summaryrefslogtreecommitdiffstats
path: root/src/live_effects/lpe-pts2ellipse.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:24:48 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:24:48 +0000
commitcca66b9ec4e494c1d919bff0f71a820d8afab1fa (patch)
tree146f39ded1c938019e1ed42d30923c2ac9e86789 /src/live_effects/lpe-pts2ellipse.cpp
parentInitial commit. (diff)
downloadinkscape-upstream/1.2.2.tar.xz
inkscape-upstream/1.2.2.zip
Adding upstream version 1.2.2.upstream/1.2.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/live_effects/lpe-pts2ellipse.cpp')
-rw-r--r--src/live_effects/lpe-pts2ellipse.cpp771
1 files changed, 771 insertions, 0 deletions
diff --git a/src/live_effects/lpe-pts2ellipse.cpp b/src/live_effects/lpe-pts2ellipse.cpp
new file mode 100644
index 0000000..8559bf4
--- /dev/null
+++ b/src/live_effects/lpe-pts2ellipse.cpp
@@ -0,0 +1,771 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/** \file
+ * LPE "Points to Ellipse" implementation
+ */
+
+/*
+ * Authors:
+ * Markus Schwienbacher
+ *
+ * Copyright (C) Markus Schwienbacher 2013 <mschwienbacher@gmail.com>
+ *
+ * Released under GNU GPL v2+, read the file 'COPYING' for more information.
+ */
+
+#include "lpe-pts2ellipse.h"
+
+
+#include <object/sp-item-group.h>
+#include <object/sp-item.h>
+#include <object/sp-path.h>
+#include <object/sp-shape.h>
+#include <svg/svg.h>
+
+#include <2geom/circle.h>
+#include <2geom/ellipse.h>
+#include <2geom/elliptical-arc.h>
+#include <2geom/path.h>
+#include <2geom/pathvector.h>
+
+#include <glib/gi18n.h>
+
+namespace Inkscape {
+namespace LivePathEffect {
+
+static const Util::EnumData<EllipseMethod> EllipseMethodData[] = {
+ { EM_AUTO, N_("Auto ellipse"), "auto" }, //!< (2..4 points: circle, from 5 points: ellipse)
+ { EM_CIRCLE, N_("Force circle"), "circle" }, //!< always fit a circle
+ { EM_ISOMETRIC_CIRCLE, N_("Isometric circle"), "iso_circle" }, //!< use first two edges to generate a sheared
+ //!< ellipse
+ { EM_PERSPECTIVE_CIRCLE, N_("Perspective circle"), "perspective_circle" }, //!< use first three edges to generate an
+ //!< ellipse representing a distorted
+ //!< circle in perspective
+ { EM_STEINER_ELLIPSE, N_("Steiner ellipse"), "steiner_ellipse" }, //!< generate a steiner ellipse from the first
+ //!< three points
+ { EM_STEINER_INELLIPSE, N_("Steiner inellipse"), "steiner_inellipse" } //!< generate a steiner inellipse from the
+ //!< first three points
+};
+static const Util::EnumDataConverter<EllipseMethod> EMConverter(EllipseMethodData, EM_END);
+
+LPEPts2Ellipse::LPEPts2Ellipse(LivePathEffectObject *lpeobject)
+ : Effect(lpeobject)
+ , method(
+ _("Method:"),
+ _("Methods to generate the ellipse\n- Auto ellipse: fits a circle (2, 3 or 4 nodes in the path) or an ellipse (at least 5 "
+ "nodes)\n- Force circle: (at least 2 nodes) always create a circle\n- Isometric circle: (3 nodes) use "
+ "first two segments as edges\n- Perspective circle: (4 nodes) circle in a square in perspective view\n- Steiner "
+ "ellipse: (3 nodes) ellipse on a triangle\n- Steiner inellipse: (3 nodes) ellipse inside a triangle"),
