diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:24:48 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:24:48 +0000 |
commit | cca66b9ec4e494c1d919bff0f71a820d8afab1fa (patch) | |
tree | 146f39ded1c938019e1ed42d30923c2ac9e86789 /share/extensions/inkex/bezier.py | |
parent | Initial commit. (diff) | |
download | inkscape-12fc8abae6d434cac7670a59ed3a67301cc2eb10.tar.xz inkscape-12fc8abae6d434cac7670a59ed3a67301cc2eb10.zip |
Adding upstream version 1.2.2.upstream/1.2.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'share/extensions/inkex/bezier.py')
-rw-r--r-- | share/extensions/inkex/bezier.py | 488 |
1 files changed, 488 insertions, 0 deletions
diff --git a/share/extensions/inkex/bezier.py b/share/extensions/inkex/bezier.py new file mode 100644 index 0000000..976fdab --- /dev/null +++ b/share/extensions/inkex/bezier.py @@ -0,0 +1,488 @@ +# coding=utf-8 +# +# Copyright (C) 2010 Nick Drobchenko, nick@cnc-club.ru +# Copyright (C) 2005 Aaron Spike, aaron@ekips.org +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program; if not, write to the Free Software +# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. +# +# pylint: disable=invalid-name,too-many-locals +# +""" +Bezier calculations +""" + +import cmath +import math + +import numpy + +from .transforms import DirectedLineSegment +from .localization import inkex_gettext as _ + +# bez = ((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) + + +def pointdistance(point_a, point_b): + """The straight line distance between two points""" + return math.sqrt( + ((point_b[0] - point_a[0]) ** 2) + ((point_b[1] - point_a[1]) ** 2) + ) + + +def between_point(point_a, point_b, time=0.5): + """Returns the point between point a and point b""" + return point_a[0] + time * (point_b[0] - point_a[0]), point_a[1] + time * ( + point_b[1] - point_a[1] + ) + + +def percent_point(point_a, point_b, percent=50.0): + """Returns between_point but takes percent instead of 0.0-1.0""" + return between_point(point_a, point_b, percent / 100.0) + + +def root_wrapper(root_a, root_b, root_c, root_d): + """Get the Cubic function, moic formular of roots, simple root""" + if root_a: + # Monics formula, see + # http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots + mono_a, mono_b, mono_c = (root_b / root_a, root_c / root_a, root_d / root_a) + m = 2.0 * mono_a**3 - 9.0 * mono_a * mono_b + 27.0 * mono_c + k = mono_a**2 - 3.0 * mono_b + n = m**2 - 4.0 * k**3 + w1 = -0.5 + 0.5 * cmath.sqrt(-3.0) + w2 = -0.5 - 0.5 * cmath.sqrt(-3.0) + if n < 0: + m1 = pow(complex((m + cmath.sqrt(n)) / 2), 1.0 / 3) + n1 = pow(complex((m - cmath.sqrt(n)) / 2), 1.0 / 3) + else: + if m + math.sqrt(n) < 0: + m1 = -pow(-(m + math.sqrt(n)) / 2, 1.0 / 3) + else: + m1 = pow((m + math.sqrt(n)) / 2, 1.0 / 3) + if m - math.sqrt(n) < 0: + n1 = -pow(-(m - math.sqrt(n)) / 2, 1.0 / 3) + else: + n1 = pow((m - math.sqrt(n)) / 2, 1.0 / 3) + return ( + -1.0 / 3 * (mono_a + m1 + n1), + -1.0 / 3 * (mono_a + w1 * m1 + w2 * n1), + -1.0 / 3 * (mono_a + w2 * m1 + w1 * n1), + ) + if root_b: + det = root_c**2.0 - 4.0 * root_b * root_d + if det: + return ( + (-root_c + cmath.sqrt(det)) / (2.0 * root_b), + (-root_c - cmath.sqrt(det)) / (2.0 * root_b), + ) + return (-root_c / (2.0 * root_b),) + if root_c: + return (1.0 * (-root_d / root_c),) + return () + + +def bezlenapprx(sp1, sp2): + """Return the aproximate length between two beziers""" + return ( + pointdistance(sp1[1], sp1[2]) + + pointdistance(sp1[2], sp2[0]) + + pointdistance(sp2[0], sp2[1]) + ) + + +def cspbezsplit(sp1, sp2, time=0.5): + """Split a cubic bezier at the time period""" + m1 = tpoint(sp1[1], sp1[2], time) + m2 = tpoint(sp1[2], sp2[0], time) + m3 = tpoint(sp2[0], sp2[1], time) + m4 = tpoint(m1, m2, time) + m5 = tpoint(m2, m3, time) + m = tpoint(m4, m5, time) + return [[sp1[0][:], sp1[1][:], m1], [m4, m, m5], [m3, sp2[1][:], sp2[2][:]]] + + +def cspbezsplitatlength(sp1, sp2, length=0.5, tolerance=0.001): + """Split a cubic bezier at length""" + bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:]) + time = beziertatlength(bez, length, tolerance) + return cspbezsplit(sp1, sp2, time) + + +def cspseglength(sp1, sp2, tolerance=0.001): + """Get cubic bezier segment length""" + bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:]) + return bezierlength(bez, tolerance) + + +def csplength(csp): + """Get cubic bezier length""" + total = 0 + lengths = [] + for sp in csp: + lengths.append([]) + for i in range(1, len(sp)): + l = cspseglength(sp[i - 1], sp[i]) + lengths[-1].append(l) + total += l + return lengths, total + + +def bezierparameterize(bez): + """Return the bezier parameter size + Converts the bezier parametrisation from the default form + P(t) = (1-t)³ P_1 + 3(1-t)²t P_2 + 3(1-t)t² P_3 + t³ x_4 + to the a form which can be differentiated more easily + P(t) = a t³ + b t² + c t + P0 + + Args: + bez (List[Tuple[float, float]]): the Bezier curve. The elements of the list the + coordinates of the points (in this order): Start point, Start control point, + End control point, End point. + + Returns: + Tuple[float, float, float, float, float, float, float, float]: + the values ax, ay, bx, by, cx, cy, x0, y0 + """ + ((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3)) = bez + # parametric bezier + x0 = bx0 + y0 = by0 + cx = 3 * (bx1 - x0) + bx = 3 * (bx2 - bx1) - cx + ax = bx3 - x0 - cx - bx + cy = 3 * (by1 - y0) + by = 3 * (by2 - by1) - cy + ay = by3 - y0 - cy - by + + return ax, ay, bx, by, cx, cy, x0, y0 + + +def linebezierintersect(arg_a, bez): + """Where a line and bezier intersect""" + ((lx1, ly1), (lx2, ly2)) = arg_a + # parametric line + dd = lx1 + cc = lx2 - lx1 + bb = ly1 + aa = ly2 - ly1 + + if aa: + coef1 = cc / aa + coef2 = 1 + else: + coef1 = 1 + coef2 = aa / cc + + ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize(bez) + # cubic intersection coefficients + a = coef1 * ay - coef2 * ax + b = coef1 * by - coef2 * bx + c = coef1 * cy - coef2 * cx + d = coef1 * (y0 - bb) - coef2 * (x0 - dd) + + roots = root_wrapper(a, b, c, d) + retval = [] + for i in roots: + if isinstance(i, complex) and i.imag == 0: + i = i.real + if not isinstance(i, complex) and 0 <= i <= 1: + retval.append(bezierpointatt(bez, i)) + return retval + + +def bezierpointatt(bez, t): + """Get coords at the given time point along a bezier curve""" + ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize(bez) + x = ax * (t**3) + bx * (t**2) + cx * t + x0 + y = ay * (t**3) + by * (t**2) + cy * t + y0 + return x, y + + +def bezierslopeatt(bez, t): + """Get slope at the given time point along a bezier curve + The slope is computed as (dx, dy) where dx = df_x(t)/dt and dy = df_y(t)/dt. + Note that for lines P1=P2 and P3=P4, so the slope at the end points is dx=dy=0 + (slope not defined). + + Args: + bez (List[Tuple[float, float]]): the Bezier curve. The elements of the list the + coordinates of the points (in this order): Start point, Start control point, + End control point, End point. + t (float): time in the interval [0, 1] + + Returns: + Tuple[float, float]: x and y increment + """ + ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez) + dx = 3 * ax * (t**2) + 2 * bx * t + cx + dy = 3 * ay * (t**2) + 2 * by * t + cy + return dx, dy + + +def beziertatslope(bez, d): + """Reverse; get time from slope along a bezier curve""" + ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez) + (dy, dx) = d + # quadratic coefficients of slope formula + if dx: + slope = 1.0 * (dy / dx) + a = 3 * ay - 3 * ax * slope + b = 2 * by - 2 * bx * slope + c = cy - cx * slope + elif dy: + slope = 1.0 * (dx / dy) + a = 3 * ax - 3 * ay * slope + b = 2 * bx - 2 * by * slope + c = cx - cy * slope + else: + return [] + + roots = root_wrapper(0, a, b, c) + retval = [] + for i in roots: + if isinstance(i, complex) and i.imag == 0: + i = i.real + if not isinstance(i, complex) and 0 <= i <= 1: + retval.append(i) + return retval + + +def tpoint(p1, p2, t): + """Linearly interpolate between p1 and p2. + + t = 0.0 returns p1, t = 1.0 returns p2. + + :return: Interpolated point + :rtype: tuple + + :param p1: First point as sequence of two floats + :param p2: Second point as sequence of two floats + :param t: Number between 0.0 and 1.0 + :type t: float + """ + x1, y1 = p1 + x2, y2 = p2 + return x1 + t * (x2 - x1), y1 + t * (y2 - y1) + + +def beziersplitatt(bez, t): + """Split bezier at given time""" + ((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3)) = bez + m1 = tpoint((bx0, by0), (bx1, by1), t) + m2 = tpoint((bx1, by1), (bx2, by2), t) + m3 = tpoint((bx2, by2), (bx3, by3), t) + m4 = tpoint(m1, m2, t) + m5 = tpoint(m2, m3, t) + m = tpoint(m4, m5, t) + + return ((bx0, by0), m1, m4, m), (m, m5, m3, (bx3, by3)) + + +def addifclose(bez, l, error=0.001): + """Gravesen, Add if the line is closed, in-place addition to array l""" + box = 0 + for i in range(1, 4): + box += pointdistance(bez[i - 1], bez[i]) + chord = pointdistance(bez[0], bez[3]) + if (box - chord) > error: + first, second = beziersplitatt(bez, 0.5) + addifclose(first, l, error) + addifclose(second, l, error) + else: + l[0] += (box / 2.0) + (chord / 2.0) + + +# balfax, balfbx, balfcx, balfay, balfby, balfcy = 0, 0, 0, 0, 0, 0 + + +def balf(t, args): + """Bezier Arc Length Function""" + ax, bx, cx, ay, by, cy = args + retval = (ax * (t**2) + bx * t + cx) ** 2 + (ay * (t**2) + by * t + cy) ** 2 + return math.sqrt(retval) + + +def simpson(start, end, maxiter, tolerance, bezier_args): + """Calculate the length of a bezier curve using Simpson's algorithm: + http://steve.hollasch.net/cgindex/curves/cbezarclen.html + + Args: + start (int): Start time (between 0 and 1) + end (int): End time (between start time and 1) + maxiter (int): Maximum number of iterations. If not a power of 2, the algorithm + will behave like the value is set to the next power of 2. + tolerance (float): maximum error ratio + bezier_args (list): arguments as computed by bezierparametrize() + + Returns: + float: the appoximate length of the bezier curve + """ + + n = 2 + multiplier = (end - start) / 6.0 + endsum = balf(start, bezier_args) + balf(end, bezier_args) + interval = (end - start) / 2.0 + asum = 0.0 + bsum = balf(start + interval, bezier_args) + est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum)) + est0 = 2.0 * est1 + # print(multiplier, endsum, interval, asum, bsum, est1, est0) + while n < maxiter and abs(est1 - est0) > tolerance: + n *= 2 + multiplier /= 2.0 + interval /= 2.0 + asum += bsum + bsum = 0.0 + est0 = est1 + for i in range(1, n, 2): + bsum += balf(start + (i * interval), bezier_args) + est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum)) + # print(multiplier, endsum, interval, asum, bsum, est1, est0) + return est1 + + +def bezierlength(bez, tolerance=0.001, time=1.0): + """Get length of bezier curve""" + ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez) + return simpson(0.0, time, 4096, tolerance, [3 * ax, 2 * bx, cx, 3 * ay, 2 * by, cy]) + + +def beziertatlength(bez, l=0.5, tolerance=0.001): + """Get bezier curve time at the length specified""" + curlen = bezierlength(bez, tolerance, 1.0) + time = 1.0 + tdiv = time + targetlen = l * curlen + diff = curlen - targetlen + while abs(diff) > tolerance: + tdiv /= 2.0 + if diff < 0: + time += tdiv + else: + time -= tdiv + curlen = bezierlength(bez, tolerance, time) + diff = curlen - targetlen + return time + + +def maxdist(bez): + """Get maximum distance within bezier curve""" + seg = DirectedLineSegment(bez[0], bez[3]) + return max(seg.distance_to_point(*bez[1]), seg.distance_to_point(*bez[2])) + + +def cspsubdiv(csp, flat): + """Sub-divide cubic sub-paths""" + for sp in csp: + subdiv(sp, flat) + + +def subdiv(sp, flat, i=1): + """sub divide bezier curve""" + while i < len(sp): + p0 = sp[i - 1][1] + p1 = sp[i - 1][2] + p2 = sp[i][0] + p3 = sp[i][1] + + bez = (p0, p1, p2, p3) + mdist = maxdist(bez) + if mdist <= flat: + i += 1 + else: + one, two = beziersplitatt(bez, 0.5) + sp[i - 1][2] = one[1] + sp[i][0] = two[2] + p = [one[2], one[3], two[1]] + sp[i:1] = [p] + + +def csparea(csp): + """Get area in cubic sub-path""" + MAT_AREA = numpy.array( + [[0, 2, 1, -3], [-2, 0, 1, 1], [-1, -1, 0, 2], [3, -1, -2, 0]] + ) + area = 0.0 + for sp in csp: + if len(sp) < 2: + continue + for x, coord in enumerate(sp): # calculate polygon area + area += 0.5 * sp[x - 1][1][0] * (coord[1][1] - sp[x - 2][1][1]) + for i in range(1, len(sp)): # add contribution from cubic Bezier + vec_x = numpy.array( + [sp[i - 1][1][0], sp[i - 1][2][0], sp[i][0][0], sp[i][1][0]] + ) + vec_y = numpy.array( + [sp[i - 1][1][1], sp[i - 1][2][1], sp[i][0][1], sp[i][1][1]] + ) + vex = numpy.matmul(vec_x, MAT_AREA) + area += 0.15 * numpy.matmul(vex, vec_y.T) + return -area + + +def cspcofm(csp): + """Get cubic sub-path coefficient""" + MAT_COFM_0 = numpy.array( + [[0, 35, 10, -45], [-35, 0, 12, 23], [-10, -12, 0, 22], [45, -23, -22, 0]] + ) + + MAT_COFM_1 = numpy.array( + [[0, 15, 3, -18], [-15, 0, 9, 6], [-3, -9, 0, 12], [18, -6, -12, 0]] + ) + + MAT_COFM_2 = numpy.array( + [[0, 12, 6, -18], [-12, 0, 9, 3], [-6, -9, 0, 15], [18, -3, -15, 0]] + ) + + MAT_COFM_3 = numpy.array( + [[0, 22, 23, -45], [-22, 0, 12, 10], [-23, -12, 0, 35], [45, -10, -35, 0]] + ) + area = csparea(csp) + xc = 0.0 + yc = 0.0 + if abs(area) < 1.0e-8: + raise ValueError(_("Area is zero, cannot calculate Center of Mass")) + for sp in csp: + for x, coord in enumerate(sp): # calculate polygon moment + xc += ( + sp[x - 1][1][1] + * (sp[x - 2][1][0] - coord[1][0]) + * (sp[x - 2][1][0] + sp[x - 1][1][0] + coord[1][0]) + / 6 + ) + yc += ( + sp[x - 1][1][0] + * (coord[1][1] - sp[x - 2][1][1]) + * (sp[x - 2][1][1] + sp[x - 1][1][1] + coord[1][1]) + / 6 + ) + for i in range(1, len(sp)): # add contribution from cubic Bezier + vec_x = numpy.array( + [sp[i - 1][1][0], sp[i - 1][2][0], sp[i][0][0], sp[i][1][0]] + ) + vec_y = numpy.array( + [sp[i - 1][1][1], sp[i - 1][2][1], sp[i][0][1], sp[i][1][1]] + ) + + def _mul(MAT, vec_x=vec_x, vec_y=vec_y): + return numpy.matmul(numpy.matmul(vec_x, MAT), vec_y.T) + + vec_t = numpy.array( + [_mul(MAT_COFM_0), _mul(MAT_COFM_1), _mul(MAT_COFM_2), _mul(MAT_COFM_3)] + ) + xc += numpy.matmul(vec_x, vec_t.T) / 280 + yc += numpy.matmul(vec_y, vec_t.T) / 280 + return -xc / area, -yc / area |