summaryrefslogtreecommitdiffstats
path: root/share/extensions/inkex/bezier.py
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:24:48 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:24:48 +0000
commitcca66b9ec4e494c1d919bff0f71a820d8afab1fa (patch)
tree146f39ded1c938019e1ed42d30923c2ac9e86789 /share/extensions/inkex/bezier.py
parentInitial commit. (diff)
downloadinkscape-12fc8abae6d434cac7670a59ed3a67301cc2eb10.tar.xz
inkscape-12fc8abae6d434cac7670a59ed3a67301cc2eb10.zip
Adding upstream version 1.2.2.upstream/1.2.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'share/extensions/inkex/bezier.py')
-rw-r--r--share/extensions/inkex/bezier.py488
1 files changed, 488 insertions, 0 deletions
diff --git a/share/extensions/inkex/bezier.py b/share/extensions/inkex/bezier.py
new file mode 100644
index 0000000..976fdab
--- /dev/null
+++ b/share/extensions/inkex/bezier.py
@@ -0,0 +1,488 @@
+# coding=utf-8
+#
+# Copyright (C) 2010 Nick Drobchenko, nick@cnc-club.ru
+# Copyright (C) 2005 Aaron Spike, aaron@ekips.org
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# pylint: disable=invalid-name,too-many-locals
+#
+"""
+Bezier calculations
+"""
+
+import cmath
+import math
+
+import numpy
+
+from .transforms import DirectedLineSegment
+from .localization import inkex_gettext as _
+
+# bez = ((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))
+
+
+def pointdistance(point_a, point_b):
+ """The straight line distance between two points"""
+ return math.sqrt(
+ ((point_b[0] - point_a[0]) ** 2) + ((point_b[1] - point_a[1]) ** 2)
+ )
+
+
+def between_point(point_a, point_b, time=0.5):
+ """Returns the point between point a and point b"""
+ return point_a[0] + time * (point_b[0] - point_a[0]), point_a[1] + time * (
+ point_b[1] - point_a[1]
+ )
+
+
+def percent_point(point_a, point_b, percent=50.0):
+ """Returns between_point but takes percent instead of 0.0-1.0"""
+ return between_point(point_a, point_b, percent / 100.0)
+
+
+def root_wrapper(root_a, root_b, root_c, root_d):
+ """Get the Cubic function, moic formular of roots, simple root"""
+ if root_a:
+ # Monics formula, see
+ # http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots
+ mono_a, mono_b, mono_c = (root_b / root_a, root_c / root_a, root_d / root_a)
+ m = 2.0 * mono_a**3 - 9.0 * mono_a * mono_b + 27.0 * mono_c
+ k = mono_a**2 - 3.0 * mono_b
+ n = m**2 - 4.0 * k**3
+ w1 = -0.5 + 0.5 * cmath.sqrt(-3.0)
+ w2 = -0.5 - 0.5 * cmath.sqrt(-3.0)
+ if n < 0:
+ m1 = pow(complex((m + cmath.sqrt(n)) / 2), 1.0 / 3)
+ n1 = pow(complex((m - cmath.sqrt(n)) / 2), 1.0 / 3)
+ else:
+ if m + math.sqrt(n) < 0:
+ m1 = -pow(-(m + math.sqrt(n)) / 2, 1.0 / 3)
+ else:
+ m1 = pow((m + math.sqrt(n)) / 2, 1.0 / 3)
+ if m - math.sqrt(n) < 0:
+ n1 = -pow(-(m - math.sqrt(n)) / 2, 1.0 / 3)
+ else:
+ n1 = pow((m - math.sqrt(n)) / 2, 1.0 / 3)
+ return (
+ -1.0 / 3 * (mono_a + m1 + n1),
+ -1.0 / 3 * (mono_a + w1 * m1 + w2 * n1),
+ -1.0 / 3 * (mono_a + w2 * m1 + w1 * n1),
+ )
+ if root_b:
+ det = root_c**2.0 - 4.0 * root_b * root_d
+ if det:
+ return (
+ (-root_c + cmath.sqrt(det)) / (2.0 * root_b),
+ (-root_c - cmath.sqrt(det)) / (2.0 * root_b),
+ )
+ return (-root_c / (2.0 * root_b),)
+ if root_c:
+ return (1.0 * (-root_d / root_c),)
+ return ()
+
+
+def bezlenapprx(sp1, sp2):
+ """Return the aproximate length between two beziers"""
+ return (
+ pointdistance(sp1[1], sp1[2])
+ + pointdistance(sp1[2], sp2[0])
+ + pointdistance(sp2[0], sp2[1])
+ )
+
+
+def cspbezsplit(sp1, sp2, time=0.5):
+ """Split a cubic bezier at the time period"""
+ m1 = tpoint(sp1[1], sp1[2], time)
+ m2 = tpoint(sp1[2], sp2[0], time)
+ m3 = tpoint(sp2[0], sp2[1], time)
+ m4 = tpoint(m1, m2, time)
+ m5 = tpoint(m2, m3, time)
+ m = tpoint(m4, m5, time)
+ return [[sp1[0][:], sp1[1][:], m1], [m4, m, m5], [m3, sp2[1][:], sp2[2][:]]]
+
+
+def cspbezsplitatlength(sp1, sp2, length=0.5, tolerance=0.001):
+ """Split a cubic bezier at length"""
+ bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:])
+ time = beziertatlength(bez, length, tolerance)
+ return cspbezsplit(sp1, sp2, time)
+
+
+def cspseglength(sp1, sp2, tolerance=0.001):
+ """Get cubic bezier segment length"""
+ bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:])
+ return bezierlength(bez, tolerance)
+
+
+def csplength(csp):
+ """Get cubic bezier length"""
+ total = 0
+ lengths = []
+ for sp in csp:
+ lengths.append([])
+ for i in range(1, len(sp)):
+ l = cspseglength(sp[i - 1], sp[i])
+ lengths[-1].append(l)
+ total += l
+ return lengths, total
+
+
+def bezierparameterize(bez):
+ """Return the bezier parameter size
+ Converts the bezier parametrisation from the default form
+ P(t) = (1-t)³ P_1 + 3(1-t)²t P_2 + 3(1-t)t² P_3 + t³ x_4
+ to the a form which can be differentiated more easily
+ P(t) = a t³ + b t² + c t + P0
+
+ Args:
+ bez (List[Tuple[float, float]]): the Bezier curve. The elements of the list the
+ coordinates of the points (in this order): Start point, Start control point,
+ End control point, End point.
+
+ Returns:
+ Tuple[float, float, float, float, float, float, float, float]:
+ the values ax, ay, bx, by, cx, cy, x0, y0
+ """
+ ((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3)) = bez
+ # parametric bezier
+ x0 = bx0
+ y0 = by0
+ cx = 3 * (bx1 - x0)
+ bx = 3 * (bx2 - bx1) - cx
+ ax = bx3 - x0 - cx - bx
+ cy = 3 * (by1 - y0)
+ by = 3 * (by2 - by1) - cy
+ ay = by3 - y0 - cy - by
+
+ return ax, ay, bx, by, cx, cy, x0, y0
+
+
+def linebezierintersect(arg_a, bez):
+ """Where a line and bezier intersect"""
+ ((lx1, ly1), (lx2, ly2)) = arg_a
+ # parametric line
+ dd = lx1
+ cc = lx2 - lx1
+ bb = ly1
+ aa = ly2 - ly1
+
+ if aa:
+ coef1 = cc / aa
+ coef2 = 1
+ else:
+ coef1 = 1
+ coef2 = aa / cc
+
+ ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize(bez)
+ # cubic intersection coefficients
+ a = coef1 * ay - coef2 * ax
+ b = coef1 * by - coef2 * bx
+ c = coef1 * cy - coef2 * cx
+ d = coef1 * (y0 - bb) - coef2 * (x0 - dd)
+
+ roots = root_wrapper(a, b, c, d)
+ retval = []
+ for i in roots:
+ if isinstance(i, complex) and i.imag == 0:
+ i = i.real
+ if not isinstance(i, complex) and 0 <= i <= 1:
+ retval.append(bezierpointatt(bez, i))
+ return retval
+
+
+def bezierpointatt(bez, t):
+ """Get coords at the given time point along a bezier curve"""
+ ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize(bez)
+ x = ax * (t**3) + bx * (t**2) + cx * t + x0
+ y = ay * (t**3) + by * (t**2) + cy * t + y0
+ return x, y
+
+
+def bezierslopeatt(bez, t):
+ """Get slope at the given time point along a bezier curve
+ The slope is computed as (dx, dy) where dx = df_x(t)/dt and dy = df_y(t)/dt.
+ Note that for lines P1=P2 and P3=P4, so the slope at the end points is dx=dy=0
+ (slope not defined).
+
+ Args:
+ bez (List[Tuple[float, float]]): the Bezier curve. The elements of the list the
+ coordinates of the points (in this order): Start point, Start control point,
+ End control point, End point.
+ t (float): time in the interval [0, 1]
+
+ Returns:
+ Tuple[float, float]: x and y increment
+ """
+ ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez)
+ dx = 3 * ax * (t**2) + 2 * bx * t + cx
+ dy = 3 * ay * (t**2) + 2 * by * t + cy
+ return dx, dy
+
+
+def beziertatslope(bez, d):
+ """Reverse; get time from slope along a bezier curve"""
+ ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez)
+ (dy, dx) = d
+ # quadratic coefficients of slope formula
+ if dx:
+ slope = 1.0 * (dy / dx)
+ a = 3 * ay - 3 * ax * slope
+ b = 2 * by - 2 * bx * slope
+ c = cy - cx * slope
+ elif dy:
+ slope = 1.0 * (dx / dy)
+ a = 3 * ax - 3 * ay * slope
+ b = 2 * bx - 2 * by * slope
+ c = cx - cy * slope
+ else:
+ return []
+
+ roots = root_wrapper(0, a, b, c)
+ retval = []
+ for i in roots:
+ if isinstance(i, complex) and i.imag == 0:
+ i = i.real
+ if not isinstance(i, complex) and 0 <= i <= 1:
+ retval.append(i)
+ return retval
+
+
+def tpoint(p1, p2, t):
+ """Linearly interpolate between p1 and p2.
+
+ t = 0.0 returns p1, t = 1.0 returns p2.
+
+ :return: Interpolated point
+ :rtype: tuple
+
+ :param p1: First point as sequence of two floats
+ :param p2: Second point as sequence of two floats
+ :param t: Number between 0.0 and 1.0
+ :type t: float
+ """
+ x1, y1 = p1
+ x2, y2 = p2
+ return x1 + t * (x2 - x1), y1 + t * (y2 - y1)
+
+
+def beziersplitatt(bez, t):
+ """Split bezier at given time"""
+ ((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3)) = bez
+ m1 = tpoint((bx0, by0), (bx1, by1), t)
+ m2 = tpoint((bx1, by1), (bx2, by2), t)
+ m3 = tpoint((bx2, by2), (bx3, by3), t)
+ m4 = tpoint(m1, m2, t)
+ m5 = tpoint(m2, m3, t)
+ m = tpoint(m4, m5, t)
+
+ return ((bx0, by0), m1, m4, m), (m, m5, m3, (bx3, by3))
+
+
+def addifclose(bez, l, error=0.001):
+ """Gravesen, Add if the line is closed, in-place addition to array l"""
+ box = 0
+ for i in range(1, 4):
+ box += pointdistance(bez[i - 1], bez[i])
+ chord = pointdistance(bez[0], bez[3])
+ if (box - chord) > error:
+ first, second = beziersplitatt(bez, 0.5)
+ addifclose(first, l, error)
+ addifclose(second, l, error)
+ else:
+ l[0] += (box / 2.0) + (chord / 2.0)
+
+
+# balfax, balfbx, balfcx, balfay, balfby, balfcy = 0, 0, 0, 0, 0, 0
+
+
+def balf(t, args):
+ """Bezier Arc Length Function"""
+ ax, bx, cx, ay, by, cy = args
+ retval = (ax * (t**2) + bx * t + cx) ** 2 + (ay * (t**2) + by * t + cy) ** 2
+ return math.sqrt(retval)
+
+
+def simpson(start, end, maxiter, tolerance, bezier_args):
+ """Calculate the length of a bezier curve using Simpson's algorithm:
+ http://steve.hollasch.net/cgindex/curves/cbezarclen.html
+
+ Args:
+ start (int): Start time (between 0 and 1)
+ end (int): End time (between start time and 1)
+ maxiter (int): Maximum number of iterations. If not a power of 2, the algorithm
+ will behave like the value is set to the next power of 2.
+ tolerance (float): maximum error ratio
+ bezier_args (list): arguments as computed by bezierparametrize()
+
+ Returns:
+ float: the appoximate length of the bezier curve
+ """
+
+ n = 2
+ multiplier = (end - start) / 6.0
+ endsum = balf(start, bezier_args) + balf(end, bezier_args)
+ interval = (end - start) / 2.0
+ asum = 0.0
+ bsum = balf(start + interval, bezier_args)
+ est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
+ est0 = 2.0 * est1
+ # print(multiplier, endsum, interval, asum, bsum, est1, est0)
+ while n < maxiter and abs(est1 - est0) > tolerance:
+ n *= 2
+ multiplier /= 2.0
+ interval /= 2.0
+ asum += bsum
+ bsum = 0.0
+ est0 = est1
+ for i in range(1, n, 2):
+ bsum += balf(start + (i * interval), bezier_args)
+ est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
+ # print(multiplier, endsum, interval, asum, bsum, est1, est0)
+ return est1
+
+
+def bezierlength(bez, tolerance=0.001, time=1.0):
+ """Get length of bezier curve"""
+ ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez)
+ return simpson(0.0, time, 4096, tolerance, [3 * ax, 2 * bx, cx, 3 * ay, 2 * by, cy])
+
+
+def beziertatlength(bez, l=0.5, tolerance=0.001):
+ """Get bezier curve time at the length specified"""
+ curlen = bezierlength(bez, tolerance, 1.0)
+ time = 1.0
+ tdiv = time
+ targetlen = l * curlen
+ diff = curlen - targetlen
+ while abs(diff) > tolerance:
+ tdiv /= 2.0
+ if diff < 0:
+ time += tdiv
+ else:
+ time -= tdiv
+ curlen = bezierlength(bez, tolerance, time)
+ diff = curlen - targetlen
+ return time
+
+
+def maxdist(bez):
+ """Get maximum distance within bezier curve"""
+ seg = DirectedLineSegment(bez[0], bez[3])
+ return max(seg.distance_to_point(*bez[1]), seg.distance_to_point(*bez[2]))
+
+
+def cspsubdiv(csp, flat):
+ """Sub-divide cubic sub-paths"""
+ for sp in csp:
+ subdiv(sp, flat)
+
+
+def subdiv(sp, flat, i=1):
+ """sub divide bezier curve"""
+ while i < len(sp):
+ p0 = sp[i - 1][1]
+ p1 = sp[i - 1][2]
+ p2 = sp[i][0]
+ p3 = sp[i][1]
+
+ bez = (p0, p1, p2, p3)
+ mdist = maxdist(bez)
+ if mdist <= flat:
+ i += 1
+ else:
+ one, two = beziersplitatt(bez, 0.5)
+ sp[i - 1][2] = one[1]
+ sp[i][0] = two[2]
+ p = [one[2], one[3], two[1]]
+ sp[i:1] = [p]
+
+
+def csparea(csp):
+ """Get area in cubic sub-path"""
+ MAT_AREA = numpy.array(
+ [[0, 2, 1, -3], [-2, 0, 1, 1], [-1, -1, 0, 2], [3, -1, -2, 0]]
+ )
+ area = 0.0
+ for sp in csp:
+ if len(sp) < 2:
+ continue
+ for x, coord in enumerate(sp): # calculate polygon area
+ area += 0.5 * sp[x - 1][1][0] * (coord[1][1] - sp[x - 2][1][1])
+ for i in range(1, len(sp)): # add contribution from cubic Bezier
+ vec_x = numpy.array(
+ [sp[i - 1][1][0], sp[i - 1][2][0], sp[i][0][0], sp[i][1][0]]
+ )
+ vec_y = numpy.array(
+ [sp[i - 1][1][1], sp[i - 1][2][1], sp[i][0][1], sp[i][1][1]]
+ )
+ vex = numpy.matmul(vec_x, MAT_AREA)
+ area += 0.15 * numpy.matmul(vex, vec_y.T)
+ return -area
+
+
+def cspcofm(csp):
+ """Get cubic sub-path coefficient"""
+ MAT_COFM_0 = numpy.array(
+ [[0, 35, 10, -45], [-35, 0, 12, 23], [-10, -12, 0, 22], [45, -23, -22, 0]]
+ )
+
+ MAT_COFM_1 = numpy.array(
+ [[0, 15, 3, -18], [-15, 0, 9, 6], [-3, -9, 0, 12], [18, -6, -12, 0]]
+ )
+
+ MAT_COFM_2 = numpy.array(
+ [[0, 12, 6, -18], [-12, 0, 9, 3], [-6, -9, 0, 15], [18, -3, -15, 0]]
+ )
+
+ MAT_COFM_3 = numpy.array(
+ [[0, 22, 23, -45], [-22, 0, 12, 10], [-23, -12, 0, 35], [45, -10, -35, 0]]
+ )
+ area = csparea(csp)
+ xc = 0.0
+ yc = 0.0
+ if abs(area) < 1.0e-8:
+ raise ValueError(_("Area is zero, cannot calculate Center of Mass"))
+ for sp in csp:
+ for x, coord in enumerate(sp): # calculate polygon moment
+ xc += (
+ sp[x - 1][1][1]
+ * (sp[x - 2][1][0] - coord[1][0])
+ * (sp[x - 2][1][0] + sp[x - 1][1][0] + coord[1][0])
+ / 6
+ )
+ yc += (
+ sp[x - 1][1][0]
+ * (coord[1][1] - sp[x - 2][1][1])
+ * (sp[x - 2][1][1] + sp[x - 1][1][1] + coord[1][1])
+ / 6
+ )
+ for i in range(1, len(sp)): # add contribution from cubic Bezier
+ vec_x = numpy.array(
+ [sp[i - 1][1][0], sp[i - 1][2][0], sp[i][0][0], sp[i][1][0]]
+ )
+ vec_y = numpy.array(
+ [sp[i - 1][1][1], sp[i - 1][2][1], sp[i][0][1], sp[i][1][1]]
+ )
+
+ def _mul(MAT, vec_x=vec_x, vec_y=vec_y):
+ return numpy.matmul(numpy.matmul(vec_x, MAT), vec_y.T)
+
+ vec_t = numpy.array(
+ [_mul(MAT_COFM_0), _mul(MAT_COFM_1), _mul(MAT_COFM_2), _mul(MAT_COFM_3)]
+ )
+ xc += numpy.matmul(vec_x, vec_t.T) / 280
+ yc += numpy.matmul(vec_y, vec_t.T) / 280
+ return -xc / area, -yc / area