+ "method", EMConverter, &wr, this, EM_AUTO)
+ , gen_isometric_frame(_("_Frame (isometric rectangle)"), _("Draw parallelogram around the ellipse"),
+ "gen_isometric_frame", &wr, this, false)
+ , gen_perspective_frame(
+ _("_Perspective square"),
+ _("Draw square surrounding the circle in perspective view\n(only in method \"Perspective circle\")"),
+ "gen_perspective_frame", &wr, this, false)
+ , gen_arc(_("_Arc"),
+ _("Generate open arc (open ellipse) based on first and last node\n(only for methods \"Auto ellipse\" "
+ "and \"Force circle\")"),
+ "gen_arc", &wr, this, false)
+ , other_arc(_("_Other arc side"), _("Switch sides of the arc"), "arc_other", &wr, this, false)
+ , slice_arc(_("_Slice arc"), _("Create a circle / ellipse segment"), "slice_arc", &wr, this, false)
+ , draw_axes(_("A_xes"), _("Draw both semi-major and semi-minor axes"), "draw_axes", &wr, this, false)
+ , draw_perspective_axes(_("Perspective axes"),
+ _("Draw the axes in perspective view\n(only in method \"Perspective circle\")"),
+ "draw_perspective_axes", &wr, this, false)
+ , rot_axes(_("Axes rotation"), _("Axes rotation angle [deg]"), "rot_axes", &wr, this, 0)
+ , draw_ori_path(_("Source _path"), _("Show the original source path"), "draw_ori_path", &wr, this, false)
+{
+ registerParameter(&method);
+ registerParameter(&gen_arc);
+ registerParameter(&other_arc);
+ registerParameter(&slice_arc);
+ registerParameter(&gen_isometric_frame);
+ registerParameter(&draw_axes);
+ registerParameter(&gen_perspective_frame);
+ registerParameter(&draw_perspective_axes);
+ registerParameter(&rot_axes);
+ registerParameter(&draw_ori_path);
+
+ rot_axes.param_set_range(-360, 360);
+ rot_axes.param_set_increments(1, 10);
+
+ show_orig_path = true;
+
+ gsl_x = gsl_vector_alloc(8);
+ gsl_p = gsl_permutation_alloc(8);
+}
+
+LPEPts2Ellipse::~LPEPts2Ellipse()
+{
+ gsl_permutation_free(gsl_p);
+ gsl_vector_free(gsl_x);
+}
+
+// helper function, transforms a given value into range [0, 2pi]
+inline double range2pi(double a)
+{
+ a = fmod(a, 2 * M_PI);
+ if (a < 0) {
+ a += 2 * M_PI;
+ }
+ return a;
+}
+
+inline double deg2rad(double a) { return a * M_PI / 180.0; }
+
+inline double rad2deg(double a) { return a * 180.0 / M_PI; }
+
+// helper function, calculates the angle between a0 and a1 in ccw sense
+// examples: 0..1->1, -1..1->2, pi/4..-pi/4->1.5pi
+// full rotations: 0..2pi->2pi, -pi..pi->2pi, pi..-pi->0, 2pi..0->0
+inline double calc_delta_angle(const double a0, const double a1)
+{
+ double da = range2pi(a1 - a0);
+ if ((fabs(da) < 1e-9) && (a0 < a1)) {
+ da = 2 * M_PI;
+ }
+ return da;
+}
+
+int LPEPts2Ellipse::unit_arc_path(Geom::Path &path_in, Geom::Affine &affine, double start, double end, bool slice)
+{
+ double arc_angle = calc_delta_angle(start, end);
+ if (fabs(arc_angle) < 1e-9) {
+ g_warning("angle was 0");
+ return -1;
+ }
+
+ // the delta angle
+ double da = M_PI_2;
+ // number of segments with da length
+ int nda = (int)ceil(arc_angle / M_PI_2);
+ // recalculate da
+ da = arc_angle / (double)nda;
+
+ bool closed = false;
+ if (fabs(arc_angle - 2 * M_PI) < 1e-8) {
+ closed = true;
+ da = M_PI_2;
+ nda = 4;
+ }
+
+ double s = range2pi(start);
+ end = s + arc_angle;
+
+ double x0 = cos(s);
+ double y0 = sin(s);
+ // construct the path
+ Geom::Path path(Geom::Point(x0, y0));
+ path.setStitching(true);
+ for (int i = 0; i < nda;) {
+ double e = s + da;
+ if (e > end) {
+ e = end;
+ }
+ const double len = 4 * tan((e - s) / 4) / 3;
+ const double x1 = x0 + len * cos(s + M_PI_2);
+ const double y1 = y0 + len * sin(s + M_PI_2);
+ const double x3 = cos(e);
+ const double y3 = sin(e);
+ const double x2 = x3 + len * cos(e - M_PI_2);
+ const double y2 = y3 + len * sin(e - M_PI_2);
+ path.appendNew<Geom::CubicBezier>(Geom::Point(x1, y1), Geom::Point(x2, y2), Geom::Point(x3, y3));
+ s = (++i) * da + start;
+ x0 = cos(s);
+ y0 = sin(s);
+ }
+
+ if (slice && !closed) {
+ path.appendNew<Geom::LineSegment>(Geom::Point(0.0, 0.0));
+ }
+ path *= affine;
+
+ path_in.append(path);
+ if ((slice && !closed) || closed) {
+ path_in.close(true);
+ }
+ return 0;
+}
+
+void LPEPts2Ellipse::gen_iso_frame_paths(Geom::PathVector &path_out, const Geom::Affine &affine)
+{
+ Geom::Path rect(Geom::Point(-1, -1));
+ rect.setStitching(true);
+ rect.appendNew<Geom::LineSegment>(Geom::Point(+1, -1));
+ rect.appendNew<Geom::LineSegment>(Geom::Point(+1, +1));
+ rect.appendNew<Geom::LineSegment>(Geom::Point(-1, +1));
+ rect *= affine;
+ rect.close(true);
+ path_out.push_back(rect);
+}
+
+void LPEPts2Ellipse::gen_perspective_frame_paths(Geom::PathVector &path_out, const double rot_angle,
+ double projmatrix[3][3])
+{
+ Geom::Point pts0[4] = { { -1.0, -1.0 }, { +1.0, -1.0 }, { +1.0, +1.0 }, { -1.0, +1.0 } };
+ // five_pts.resize(4);
+ Geom::Affine affine2;
+ // const double rot_angle = deg2rad(rot_axes); // negative for ccw rotation
+ affine2 *= Geom::Rotate(-rot_angle);
+ for (auto &i : pts0) {
+ Geom::Point point = i;
+ point *= affine2;
+ i = projectPoint(point, projmatrix);
+ }
+
+ Geom::Path rect(pts0[0]);
+ rect.setStitching(true);
+ for (int i = 1; i < 4; i++)
+ rect.appendNew<Geom::LineSegment>(pts0[i]);
+ rect.close(true);
+ path_out.push_back(rect);
+}
+
+void LPEPts2Ellipse::gen_axes_paths(Geom::PathVector &path_out, const Geom::Affine &affine)
+{
+ Geom::LineSegment clx(Geom::Point(-1, 0), Geom::Point(1, 0));
+ Geom::LineSegment cly(Geom::Point(0, -1), Geom::Point(0, 1));
+
+ Geom::Path plx, ply;
+ plx.append(clx);
+ ply.append(cly);
+ plx *= affine;
+ ply *= affine;
+
+ path_out.push_back(plx);
+ path_out.push_back(ply);
+}
+
+void LPEPts2Ellipse::gen_perspective_axes_paths(Geom::PathVector &path_out, const double rot_angle,
+ double projmatrix[3][3])
+{
+ Geom::Point pts[4];
+ int h = 0;
+ double dA = 2.0 * M_PI / 4.0; // delta Angle
+ for (auto &i : pts) {
+ const double angle = rot_angle + dA * h++;
+ const Geom::Point circle_point(sin(angle), cos(angle));
+ i = projectPoint(circle_point, projmatrix);
+ }
+ {
+ Geom::LineSegment clx(pts[0], pts[2]);
+ Geom::LineSegment cly(pts[1], pts[3]);
+
+ Geom::Path plx, ply;
+ plx.append(clx);
+ ply.append(cly);
+
+ path_out.push_back(plx);
+ path_out.push_back(ply);
+ }
+}
+
+bool LPEPts2Ellipse::is_ccw(const std::vector<Geom::Point> &pts)
+{
+ // method: sum up the angles between edges
+ size_t n = pts.size();
+ // edges about vertex 0
+ Geom::Point e0(pts.front() - pts.back());
+ Geom::Point e1(pts[1] - pts[0]);
+ Geom::Coord sum = cross(e0, e1);
+ // the rest
+ for (size_t i = 1; i < n; i++) {
+ e0 = e1;
+ e1 = pts[i] - pts[i - 1];
+ sum += cross(e0, e1);
+ }
+ // edges about last vertex (closing)
+ e0 = e1;
+ e1 = pts.front() - pts.back();
+ sum += cross(e0, e1);
+
+ // close the
+ if (sum < 0) {
+ return true;
+ } else {
+ return false;
+ }
+}
+
+void endpoints2angles(const bool ccw_wind, const bool use_other_arc, const Geom::Point &p0, const Geom::Point &p1,
+ Geom::Coord &a0, Geom::Coord &a1)
+{
+ if (!p0.isZero() && !p1.isZero()) {
+ a0 = atan2(p0);
+ a1 = atan2(p1);
+ if (!ccw_wind) {
+ std::swap(a0, a1);
+ }
+ if (!use_other_arc) {
+ std::swap(a0, a1);
+ }
+ }
+}
+
+/**
+ * Generates an ellipse (or circle) from the vertices of a given path. Thereby, using fitting
+ * algorithms from 2geom. Depending on the settings made by the user regarding things like arc,
+ * slice, circle etc. the final result will be different
+ */
+Geom::PathVector LPEPts2Ellipse::doEffect_path(Geom::PathVector const &path_in)
+{
+ Geom::PathVector path_out;
+
+ // 1) draw original path?
+ if (draw_ori_path.get_value()) {
+ path_out.insert(path_out.end(), path_in.begin(), path_in.end());
+ }
+
+
+ // 2) get all points
+ // (from: extension/internal/odf.cpp)
+ points.resize(0);
+ for (const auto &pit : path_in) {
+ // extract first point of this path
+ points.push_back(pit.initialPoint());
+ // iterate over all curves
+ for (const auto &cit : pit) {
+ points.push_back(cit.finalPoint());
+ }
+ }
+ // avoid identical start-point and end-point
+ if (points.front() == points.back()) {
+ points.pop_back();
+ }
+
+ // 3) modify GUI based on selected method
+ // 3.1) arc options
+ switch (method) {
+ case EM_AUTO:
+ case EM_CIRCLE:
+ gen_arc.param_widget_is_enabled(true);
+ if (gen_arc.get_value()) {
+ slice_arc.param_widget_is_enabled(true);
+ other_arc.param_widget_is_enabled(true);
+ } else {
+ other_arc.param_widget_is_enabled(false);
+ slice_arc.param_widget_is_enabled(false);
+ }
+ break;
+ default:
+ gen_arc.param_widget_is_enabled(false);
+ other_arc.param_widget_is_enabled(false);
+ slice_arc.param_widget_is_enabled(false);
+ }
+ // 3.2) perspective options
+ switch (method) {
+ case EM_PERSPECTIVE_CIRCLE:
+ gen_perspective_frame.param_widget_is_enabled(true);
+ draw_perspective_axes.param_widget_is_enabled(true);
+ break;
+ default:
+ gen_perspective_frame.param_widget_is_enabled(false);
+ draw_perspective_axes.param_widget_is_enabled(false);
+ }
+
+ // 4) call method specific code
+ switch (method) {
+ case EM_ISOMETRIC_CIRCLE:
+ // special mode: Use first two edges, interpret them as two sides of a parallelogram and
+ // generate an ellipse residing inside the parallelogram. This effect is quite useful when
+ // generating isometric views. Hence, the name.
+ if (0 != genIsometricEllipse(points, path_out)) {
+ return path_in;
+ }
+ break;
+ case EM_PERSPECTIVE_CIRCLE:
+ // special mode: Use first four points, interpret them as the perspective representation of a square and
+ // draw the ellipse as it was a circle inside that square.
+ if (0 != genPerspectiveEllipse(points, path_out)) {
+ return path_in;
+ }
+ break;
+ case EM_STEINER_ELLIPSE:
+ if (0 != genSteinerEllipse(points, false, path_out)) {
+ return path_in;
+ }
+ break;
+ case EM_STEINER_INELLIPSE:
+ if (0 != genSteinerEllipse(points, true, path_out)) {
+ return path_in;
+ }
+ break;
+ default:
+ if (0 != genFitEllipse(points, path_out)) {
+ return path_in;
+ }
+ }
+ return path_out;
+}
+
+/**
+ * Generates an ellipse (or circle) from the vertices of a given path. Thereby, using fitting
+ * algorithms from 2geom. Depending on the settings made by the user regarding things like arc,
+ * slice, circle etc. the final result will be different. We need at least 5 points to fit an
+ * ellipse. With 5 points each point is on the ellipse. For less points we get a circle.
+ */
+int LPEPts2Ellipse::genFitEllipse(std::vector<Geom::Point> const &pts, Geom::PathVector &path_out)
+{
+ // rotation angle based on user provided rot_axes to position the vertices
+ const double rot_angle = -deg2rad(rot_axes); // negative for ccw rotation
+ Geom::Affine affine;
+ affine *= Geom::Rotate(rot_angle);
+ Geom::Coord a0 = 0;
+ Geom::Coord a1 = 2 * M_PI;
+
+ if (pts.size() < 2) {
+ return -1;
+ } else if (pts.size() == 2) {
+ // simple line: circle in the middle of the line to the vertices
+ Geom::Point line = pts.front() - pts.back();
+ double radius = line.length() * 0.5;
+ if (radius < 1e-9) {
+ return -1;
+ }
+ Geom::Point center = middle_point(pts.front(), pts.back());
+ Geom::Circle circle(center[0], center[1], radius);
+ affine *= Geom::Scale(circle.radius());
+ affine *= Geom::Translate(circle.center());
+ Geom::Path path;
+ unit_arc_path(path, affine);
+ path_out.push_back(path);
+ } else if (pts.size() >= 5 && EM_AUTO == method) {
+ // do ellipse
+ try {
+ Geom::Ellipse ellipse;
+ ellipse.fit(pts);
+ affine *= Geom::Scale(ellipse.ray(Geom::X), ellipse.ray(Geom::Y));
+ affine *= Geom::Rotate(ellipse.rotationAngle());
+ affine *= Geom::Translate(ellipse.center());
+ if (gen_arc.get_value()) {
+ Geom::Affine inv_affine = affine.inverse();
+ Geom::Point p0 = pts.front() * inv_affine;
+ Geom::Point p1 = pts.back() * inv_affine;
+ const bool ccw_wind = is_ccw(pts);
+ endpoints2angles(ccw_wind, other_arc.get_value(), p0, p1, a0, a1);
+ }
+ Geom::Path path;
+ unit_arc_path(path, affine, a0, a1, slice_arc.get_value());
+ path_out.push_back(path);
+ } catch (...) {
+ return -1;
+ }
+ } else {
+ // do a circle (3,4 points, or only_circle set)
+ try {
+ Geom::Circle circle;
+ circle.fit(pts);
+ affine *= Geom::Scale(circle.radius());
+ affine *= Geom::Translate(circle.center());
+ if (gen_arc.get_value()) {
+ Geom::Point p0 = pts.front() - circle.center();
+ Geom::Point p1 = pts.back() - circle.center();
+ const bool ccw_wind = is_ccw(pts);
+ endpoints2angles(ccw_wind, other_arc.get_value(), p0, p1, a0, a1);
+ }
+ Geom::Path path;
+ unit_arc_path(path, affine, a0, a1, slice_arc.get_value());
+ path_out.push_back(path);
+ } catch (...) {
+ return -1;
+ }
+ }
+
+ // draw frame?
