diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:24:48 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:24:48 +0000 |
commit | cca66b9ec4e494c1d919bff0f71a820d8afab1fa (patch) | |
tree | 146f39ded1c938019e1ed42d30923c2ac9e86789 /src/syseq.h | |
parent | Initial commit. (diff) | |
download | inkscape-upstream.tar.xz inkscape-upstream.zip |
Adding upstream version 1.2.2.upstream/1.2.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | src/syseq.h | 317 |
1 files changed, 317 insertions, 0 deletions
diff --git a/src/syseq.h b/src/syseq.h new file mode 100644 index 0000000..3bd09f1 --- /dev/null +++ b/src/syseq.h @@ -0,0 +1,317 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +#ifndef SEEN_SYSEQ_H +#define SEEN_SYSEQ_H + +/* + * Auxiliary routines to solve systems of linear equations in several variants and sizes. + * + * Authors: + * Maximilian Albert <Anhalter42@gmx.de> + * + * Copyright (C) 2007 Authors + * + * Released under GNU GPL v2+, read the file 'COPYING' for more information. + */ + +#include <algorithm> +#include <iostream> +#include <iomanip> +#include <vector> +#include <cmath> + +namespace SysEq { + +enum SolutionKind { + unique = 0, + ambiguous, + no_solution, + solution_exists // FIXME: remove this; does not yield enough information +}; + +inline void explain(SolutionKind sol) { + switch (sol) { + case SysEq::unique: + std::cout << "unique" << std::endl; + break; + case SysEq::ambiguous: + std::cout << "ambiguous" << std::endl; + break; + case SysEq::no_solution: + std::cout << "no solution" << std::endl; + break; + case SysEq::solution_exists: + std::cout << "solution exists" << std::endl; + break; + } +} + +inline double +determinant3x3 (double A[3][3]) { + return (A[0][0]*A[1][1]*A[2][2] + + A[0][1]*A[1][2]*A[2][0] + + A[0][2]*A[1][0]*A[2][1] - + A[0][0]*A[1][2]*A[2][1] - + A[0][1]*A[1][0]*A[2][2] - + A[0][2]*A[1][1]*A[2][0]); +} + +/* Determinant of the 3x3 matrix having a, b, and c as columns */ +inline double +determinant3v (const double a[3], const double b[3], const double c[3]) { + return (a[0]*b[1]*c[2] + + a[1]*b[2]*c[0] + + a[2]*b[0]*c[1] - + a[0]*b[2]*c[1] - + a[1]*b[0]*c[2] - + a[2]*b[1]*c[0]); +} + +/* Copy the elements of A into B */ +template <int S, int T> +inline void copy_mat(double A[S][T], double B[S][T]) { + for (int i = 0; i < S; ++i) { + for (int j = 0; j < T; ++j) { + B[i][j] = A[i][j]; + } + } +} + +template <int S, int T> +inline void print_mat (const double A[S][T]) { + std::cout.setf(std::ios::left, std::ios::internal); + for (int i = 0; i < S; ++i) { + for (int j = 0; j < T; ++j) { + printf ("%8.2f ", A[i][j]); + } + std::cout << std::endl;; + } +} + +/* Multiplication of two matrices */ +template <int S, int U, int T> +inline void multiply(double A[S][U], double B[U][T], double res[S][T]) { + for (int i = 0; i < S; ++i) { + for (int j = 0; j < T; ++j) { + double sum = 0; + for (int k = 0; k < U; ++k) { + sum += A[i][k] * B[k][j]; + } + res[i][j] = sum; + } + } +} + +/* + * Multiplication of a matrix with a vector (for convenience, because with the previous + * multiplication function we would always have to write v[i][0] for elements of the vector. + */ +template <int S, int T> +inline void multiply(double A[S][T], double v[T], double res[S]) { + for (int i = 0; i < S; ++i) { + double sum = 0; + for (int k = 0; k < T; ++k) { + sum += A[i][k] * v[k]; + } + res[i] = sum; + } +} + +// Remark: Since we are using templates, we cannot separate declarations from definitions (which would +// result in linker errors but have to include the definitions here for the following functions. +// FIXME: Maybe we should rework all this by using vector<vector<double> > structures for matrices +// instead of double[S][T]. This would allow us to avoid templates. Would the performance degrade? + +/* + * Find the element of maximal absolute value in row i that + * does not lie in one of the columns given in avoid_cols. + */ +template <int S, int T> +static int find_pivot(const double A[S][T], unsigned int i, std::vector<int> const &avoid_cols) { + if (i >= S) { + return -1; + } + int pos = -1; + double max = 0; + for (int j = 0; j < T; ++j) { + if (std::find(avoid_cols.begin(), avoid_cols.end(), j) != avoid_cols.end()) { + continue; // skip "forbidden" columns + } + if (fabs(A[i][j]) > max) { + pos = j; + max = fabs(A[i][j]); + } + } + return pos; +} + +/* + * Performs a single 'exchange step' in the Gauss-Jordan algorithm (i.e., swapping variables in the + * two vectors). + */ +template <int S, int T> +static void gauss_jordan_step (double A[S][T], int row, int col) { + double piv = A[row][col]; // pivot element + /* adapt the entries of the matrix, first outside the pivot row/column */ + for (int k = 0; k < S; ++k) { + if (k == row) continue; + for (int l = 0; l < T; ++l) { + if (l == col) continue; + A[k][l] -= A[k][col] * A[row][l] / piv; + } + } + /* now adapt the pivot column ... */ + for (int k = 0; k < S; ++k) { + if (k == row) continue; + A[k][col] /= piv; + } + /* and the pivot row */ + for (int l = 0; l < T; ++l) { + if (l == col) continue; + A[row][l] /= -piv; + } + /* finally, set the element at the pivot position itself */ + A[row][col] = 1/piv; +} + +/* + * Perform Gauss-Jordan elimination on the matrix A, optionally avoiding a given column during pivot search + */ +template <int S, int T> +static std::vector<int> gauss_jordan (double A[S][T], int avoid_col = -1) { + std::vector<int> cols_used; + if (avoid_col != -1) { + cols_used.push_back (avoid_col); + } + for (int i = 0; i < S; ++i) { + /* for each row find a pivot element of maximal absolute value, skipping the columns that were used before */ + int col = find_pivot<S,T>(A, i, cols_used); + cols_used.push_back(col); + if (col == -1) { + // no non-zero elements in the row + return cols_used; + } + + /* if pivot search was successful we can perform a Gauss-Jordan step */ + gauss_jordan_step<S,T> (A, i, col); + } + if (avoid_col != -1) { + // since the columns that were used will be needed later on, we need to clean up the column vector + cols_used.erase(cols_used.begin()); + } + return cols_used; +} + +/* compute the modified value that x[index] needs to assume so that in the end we have x[index]/x[T-1] = val */ +template <int S, int T> +static double projectify (std::vector<int> const &cols, const double B[S][T], const double x[T], + const int index, const double val) { + double val_proj = 0.0; + if (index != -1) { + int c = -1; + for (int i = 0; i < S; ++i) { + if (cols[i] == T-1) { + c = i; + break; + } + } + if (c == -1) { + std::cout << "Something is wrong. Rethink!!" << std::endl; + return SysEq::no_solution; + } + + double sp = 0; + for (int j = 0; j < T; ++j) { + if (j == index) continue; + sp += B[c][j] * x[j]; + } + double mu = 1 - val * B[c][index]; + if (fabs(mu) < 1E-6) { + std::cout << "No solution since adapted value is too close to zero" << std::endl; + return SysEq::no_solution; + } + val_proj = sp*val/mu; + } else { + val_proj = val; // FIXME: Is this correct? + } + return val_proj; +} + +/** + * Solve the linear system of equations \a A * \a x = \a v where we additionally stipulate + * \a x[\a index] = \a val if \a index is not -1. The system is solved using Gauss-Jordan + * elimination so that we can gracefully handle the case that zero or infinitely many + * solutions exist. + * + * Since our application will be to finding preimages of projective mappings, we provide + * an additional argument \a proj. If this is true, we find a solution of + * \a x[\a index]/\a x[\T - 1] = \a val instead (i.e., we want the corresponding coordinate + * of the _affine image_ of the point with homogeneous coordinate vector \a x to be equal + * to \a val. + * + * Remark: We don't need this but it would be relatively simple to let the calling function + * prescripe the value of _multiple_ components of the solution vector instead of only a single one. + */ +template <int S, int T> SolutionKind gaussjord_solve (double A[S][T], double x[T], double v[S], + int index = -1, double val = 0.0, bool proj = false) { + double B[S][T]; + //copy_mat<S,T>(A,B); + SysEq::copy_mat<S,T>(A,B); + std::vector<int> cols = gauss_jordan<S,T>(B, index); + if (std::find(cols.begin(), cols.end(), -1) != cols.end()) { + // pivot search failed for some row so the system is not solvable + return SysEq::no_solution; + } + + /* the vector x is filled with the coefficients of the desired solution vector at appropriate places; + * the other components are set to zero, and we additionally set x[index] = val if applicable + */ + std::vector<int>::iterator k; + for (int j = 0; j < S; ++j) { + x[cols[j]] = v[j]; + } + for (int j = 0; j < T; ++j) { + k = std::find(cols.begin(), cols.end(), j); + if (k == cols.end()) { + x[j] = 0; + } + } + + // we need to adapt the value if we are in the "projective case" (see above) + double val_new = (proj ? projectify<S,T>(cols, B, x, index, val) : val); + + if (index >= 0 && index < T) { + // we want the specified coefficient of the solution vector to have a given value + x[index] = val_new; + } + + /* the final solution vector is now obtained as the product B*x, where B is the matrix + * obtained by Gauss-Jordan manipulation of A; we use w as an auxiliary vector and + * afterwards copy the result back to x + */ + double w[S]; + SysEq::multiply<S,T>(B,x,w); // initializes w + for (int j = 0; j < S; ++j) { + x[cols[j]] = w[j]; + } + + if (S + (index == -1 ? 0 : 1) == T) { + return SysEq::unique; + } else { + return SysEq::ambiguous; + } +} + +} // namespace SysEq + +#endif /* __SYSEQ_H__ */ + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |