 0x0e, 0x0e, 0xf0 },
  { 0xe0, 0x1e, 0xe0, 0x1e, 0xf0, 0x0e, 0xf0, 0x0e }, /*sw*/
  { 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe, 0x00 },
  { 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00, 0x00 },
  { 0xe0, 0xe0, 0x1e, 0x1e, 0xf0, 0xf0, 0x0e, 0x0e },
  { 0xe0, 0xe0, 0xe0, 0xe0, 0xf0, 0xf0, 0xf0, 0xf0 }, /*w*/
  { 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe, 0xfe },
  { 0xe0, 0xfe, 0x00, 0x1e, 0xf0, 0xfe, 0x00, 0x0e },
  { 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e, 0x00 },
  { 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0, 0xfe }, /*sw*/
  { 0xe0, 0xfe, 0xfe, 0xe0, 0xf0, 0xfe, 0xfe, 0xf0 },
  { 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe },
  { 0xfe, 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0 },
  { 0xfe, 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e },
  { 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00 }, /*sw*/
  { 0xfe, 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0 },
  { 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe },
  { 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00 },
  { 0xfe, 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e }, /*sw*/
  { 0xfe, 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e },
  { 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00 },
  { 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe },
  { 0xfe, 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0 }, /*sw*/
  { 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00 },
  { 0xfe, 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e },
  { 0xfe, 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0 },
  { 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe }  /*w*/
};



/*
 * Macro to swap bits across two words.
 */
#define DO_PERMUTATION(a, temp, b, offset, mask)	\
    temp = ((a>>offset) ^ b) & mask;			\
    b ^= temp;						\
    a ^= temp<<offset;


/*
 * This performs the 'initial permutation' of the data to be encrypted
 * or decrypted. Additionally the resulting two words are rotated one bit
 * to the left.
 */
#define INITIAL_PERMUTATION(left, temp, right)		\
    DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f)	\
    DO_PERMUTATION(left, temp, right, 16, 0x0000ffff)	\
    DO_PERMUTATION(right, temp, left, 2, 0x33333333)	\
    DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff)	\
    right =  (right << 1) | (right >> 31);		\
    temp  =  (left ^ right) & 0xaaaaaaaa;		\
    right ^= temp;					\
    left  ^= temp;					\
    left  =  (left << 1) | (left >> 31);

/*
 * The 'inverse initial permutation'.
 */
#define FINAL_PERMUTATION(left, temp, right)		\
    left  =  (left << 31) | (left >> 1);		\
    temp  =  (left ^ right) & 0xaaaaaaaa;		\
    left  ^= temp;					\
    right ^= temp;					\
    right  =  (right << 31) | (right >> 1);		\
    DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff)	\
    DO_PERMUTATION(right, temp, left, 2, 0x33333333)	\
    DO_PERMUTATION(left, temp, right, 16, 0x0000ffff)	\
    DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f)


/*
 * A full DES round including 'expansion function', 'sbox substitution'
 * and 'primitive function P' but without swapping the left and right word.
 * Please note: The data in 'from' and 'to' is already rotated one bit to
 * the left, done in the initial permutation.
 */
#define DES_ROUND(from, to, work, subkey)		\
    work = from ^ *subkey++;				\
    to ^= sbox8[  work	    & 0x3f ];			\
    to ^= sbox6[ (work>>8)  & 0x3f ];			\
    to ^= sbox4[ (work>>16) & 0x3f ];			\
    to ^= sbox2[ (work>>24) & 0x3f ];			\
    work = ((from << 28) | (from >> 4)) ^ *subkey++;	\
    to ^= sbox7[  work	    & 0x3f ];			\
    to ^= sbox5[ (work>>8)  & 0x3f ];			\
    to ^= sbox3[ (work>>16) & 0x3f ];			\
    to ^= sbox1[ (work>>24) & 0x3f ];

/*
 * Macros to convert 8 bytes from/to 32bit words.
 */
#define READ_64BIT_DATA(data, left, right)				   \
    left  = (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3];  \
    right = (data[4] << 24) | (data[5] << 16) | (data[6] << 8) | data[7];

#define WRITE_64BIT_DATA(data, left, right)				   \
    data[0] = (left >> 24) &0xff; data[1] = (left >> 16) &0xff; 	   \
    data[2] = (left >> 8) &0xff; data[3] = left &0xff;			   \
    data[4] = (right >> 24) &0xff; data[5] = (right >> 16) &0xff;	   \
    data[6] = (right >> 8) &0xff; data[7] = right &0xff;

/*
 * Handy macros for encryption and decryption of data
 */
#define des_ecb_encrypt(ctx, from, to)	      des_ecb_crypt(ctx, from, to, 0)
#define des_ecb_decrypt(ctx, from, to)	      des_ecb_crypt(ctx, from, to, 1)
#define tripledes_ecb_encrypt(ctx, from, to) tripledes_ecb_crypt(ctx,from,to,0)
#define tripledes_ecb_decrypt(ctx, from, to) tripledes_ecb_crypt(ctx,from,to,1)






/*
 * des_key_schedule():	  Calculate 16 subkeys pairs (even/odd) for
 *			  16 encryption rounds.
 *			  To calculate subkeys for decryption the caller
 *			  have to reorder the generated subkeys.
 *
 *    rawkey:	    8 Bytes of key data
 *    subkey:	    Array of at least 32 u32s. Will be filled
 *		    with calculated subkeys.
 *
 */
static void
des_key_schedule (const byte * rawkey, u32 * subkey)
{
  u32 left, right, work;
  int round;

  READ_64BIT_DATA (rawkey, left, right)

  DO_PERMUTATION (right, work, left, 4, 0x0f0f0f0f)
  DO_PERMUTATION (right, work, left, 0, 0x10101010)

  left = ((leftkey_swap[(left >> 0) & 0xf] << 3)
          | (leftkey_swap[(left >> 8) & 0xf] << 2)
          | (leftkey_swap[(left >> 16) & 0xf] << 1)
          | (leftkey_swap[(left >> 24) & 0xf])
          | (leftkey_swap[(left >> 5) & 0xf] << 7)
          | (leftkey_swap[(left >> 13) & 0xf] << 6)
          | (leftkey_swap[(left >> 21) & 0xf] << 5)
          | (leftkey_swap[(left >> 29) & 0xf] << 4));

  left &= 0x0fffffff;

  right = ((rightkey_swap[(right >> 1) & 0xf] << 3)
           | (rightkey_swap[(right >> 9) & 0xf] << 2)
           | (rightkey_swap[(right >> 17) & 0xf] << 1)
           | (rightkey_swap[(right >> 25) & 0xf])
           | (rightkey_swap[(right >> 4) & 0xf] << 7)
           | (rightkey_swap[(right >> 12) & 0xf] << 6)
           | (rightkey_swap[(right >> 20) & 0xf] << 5)
           | (rightkey_swap[(right >> 28) & 0xf] << 4));

  right &= 0x0fffffff;

  for (round = 0; round < 16; ++round)
    {
      left = ((left << encrypt_rotate_tab[round])
              | (left >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;
      right = ((right << encrypt_rotate_tab[round])
               | (right >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;

      *subkey++ = (((left << 4) & 0x24000000)
                   | ((left << 28) & 0x10000000)
                   | ((left << 14) & 0x08000000)
                   | ((left << 18) & 0x02080000)
                   | ((left << 6) & 0x01000000)
                   | ((left << 9) & 0x00200000)
                   | ((left >> 1) & 0x00100000)
                   | ((left << 10) & 0x00040000)
                   | ((left << 2) & 0x00020000)
                   | ((left >> 10) & 0x00010000)
                   | ((right >> 13) & 0x00002000)
                   | ((right >> 4) & 0x00001000)
                   | ((right << 6) & 0x00000800)
                   | ((right >> 1) & 0x00000400)
                   | ((right >> 14) & 0x00000200)
                   | (right & 0x00000100)
                   | ((right >> 5) & 0x00000020)
                   | ((right >> 10) & 0x00000010)
                   | ((right >> 3) & 0x00000008)
                   | ((right >> 18) & 0x00000004)
                   | ((right >> 26) & 0x00000002)
                   | ((right >> 24) & 0x00000001));

      *subkey++ = (((left << 15) & 0x20000000)
                   | ((left << 17) & 0x10000000)
                   | ((left << 10) & 0x08000000)
                   | ((left << 22) & 0x04000000)
                   | ((left >> 2) & 0x02000000)
                   | ((left << 1) & 0x01000000)
                   | ((left << 16) & 0x00200000)
                   | ((left << 11) & 0x00100000)
                   | ((left << 3) & 0x00080000)
                   | ((left >> 6) & 0x00040000)
                   | ((left << 15) & 0x00020000)
                   | ((left >> 4) & 0x00010000)
                   | ((right >> 2) & 0x00002000)
                   | ((right << 8) & 0x00001000)
                   | ((right >> 14) & 0x00000808)
                   | ((right >> 9) & 0x00000400)
                   | ((right) & 0x00000200)
                   | ((right << 7) & 0x00000100)
                   | ((right >> 7) & 0x00000020)
                   | ((right >> 3) & 0x00000011)
                   | ((right << 2) & 0x00000004)
                   | ((right >> 21) & 0x00000002));
    }
}


/*
 * Fill a DES context with subkeys calculated from a 64bit key.
 * Does not check parity bits, but simply ignore them.
 * Does not check for weak keys.
 */
static int
des_setkey (struct _des_ctx *ctx, const byte * key)
{
  static const char *selftest_failed;
  int i;

  if (!fips_mode () && !initialized)
    {
      initialized = 1;
      selftest_failed = selftest ();

      if (selftest_failed)
	log_error ("%s\n", selftest_failed);
    }
  if (selftest_failed)
    return GPG_ERR_SELFTEST_FAILED;

  des_key_schedule (key, ctx->encrypt_subkeys);
  _gcry_burn_stack (32);

  for(i=0; i<32; i+=2)
    {
      ctx->decrypt_subkeys[i]	= ctx->encrypt_subkeys[30-i];
      ctx->decrypt_subkeys[i+1] = ctx->encrypt_subkeys[31-i];
    }

  return 0;
}



/*
 * Electronic Codebook Mode DES encryption/decryption of data according
 * to 'mode'.
 */
static int
des_ecb_crypt (struct _des_ctx *ctx, const byte * from, byte * to, int mode)
{
  u32 left, right, work;
  u32 *keys;

  keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys;

  READ_64BIT_DATA (from, left, right)
  INITIAL_PERMUTATION (left, work, right)

  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)

  FINAL_PERMUTATION (right, work, left)
  WRITE_64BIT_DATA (to, right, left)

  return 0;
}



/*
 * Fill a Triple-DES context with subkeys calculated from two 64bit keys.
 * Does not check the parity bits of the keys, but simply ignore them.
 * Does not check for weak keys.
 */



/*
 * Fill a Triple-DES context with subkeys calculated from three 64bit keys.
 * Does not check the parity bits of the keys, but simply ignore them.
 * Does not check for weak keys.
 */
static int
tripledes_set3keys (struct _tripledes_ctx *ctx,
		    const byte * key1,
		    const byte * key2,
		    const byte * key3)
{
  static const char *selftest_failed;
  int i;

  if (!fips_mode () && !initialized)
    {
      initialized = 1;
      selftest_failed = selftest ();

      if (selftest_failed)
	log_error ("%s\n", selftest_failed);
    }
  if (selftest_failed)
    return GPG_ERR_SELFTEST_FAILED;

  des_key_schedule (key1, ctx->encrypt_subkeys);
  des_key_schedule (key2, &(ctx->decrypt_subkeys[32]));
  des_key_schedule (key3, &(ctx->encrypt_subkeys[64]));
  _gcry_burn_stack (32);

  for(i=0; i<32; i+=2)
    {
      ctx->decrypt_subkeys[i]	 = ctx->encrypt_subkeys[94-i];
      ctx->decrypt_subkeys[i+1]  = ctx->encrypt_subkeys[95-i];

      ctx->encrypt_subkeys[i+32] = ctx->decrypt_subkeys[62-i];
      ctx->encrypt_subkeys[i+33] = ctx->decrypt_subkeys[63-i];

      ctx->decrypt_subkeys[i+64] = ctx->encrypt_subkeys[30-i];
      ctx->decrypt_subkeys[i+65] = ctx->encrypt_subkeys[31-i];
     }

  return 0;
}



/*
 * Electronic Codebook Mode Triple-DES encryption/decryption of data
 * according to 'mode'.  Sometimes this mode is named 'EDE' mode
 * (Encryption-Decryption-Encryption).
 */
static int
tripledes_ecb_crypt (struct _tripledes_ctx *ctx, const byte * from,
                     byte * to, int mode)
{
  u32 left, right, work;
  u32 *keys;

  keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys;

  READ_64BIT_DATA (from, left, right)
  INITIAL_PERMUTATION (left, work, right)

  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)

  DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
  DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
  DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
  DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
  DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
  DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
  DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
  DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)

  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
  DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)

  FINAL_PERMUTATION (right, work, left)
  WRITE_64BIT_DATA (to, right, left)

  return 0;
}





/*
 * Check whether the 8 byte key is weak.
 * Does not check the parity bits of the key but simple ignore them.
 */
static int
is_weak_key ( const byte *key )
{
  byte work[8];
  int i, left, right, middle, cmp_result;

  /* clear parity bits */
  for(i=0; i<8; ++i)
     work[i] = key[i] & 0xfe;

  /* binary search in the weak key table */
  left = 0;
  right = 63;
  while(left <= right)
    {
      middle = (left + right) / 2;

      if ( !(cmp_result=working_memcmp(work, weak_keys[middle], 8)) )
	  return -1;

      if ( cmp_result > 0 )
	  left = middle + 1;
      else
	  right = middle - 1;
    }

  return 0;
}



/*
 * Performs a selftest of this DES/Triple-DES implementation.
 * Returns an string with the error text on failure.
 * Returns NULL if all is ok.
 */


static gcry_err_code_t
do_tripledes_setkey ( void *context, const byte *key, unsigned keylen )
{
  struct _tripledes_ctx *ctx = (struct _tripledes_ctx *) context;

  if( keylen != 24 )
    return GPG_ERR_INV_KEYLEN;

  tripledes_set3keys ( ctx, key, key+8, key+16);

  if (ctx->flags.no_weak_key)
    ; /* Detection has been disabled.  */
  else if (is_weak_key (key) || is_weak_key (key+8) || is_weak_key (key+16))
    {
      _gcry_burn_stack (64);
      return GPG_ERR_WEAK_KEY;
    }
  _gcry_burn_stack (64);

  return GPG_ERR_NO_ERROR;
}




static void
do_tripledes_encrypt( void *context, byte *outbuf, const byte *inbuf )
{
  struct _tripledes_ctx *ctx = (struct _tripledes_ctx *) context;

  tripledes_ecb_encrypt ( ctx, inbuf, outbuf );
  _gcry_burn_stack (32);
}

static void
do_tripledes_decrypt( void *context, byte *outbuf, const byte *inbuf )
{
  struct _tripledes_ctx *ctx = (struct _tripledes_ctx *) context;
  tripledes_ecb_decrypt ( ctx, inbuf, outbuf );
  _gcry_burn_stack (32);
}

static gcry_err_code_t
do_des_setkey (void *context, const byte *key, unsigned keylen)
{
  struct _des_ctx *ctx = (struct _des_ctx *) context;

  if (keylen != 8)
    return GPG_ERR_INV_KEYLEN;

  des_setkey (ctx, key);

  if (is_weak_key (key)) {
    _gcry_burn_stack (64);
    return GPG_ERR_WEAK_KEY;
  }
  _gcry_burn_stack (64);

  return GPG_ERR_NO_ERROR;
}


static void
do_des_encrypt( void *context, byte *outbuf, const byte *inbuf )
{
  struct _des_ctx *ctx = (struct _des_ctx *) context;

  des_ecb_encrypt ( ctx, inbuf, outbuf );
  _gcry_burn_stack (32);
}

static void
do_des_decrypt( void *context, byte *outbuf, const byte *inbuf )
{
  struct _des_ctx *ctx = (struct _des_ctx *) context;

  des_ecb_decrypt ( ctx, inbuf, outbuf );
  _gcry_burn_stack (32);
}




/*
     Self-test section.
 */


/* Selftest for TripleDES.  */



/* Run a full self-test for ALGO and return 0 on success.  */



gcry_cipher_spec_t _gcry_cipher_spec_des =
  {
    "DES", NULL, NULL, 8, 64, sizeof (struct _des_ctx),
    do_des_setkey, do_des_encrypt, do_des_decrypt
    ,
#ifdef GRUB_UTIL
    .modname = "gcry_des",
#endif
  };

static gcry_cipher_oid_spec_t oids_tripledes[] =
  {
    { "1.2.840.113549.3.7", GCRY_CIPHER_MODE_CBC },
    /* Teletrust specific OID for 3DES. */
    { "1.3.36.3.1.3.2.1",   GCRY_CIPHER_MODE_CBC },
    /* pbeWithSHAAnd3_KeyTripleDES_CBC */
    { "1.2.840.113549.1.12.1.3", GCRY_CIPHER_MODE_CBC },
    { NULL }
  };

gcry_cipher_spec_t _gcry_cipher_spec_tripledes =
  {
    "3DES", NULL, oids_tripledes, 8, 192, sizeof (struct _tripledes_ctx),
    do_tripledes_setkey, do_tripledes_encrypt, do_tripledes_decrypt
    ,
#ifdef GRUB_UTIL
    .modname = "gcry_des",
#endif
  };



GRUB_MOD_INIT(gcry_des)
{
  grub_cipher_register (&_gcry_cipher_spec_des);
  grub_cipher_register (&_gcry_cipher_spec_tripledes);
}

GRUB_MOD_FINI(gcry_des)
{
  grub_cipher_unregister (&_gcry_cipher_spec_des);
  grub_cipher_unregister (&_gcry_cipher_spec_tripledes);
}