+ if (gen_isometric_frame.get_value()) {
+ gen_iso_frame_paths(path_out, affine);
+ }
+
+ // draw axes?
+ if (draw_axes.get_value()) {
+ gen_axes_paths(path_out, affine);
+ }
+
+ return 0;
+}
+
+int LPEPts2Ellipse::genIsometricEllipse(std::vector<Geom::Point> const &pts, Geom::PathVector &path_out)
+
+{
+ // take the first 3 vertices for the edges
+ if (pts.size() < 3) {
+ return -1;
+ }
+ // calc edges
+ Geom::Point e0 = pts[0] - pts[1];
+ Geom::Point e1 = pts[2] - pts[1];
+
+ Geom::Coord ce = cross(e0, e1);
+ // parallel or one is zero?
+ if (fabs(ce) < 1e-9) {
+ return -1;
+ }
+ // unit vectors along edges
+ Geom::Point u0 = unit_vector(e0);
+ Geom::Point u1 = unit_vector(e1);
+ // calc angles
+ Geom::Coord a0 = atan2(e0);
+ // Coord a1=M_PI_2-atan2(e1)-a0;
+ Geom::Coord a1 = acos(dot(u0, u1)) - M_PI_2;
+ // if(fabs(a1)<1e-9) return -1;
+ if (ce < 0) {
+ a1 = -a1;
+ }
+ // lengths: l0= length of edge 0; l1= height of parallelogram
+ Geom::Coord l0 = e0.length() * 0.5;
+ Geom::Point e0n = e1 - dot(u0, e1) * u0;
+ Geom::Coord l1 = e0n.length() * 0.5;
+
+ // center of the ellipse
+ Geom::Point pos = pts[1] + 0.5 * (e0 + e1);
+
+ // rotation angle based on user provided rot_axes to position the vertices
+ const double rot_angle = -deg2rad(rot_axes); // negative for ccw rotation
+
+ // build up the affine transformation
+ Geom::Affine affine;
+ affine *= Geom::Rotate(rot_angle);
+ affine *= Geom::Scale(l0, l1);
+ affine *= Geom::HShear(-tan(a1));
+ affine *= Geom::Rotate(a0);
+ affine *= Geom::Translate(pos);
+
+ Geom::Path path;
+ unit_arc_path(path, affine);
+ path_out.push_back(path);
+
+ // draw frame?
+ if (gen_isometric_frame.get_value()) {
+ gen_iso_frame_paths(path_out, affine);
+ }
+
+ // draw axes?
+ if (draw_axes.get_value()) {
+ gen_axes_paths(path_out, affine);
+ }
+
+ return 0;
+}
+
+void evalSteinerEllipse(Geom::Point const &pCenter, Geom::Point const &pCenter_Pt2, Geom::Point const &pPt0_Pt1,
+ const double &angle, Geom::Point &pRes)
+{
+ // formula for the evaluation of points on the steiner ellipse using parameter angle
+ pRes = pCenter + pCenter_Pt2 * cos(angle) + pPt0_Pt1 * sin(angle) / sqrt(3);
+}
+
+int LPEPts2Ellipse::genSteinerEllipse(std::vector<Geom::Point> const &pts, bool gen_inellipse,
+ Geom::PathVector &path_out)
+{
+ // take the first 3 vertices for the edges
+ if (pts.size() < 3) {
+ return -1;
+ }
+ // calc center
+ Geom::Point pCenter = (pts[0] + pts[1] + pts[2]) / 3;
+ // calc main directions of affine triangle
+ Geom::Point f1 = pts[2] - pCenter;
+ Geom::Point f2 = (pts[1] - pts[0]) / sqrt(3);
+
+ // calc zero angle t0
+ const double denominator = dot(f1, f1) - dot(f2, f2);
+ double t0 = 0;
+ if (fabs(denominator) > 1e-12) {
+ const double cot2t0 = 2.0 * dot(f1, f2) / denominator;
+ t0 = atan(cot2t0) / 2.0;
+ }
+
+ // calc relative points of main axes (for axis directions)
+ Geom::Point p0(0, 0), pRel0, pRel1;
+ evalSteinerEllipse(p0, pts[2] - pCenter, pts[1] - pts[0], t0, pRel0);
+ evalSteinerEllipse(p0, pts[2] - pCenter, pts[1] - pts[0], t0 + M_PI_2, pRel1);
+ Geom::Coord l0 = pRel0.length();
+ Geom::Coord l1 = pRel1.length();
+
+ // basic rotation
+ double a0 = atan2(pRel0);
+
+ bool swapped = false;
+
+ if (l1 > l0) {
+ std::swap(l0, l1);
+ a0 += M_PI_2;
+ swapped = true;
+ }
+
+ // the Steiner inellipse is just scaled down by 2
+ if (gen_inellipse) {
+ l0 /= 2;
+ l1 /= 2;
+ }
+
+ // rotation angle based on user provided rot_axes to position the vertices
+ const double rot_angle = -deg2rad(rot_axes); // negative for ccw rotation
+
+ // build up the affine transformation
+ Geom::Affine affine;
+ affine *= Geom::Rotate(rot_angle);
+ affine *= Geom::Scale(l0, l1);
+ affine *= Geom::Rotate(a0);
+ affine *= Geom::Translate(pCenter);
+
+ Geom::Path path;
+ unit_arc_path(path, affine);
+ path_out.push_back(path);
+
+ // draw frame?
+ if (gen_isometric_frame.get_value()) {
+ gen_iso_frame_paths(path_out, affine);
+ }
+
+ // draw axes?
+ if (draw_axes.get_value()) {
+ gen_axes_paths(path_out, affine);
+ }
+
+ return 0;
+}
+
+// identical to lpe-perspective-envelope.cpp
+Geom::Point LPEPts2Ellipse::projectPoint(Geom::Point p, double m[][3])
+{
+ Geom::Coord x = p[0];
+ Geom::Coord y = p[1];
+ return Geom::Point(Geom::Coord((x * m[0][0] + y * m[0][1] + m[0][2]) / (x * m[2][0] + y * m[2][1] + m[2][2])),
+ Geom::Coord((x * m[1][0] + y * m[1][1] + m[1][2]) / (x * m[2][0] + y * m[2][1] + m[2][2])));
+}
+
+int LPEPts2Ellipse::genPerspectiveEllipse(std::vector<Geom::Point> const &pts, Geom::PathVector &path_out)
+{
+ using Geom::X;
+ using Geom::Y;
+ // we need at least four points!
+ if (pts.size() < 4)
+ return -1;
+
+ // 1) check if the first three edges are a valid perspective
+ // calc edge
+ Geom::Point e[] = { pts[0] - pts[1], pts[1] - pts[2], pts[2] - pts[3], pts[3] - pts[0] };
+ // calc directions
+ Geom::Coord c[] = { cross(e[0], e[1]), cross(e[1], e[2]), cross(e[2], e[3]), cross(e[3], e[0]) };
+ // is this quad not convex?
+ if (!((c[0] > 0 && c[1] > 0 && c[2] > 0 && c[3] > 0) || (c[0] < 0 && c[1] < 0 && c[2] < 0 && c[3] < 0)))
+ return -1;
+
+ // 2) solve the direct linear transformation (see e.g. lpe-perspective-envelope.cpp or
+ // https://franklinta.com/2014/09/08/computing-css-matrix3d-transforms/)
+
+ // the square points in the initial configuration (about the unit circle):
+ Geom::Point pts0[4] = { { -1.0, -1.0 }, { +1.0, -1.0 }, { +1.0, +1.0 }, { -1.0, +1.0 } };
+
+ // build equation in matrix form
+ double eqnVec[8] = { 0 };
+ double eqnMat[64] = { 0 };
+ for (unsigned int i = 0; i < 4; ++i) {
+ eqnMat[8 * (i + 0) + 0] = pts0[i][X];
+ eqnMat[8 * (i + 0) + 1] = pts0[i][Y];
+ eqnMat[8 * (i + 0) + 2] = 1;
+ eqnMat[8 * (i + 0) + 6] = -pts[i][X] * pts0[i][X];
+ eqnMat[8 * (i + 0) + 7] = -pts[i][X] * pts0[i][Y];
+ eqnMat[8 * (i + 4) + 3] = pts0[i][X];
+ eqnMat[8 * (i + 4) + 4] = pts0[i][Y];
+ eqnMat[8 * (i + 4) + 5] = 1;
+ eqnMat[8 * (i + 4) + 6] = -pts[i][Y] * pts0[i][X];
+ eqnMat[8 * (i + 4) + 7] = -pts[i][Y] * pts0[i][Y];
+ eqnVec[i] = pts[i][X];
+ eqnVec[i + 4] = pts[i][Y];
+ }
+ // solve using gsl library
+ gsl_matrix_view m = gsl_matrix_view_array(eqnMat, 8, 8);
+ gsl_vector_view b = gsl_vector_view_array(eqnVec, 8);
+ int s = 0;
+ gsl_linalg_LU_decomp(&m.matrix, gsl_p, &s);
+ gsl_linalg_LU_solve(&m.matrix, gsl_p, &b.vector, gsl_x);
+ // transfer the solution to the projection matrix for further use
+ size_t h = 0;
+ double projmatrix[3][3];
+ for (auto &matRow : projmatrix) {
+ for (double &matElement : matRow) {
+ if (h == 8) {
+ projmatrix[2][2] = 1.0;
+ } else {
+ matElement = gsl_vector_get(gsl_x, h++);
+ }
+ }
+ }
+
+ // 3) generate five points on a unit circle and project them
+ five_pts.resize(5); // reuse and avoid new/delete
+ h = 0;
+ double dA = 2.0 * M_PI / 5.0; // delta Angle
+ for (auto &i : five_pts) {
+ const double angle = dA * h++;
+ const Geom::Point circle_point(sin(angle), cos(angle));
+ i = projectPoint(circle_point, projmatrix);
+ }
+
+ // 4) fit the five points to an ellipse with the already known function inside genFitEllipse() function
+ // build up the affine transformation
+ const double rot_angle = -deg2rad(rot_axes); // negative for ccw rotation
+ Geom::Affine affine;
+ affine *= Geom::Rotate(rot_angle);
+
+ try {
+ Geom::Ellipse ellipse;
+ ellipse.fit(five_pts);
+ affine *= Geom::Scale(ellipse.ray(Geom::X), ellipse.ray(Geom::Y));
+ affine *= Geom::Rotate(ellipse.rotationAngle());
+ affine *= Geom::Translate(ellipse.center());
+ } catch (...) {
+ return -1;
+ }
+
+ Geom::Path path;
+ unit_arc_path(path, affine);
+ path_out.push_back(path);
+
+ // 5) frames and axes
+ bool ccw_wind = false;
+ if (gen_perspective_frame.get_value() || draw_perspective_axes.get_value())
+ ccw_wind = is_ccw(pts);
+ const double ra = ccw_wind ? rot_angle : -rot_angle;
+
+ // draw frame?
+ if (gen_isometric_frame.get_value()) {
+ gen_iso_frame_paths(path_out, affine);
+ }
+
+ // draw perspective frame?
+ if (gen_perspective_frame.get_value()) {
+ gen_perspective_frame_paths(path_out, ra, projmatrix);
+ }
+
+ // draw axes?
+ if (draw_axes.get_value()) {
+ gen_axes_paths(path_out, affine);
+ }
+
+ // draw perspective axes?
+ if (draw_perspective_axes.get_value()) {
+ gen_perspective_axes_paths(path_out, ra, projmatrix);
+ }
+
+ return 0;
+}
+
+
+/* ######################## */
+
+} // namespace LivePathEffect
+} /* namespace Inkscape */
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :