summaryrefslogtreecommitdiffstats
path: root/share/extensions/voronoi.py
diff options
context:
space:
mode:
Diffstat (limited to 'share/extensions/voronoi.py')
-rwxr-xr-xshare/extensions/voronoi.py859
1 files changed, 859 insertions, 0 deletions
diff --git a/share/extensions/voronoi.py b/share/extensions/voronoi.py
new file mode 100755
index 0000000..6015c7e
--- /dev/null
+++ b/share/extensions/voronoi.py
@@ -0,0 +1,859 @@
+#!/usr/bin/env python
+# coding=utf-8
+#
+# Voronoi diagram calculator/ Delaunay triangulator
+# Translated to Python by Bill Simons
+# September, 2005
+#
+# Calculate Delaunay triangulation or the Voronoi polygons for a set of
+# 2D input points.
+#
+# Derived from code bearing the following notice:
+#
+# The author of this software is Steven Fortune. Copyright (c) 1994 by AT&T
+# Bell Laboratories.
+# Permission to use, copy, modify, and distribute this software for any
+# purpose without fee is hereby granted, provided that this entire notice
+# is included in all copies of any software which is or includes a copy
+# or modification of this software and in all copies of the supporting
+# documentation for such software.
+# THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
+# WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR AT&T MAKE ANY
+# REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
+# OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
+#
+# Comments were incorporated from Shane O'Sullivan's translation of the
+# original code into C++ (http://mapviewer.skynet.ie/voronoi.html)
+#
+# Steve Fortune's homepage: http://netlib.bell-labs.com/cm/cs/who/sjf/index.html
+#
+"""
+voronoi - compute Voronoi diagram or Delaunay triangulation
+
+voronoi [-t -p -d] [filename]
+
+Voronoi reads from filename (or standard input if no filename given) for a set
+of points in the plane and writes either the Voronoi diagram or the Delaunay
+triangulation to the standard output. Each input line should consist of two
+real numbers, separated by white space.
+
+If option -t is present, the Delaunay triangulation is produced.
+Each output line is a triple i j k, which are the indices of the three points
+in a Delaunay triangle. Points are numbered starting at 0.
+
+If option -t is not present, the Voronoi diagram is produced.
+There are four output record types.
+
+s a b indicates that an input point at coordinates a b was seen.
+l a b c indicates a line with equation ax + by = c.
+v a b indicates a vertex at a b.
+e l v1 v2 indicates a Voronoi segment which is a subsegment of line number l
+ with endpoints numbered v1 and v2. If v1 or v2 is -1, the line
+ extends to infinity.
+
+Other options include:
+
+d Print debugging info
+
+p Produce output suitable for input to plot (1), rather than the forms
+ described above.
+
+On unsorted data uniformly distributed in the unit square, voronoi uses about
+20n+140 bytes of storage.
+
+AUTHOR
+Steve J. Fortune (1987) A Sweepline Algorithm for Voronoi Diagrams,
+Algorithmica 2, 153-174.
+"""
+
+#############################################################################
+#
+# For programmatic use two functions are available:
+#
+# computeVoronoiDiagram(points)
+#
+# Takes a list of point objects (which must have x and y fields).
+# Returns a 3-tuple of:
+#
+# (1) a list of 2-tuples, which are the x,y coordinates of the
+# Voronoi diagram vertices
+# (2) a list of 3-tuples (a,b,c) which are the equations of the
+# lines in the Voronoi diagram: a*x + b*y = c
+# (3) a list of 3-tuples, (l, v1, v2) representing edges of the
+# Voronoi diagram. l is the index of the line, v1 and v2 are
+# the indices of the vetices at the end of the edge. If
+# v1 or v2 is -1, the line extends to infinity.
+#
+# computeDelaunayTriangulation(points):
+#
+# Takes a list of point objects (which must have x and y fields).
+# Returns a list of 3-tuples: the indices of the points that form a
+# Delaunay triangle.
+#
+#############################################################################
+
+from __future__ import print_function
+
+import getopt
+import math
+import sys
+
+TOLERANCE = 1e-9
+BIG_FLOAT = 1e38
+
+
+class CmpMixin(object):
+ """Upgrade python2 cmp to python3 cmp"""
+
+ def __cmp__(self, other):
+ raise NotImplementedError("Shouldn't there be a __cmp__ method?")
+
+ def __eq__(self, other):
+ return self.__cmp__(other) == 0
+
+ def __ne__(self, other):
+ return self.__cmp__(other) != 0
+
+ def __lt__(self, other):
+ return self.__cmp__(other) == -1
+
+ def __le__(self, other):
+ return self.__cmp__(other) in (-1, 0)
+
+ def __gt__(self, other):
+ return self.__cmp__(other) == 1
+
+ def __ge__(self, other):
+ return self.__cmp__(other) in (0, 1)
+
+
+# ------------------------------------------------------------------
+class Context(object):
+ def __init__(self):
+ self.doPrint = 0
+ self.debug = 0
+ self.plot = 0
+ self.triangulate = False
+ self.vertices = [] # list of vertex 2-tuples: (x,y)
+ self.lines = (
+ []
+ ) # equation of line 3-tuple (a b c), for the equation of the line a*x+b*y = c
+ self.edges = (
+ []
+ ) # edge 3-tuple: (line index, vertex 1 index, vertex 2 index) if either vertex index is -1, the edge extends to infiinity
+ self.triangles = [] # 3-tuple of vertex indices
+
+ def circle(self, x, y, rad):
+ pass
+
+ def clip_line(self, edge):
+ pass
+
+ def line(self, x0, y0, x1, y1):
+ pass
+
+ def outSite(self, s):
+ if self.debug:
+ print("site (%d) at %f %f" % (s.sitenum, s.x, s.y))
+ elif self.triangulate:
+ pass
+ elif self.plot:
+ self.circle(s.x, s.y, cradius)
+ elif self.doPrint:
+ print("s %f %f" % (s.x, s.y))
+
+ def outVertex(self, s):
+ self.vertices.append((s.x, s.y))
+ if self.debug:
+ print("vertex(%d) at %f %f" % (s.sitenum, s.x, s.y))
+ elif self.triangulate:
+ pass
+ elif self.doPrint and not self.plot:
+ print("v %f %f" % (s.x, s.y))
+
+ def outTriple(self, s1, s2, s3):
+ self.triangles.append((s1.sitenum, s2.sitenum, s3.sitenum))
+ if self.debug:
+ print(
+ "circle through left=%d right=%d bottom=%d"
+ % (s1.sitenum, s2.sitenum, s3.sitenum)
+ )
+ elif self.triangulate and self.doPrint and not self.plot:
+ print("%d %d %d" % (s1.sitenum, s2.sitenum, s3.sitenum))
+
+ def outBisector(self, edge):
+ self.lines.append((edge.a, edge.b, edge.c))
+ if self.debug:
+ print(
+ "line(%d) %gx+%gy=%g, bisecting %d %d"
+ % (
+ edge.edgenum,
+ edge.a,
+ edge.b,
+ edge.c,
+ edge.reg[0].sitenum,
+ edge.reg[1].sitenum,
+ )
+ )
+ elif self.triangulate:
+ if self.plot:
+ self.line(edge.reg[0].x, edge.reg[0].y, edge.reg[1].x, edge.reg[1].y)
+ elif self.doPrint and not self.plot:
+ print("l %f %f %f" % (edge.a, edge.b, edge.c))
+
+ def outEdge(self, edge):
+ sitenumL = -1
+ if edge.ep[Edge.LE] is not None:
+ sitenumL = edge.ep[Edge.LE].sitenum
+ sitenumR = -1
+ if edge.ep[Edge.RE] is not None:
+ sitenumR = edge.ep[Edge.RE].sitenum
+ self.edges.append((edge.edgenum, sitenumL, sitenumR))
+ if not self.triangulate:
+ if self.plot:
+ self.clip_line(edge)
+ elif self.doPrint:
+ print("e %d" % edge.edgenum, end=" ")
+ print(" %d " % sitenumL, end=" ")
+ print("%d" % sitenumR)
+
+
+# ------------------------------------------------------------------
+def voronoi(siteList, context):
+ edgeList = EdgeList(siteList.xmin, siteList.xmax, len(siteList))
+ priorityQ = PriorityQueue(siteList.ymin, siteList.ymax, len(siteList))
+ siteIter = siteList.iterator()
+
+ bottomsite = siteIter.next()
+ context.outSite(bottomsite)
+ newsite = siteIter.next()
+ minpt = Site(-BIG_FLOAT, -BIG_FLOAT)
+ while True:
+ if not priorityQ.isEmpty():
+ minpt = priorityQ.getMinPt()
+
+ if newsite and (priorityQ.isEmpty() or newsite < minpt):
+ # newsite is smallest - this is a site event
+ context.outSite(newsite)
+
+ # get first Halfedge to the LEFT and RIGHT of the new site
+ lbnd = edgeList.leftbnd(newsite)
+ rbnd = lbnd.right
+
+ # if this halfedge has no edge, bot = bottom site (whatever that is)
+ # create a new edge that bisects
+ bot = lbnd.rightreg(bottomsite)
+ edge = Edge.bisect(bot, newsite)
+ context.outBisector(edge)
+
+ # create a new Halfedge, setting its pm field to 0 and insert
+ # this new bisector edge between the left and right vectors in
+ # a linked list
+ bisector = Halfedge(edge, Edge.LE)
+ edgeList.insert(lbnd, bisector)
+
+ # if the new bisector intersects with the left edge, remove
+ # the left edge's vertex, and put in the new one
+ p = lbnd.intersect(bisector)
+ if p is not None:
+ priorityQ.delete(lbnd)
+ priorityQ.insert(lbnd, p, newsite.distance(p))
+
+ # create a new Halfedge, setting its pm field to 1
+ # insert the new Halfedge to the right of the original bisector
+ lbnd = bisector
+ bisector = Halfedge(edge, Edge.RE)
+ edgeList.insert(lbnd, bisector)
+
+ # if this new bisector intersects with the right Halfedge
+ p = bisector.intersect(rbnd)
+ if p is not None:
+ # push the Halfedge into the ordered linked list of vertices
+ priorityQ.insert(bisector, p, newsite.distance(p))
+
+ newsite = siteIter.next()
+
+ elif not priorityQ.isEmpty():
+ # intersection is smallest - this is a vector (circle) event
+
+ # pop the Halfedge with the lowest vector off the ordered list of
+ # vectors. Get the Halfedge to the left and right of the above HE
+ # and also the Halfedge to the right of the right HE
+ lbnd = priorityQ.popMinHalfedge()
+ llbnd = lbnd.left
+ rbnd = lbnd.right
+ rrbnd = rbnd.right
+
+ # get the Site to the left of the left HE and to the right of
+ # the right HE which it bisects
+ bot = lbnd.leftreg(bottomsite)
+ top = rbnd.rightreg(bottomsite)
+
+ # output the triple of sites, stating that a circle goes through them
+ mid = lbnd.rightreg(bottomsite)
+ context.outTriple(bot, top, mid)
+
+ # get the vertex that caused this event and set the vertex number
+ # couldn't do this earlier since we didn't know when it would be processed
+ v = lbnd.vertex
+ siteList.setSiteNumber(v)
+ context.outVertex(v)
+
+ # set the endpoint of the left and right Halfedge to be this vector
+ if lbnd.edge.setEndpoint(lbnd.pm, v):
+ context.outEdge(lbnd.edge)
+
+ if rbnd.edge.setEndpoint(rbnd.pm, v):
+ context.outEdge(rbnd.edge)
+
+ # delete the lowest HE, remove all vertex events to do with the
+ # right HE and delete the right HE
+ edgeList.delete(lbnd)
+ priorityQ.delete(rbnd)
+ edgeList.delete(rbnd)
+
+ # if the site to the left of the event is higher than the Site
+ # to the right of it, then swap them and set 'pm' to RIGHT
+ pm = Edge.LE
+ if bot.y > top.y:
+ bot, top = top, bot
+ pm = Edge.RE
+
+ # Create an Edge (or line) that is between the two Sites. This
+ # creates the formula of the line, and assigns a line number to it
+ edge = Edge.bisect(bot, top)
+ context.outBisector(edge)
+
+ # create a HE from the edge
+ bisector = Halfedge(edge, pm)
+
+ # insert the new bisector to the right of the left HE
+ # set one endpoint to the new edge to be the vector point 'v'
+ # If the site to the left of this bisector is higher than the right
+ # Site, then this endpoint is put in position 0; otherwise in pos 1
+ edgeList.insert(llbnd, bisector)
+ if edge.setEndpoint(Edge.RE - pm, v):
+ context.outEdge(edge)
+
+ # if left HE and the new bisector don't intersect, then delete
+ # the left HE, and reinsert it
+ p = llbnd.intersect(bisector)
+ if p is not None:
+ priorityQ.delete(llbnd)
+ priorityQ.insert(llbnd, p, bot.distance(p))
+
+ # if right HE and the new bisector don't intersect, then reinsert it
+ p = bisector.intersect(rrbnd)
+ if p is not None:
+ priorityQ.insert(bisector, p, bot.distance(p))
+ else:
+ break
+
+ he = edgeList.leftend.right
+ while he is not edgeList.rightend:
+ context.outEdge(he.edge)
+ he = he.right
+
+
+# ------------------------------------------------------------------
+def isEqual(a, b, relativeError=TOLERANCE):
+ # is nearly equal to within the allowed relative error
+ norm = max(abs(a), abs(b))
+ return (norm < relativeError) or (abs(a - b) < (relativeError * norm))
+
+
+# ------------------------------------------------------------------
+class Site(CmpMixin):
+ def __init__(self, x=0.0, y=0.0, sitenum=0):
+ self.x = x
+ self.y = y
+ self.sitenum = sitenum
+
+ def dump(self):
+ print("Site #%d (%g, %g)" % (self.sitenum, self.x, self.y))
+
+ def __cmp__(self, other):
+ if self.y < other.y:
+ return -1
+ elif self.y > other.y:
+ return 1
+ elif self.x < other.x:
+ return -1
+ elif self.x > other.x:
+ return 1
+ return 0
+
+ def distance(self, other):
+ dx = self.x - other.x
+ dy = self.y - other.y
+ return math.sqrt(dx * dx + dy * dy)
+
+
+# ------------------------------------------------------------------
+class Edge(object):
+ LE = 0
+ RE = 1
+ EDGE_NUM = 0
+ DELETED = {} # marker value
+
+ def __init__(self):
+ self.a = 0.0
+ self.b = 0.0
+ self.c = 0.0
+ self.ep = [None, None]
+ self.reg = [None, None]
+ self.edgenum = 0
+
+ def dump(self):
+ print("(#%d a=%g, b=%g, c=%g)" % (self.edgenum, self.a, self.b, self.c))
+ print("ep", self.ep)
+ print("reg", self.reg)
+
+ def setEndpoint(self, lrFlag, site):
+ self.ep[lrFlag] = site
+ if self.ep[Edge.RE - lrFlag] is None:
+ return False
+ return True
+
+ @staticmethod
+ def bisect(s1, s2):
+ newedge = Edge()
+ newedge.reg[0] = s1 # store the sites that this edge is bisecting
+ newedge.reg[1] = s2
+
+ # to begin with, there are no endpoints on the bisector - it goes to infinity
+ # ep[0] and ep[1] are None
+
+ # get the difference in x dist between the sites
+ dx = float(s2.x - s1.x)
+ dy = float(s2.y - s1.y)
+ adx = abs(dx) # make sure that the difference in positive
+ ady = abs(dy)
+
+ # get the slope of the line
+ newedge.c = float(s1.x * dx + s1.y * dy + (dx * dx + dy * dy) * 0.5)
+ if adx > ady:
+ # set formula of line, with x fixed to 1
+ newedge.a = 1.0
+ newedge.b = dy / dx
+ newedge.c /= dx
+ else:
+ # set formula of line, with y fixed to 1
+ newedge.b = 1.0
+ if dy <= 0:
+ dy = 0.01
+ newedge.a = dx / dy
+ newedge.c /= dy
+
+ newedge.edgenum = Edge.EDGE_NUM
+ Edge.EDGE_NUM += 1
+ return newedge
+
+
+# ------------------------------------------------------------------
+class Halfedge(CmpMixin):
+ def __init__(self, edge=None, pm=Edge.LE):
+ self.left = None # left Halfedge in the edge list
+ self.right = None # right Halfedge in the edge list
+ self.qnext = None # priority queue linked list pointer
+ self.edge = edge # edge list Edge
+ self.pm = pm
+ self.vertex = None # Site()
+ self.ystar = BIG_FLOAT
+
+ def dump(self):
+ print("Halfedge--------------------------")
+ print("left: ", self.left)
+ print("right: ", self.right)
+ print("edge: ", self.edge)
+ print("pm: ", self.pm)
+ print("vertex: ", end=" ")
+ if self.vertex:
+ self.vertex.dump()
+ else:
+ print("None")
+ print("ystar: ", self.ystar)
+
+ def __cmp__(self, other):
+ if self.ystar > other.ystar:
+ return 1
+ elif self.ystar < other.ystar:
+ return -1
+ elif self.vertex.x > other.vertex.x:
+ return 1
+ elif self.vertex.x < other.vertex.x:
+ return -1
+ else:
+ return 0
+
+ def leftreg(self, default):
+ if not self.edge:
+ return default
+ elif self.pm == Edge.LE:
+ return self.edge.reg[Edge.LE]
+ else:
+ return self.edge.reg[Edge.RE]
+
+ def rightreg(self, default):
+ if not self.edge:
+ return default
+ elif self.pm == Edge.LE:
+ return self.edge.reg[Edge.RE]
+ else:
+ return self.edge.reg[Edge.LE]
+
+ # returns True if p is to right of halfedge self
+ def isPointRightOf(self, pt):
+ e = self.edge
+ topsite = e.reg[1]
+ right_of_site = pt.x > topsite.x
+
+ if right_of_site and self.pm == Edge.LE:
+ return True
+
+ if not right_of_site and self.pm == Edge.RE:
+ return False
+
+ if e.a == 1.0:
+ dyp = pt.y - topsite.y
+ dxp = pt.x - topsite.x
+ fast = 0
+ if (not right_of_site and e.b < 0.0) or (right_of_site and e.b >= 0.0):
+ above = dyp >= e.b * dxp
+ fast = above
+ else:
+ above = pt.x + pt.y * e.b > e.c
+ if e.b < 0.0:
+ above = not above
+ if not above:
+ fast = 1
+ if not fast:
+ dxs = topsite.x - (e.reg[0]).x
+ above = e.b * (dxp * dxp - dyp * dyp) < dxs * dyp * (
+ 1.0 + 2.0 * dxp / dxs + e.b * e.b
+ )
+ if e.b < 0.0:
+ above = not above
+ else: # e.b == 1.0
+ yl = e.c - e.a * pt.x
+ t1 = pt.y - yl
+ t2 = pt.x - topsite.x
+ t3 = yl - topsite.y
+ above = t1 * t1 > t2 * t2 + t3 * t3
+
+ if self.pm == Edge.LE:
+ return above
+ else:
+ return not above
+
+ # --------------------------
+ # create a new site where the Halfedges el1 and el2 intersect
+ def intersect(self, other):
+ e1 = self.edge
+ e2 = other.edge
+ if (e1 is None) or (e2 is None):
+ return None
+
+ # if the two edges bisect the same parent return None
+ if e1.reg[1] is e2.reg[1]:
+ return None
+
+ d = e1.a * e2.b - e1.b * e2.a
+ if isEqual(d, 0.0):
+ return None
+
+ xint = (e1.c * e2.b - e2.c * e1.b) / d
+ yint = (e2.c * e1.a - e1.c * e2.a) / d
+ if e1.reg[1] < e2.reg[1]:
+ he = self
+ e = e1
+ else:
+ he = other
+ e = e2
+
+ rightOfSite = xint >= e.reg[1].x
+ if (rightOfSite and he.pm == Edge.LE) or (not rightOfSite and he.pm == Edge.RE):
+ return None
+
+ # create a new site at the point of intersection - this is a new
+ # vector event waiting to happen
+ return Site(xint, yint)
+
+
+# ------------------------------------------------------------------
+class EdgeList(object):
+ def __init__(self, xmin, xmax, nsites):
+ if xmin > xmax:
+ xmin, xmax = xmax, xmin
+ self.hashsize = int(2 * math.sqrt(nsites + 4))
+
+ self.xmin = xmin
+ self.deltax = float(xmax - xmin)
+ self.hash = [None] * self.hashsize
+
+ self.leftend = Halfedge()
+ self.rightend = Halfedge()
+ self.leftend.right = self.rightend
+ self.rightend.left = self.leftend
+ self.hash[0] = self.leftend
+ self.hash[-1] = self.rightend
+
+ def insert(self, left, he):
+ he.left = left
+ he.right = left.right
+ left.right.left = he
+ left.right = he
+
+ def delete(self, he):
+ he.left.right = he.right
+ he.right.left = he.left
+ he.edge = Edge.DELETED
+
+ # Get entry from hash table, pruning any deleted nodes
+ def gethash(self, b):
+ if b < 0 or b >= self.hashsize:
+ return None
+ he = self.hash[b]
+ if he is None or he.edge is not Edge.DELETED:
+ return he
+
+ # Hash table points to deleted half edge. Patch as necessary.
+ self.hash[b] = None
+ return None
+
+ def leftbnd(self, pt):
+ # Use hash table to get close to desired halfedge
+ bucket = int(((pt.x - self.xmin) / self.deltax * self.hashsize))
+
+ if bucket < 0:
+ bucket = 0
+
+ if bucket >= self.hashsize:
+ bucket = self.hashsize - 1
+
+ he = self.gethash(bucket)
+ if he is None:
+ i = 1
+ while True:
+ he = self.gethash(bucket - i)
+ if he is not None:
+ break
+ he = self.gethash(bucket + i)
+ if he is not None:
+ break
+ i += 1
+
+ # Now search linear list of halfedges for the correct one
+ if (he is self.leftend) or (he is not self.rightend and he.isPointRightOf(pt)):
+ he = he.right
+ while he is not self.rightend and he.isPointRightOf(pt):
+ he = he.right
+ he = he.left
+ else:
+ he = he.left
+ while he is not self.leftend and not he.isPointRightOf(pt):
+ he = he.left
+
+ # Update hash table and reference counts
+ if 0 < bucket < self.hashsize - 1:
+ self.hash[bucket] = he
+ return he
+
+
+# ------------------------------------------------------------------
+class PriorityQueue(object):
+ def __init__(self, ymin, ymax, nsites):
+ self.ymin = ymin
+ self.deltay = ymax - ymin
+ self.hashsize = int(4 * math.sqrt(nsites))
+ self.count = 0
+ self.minidx = 0
+ self.hash = []
+ for i in range(self.hashsize):
+ self.hash.append(Halfedge())
+
+ def __len__(self):
+ return self.count
+
+ def isEmpty(self):
+ return self.count == 0
+
+ def insert(self, he, site, offset):
+ he.vertex = site
+ he.ystar = site.y + offset
+ last = self.hash[self.getBucket(he)]
+ nxt = last.qnext
+ while (nxt is not None) and he > nxt:
+ last = nxt
+ nxt = last.qnext
+ he.qnext = last.qnext
+ last.qnext = he
+ self.count += 1
+
+ def delete(self, he):
+ if he.vertex is not None:
+ last = self.hash[self.getBucket(he)]
+ while last.qnext is not he:
+ last = last.qnext
+ last.qnext = he.qnext
+ self.count -= 1
+ he.vertex = None
+
+ def getBucket(self, he):
+ bucket = int(((he.ystar - self.ymin) / self.deltay) * self.hashsize)
+ if bucket < 0:
+ bucket = 0
+ if bucket >= self.hashsize:
+ bucket = self.hashsize - 1
+ if bucket < self.minidx:
+ self.minidx = bucket
+ return bucket
+
+ def getMinPt(self):
+ while self.hash[self.minidx].qnext is None:
+ self.minidx += 1
+ he = self.hash[self.minidx].qnext
+ x = he.vertex.x
+ y = he.ystar
+ return Site(x, y)
+
+ def popMinHalfedge(self):
+ curr = self.hash[self.minidx].qnext
+ self.hash[self.minidx].qnext = curr.qnext
+ self.count -= 1
+ return curr
+
+
+# ------------------------------------------------------------------
+class SiteList(object):
+ def __init__(self, pointList):
+ self.__sites = []
+ self.__sitenum = 0
+
+ self.__xmin = pointList[0].x
+ self.__ymin = pointList[0].y
+ self.__xmax = pointList[0].x
+ self.__ymax = pointList[0].y
+ for i, pt in enumerate(pointList):
+ self.__sites.append(Site(pt.x, pt.y, i))
+ if pt.x < self.__xmin:
+ self.__xmin = pt.x
+ if pt.y < self.__ymin:
+ self.__ymin = pt.y
+ if pt.x > self.__xmax:
+ self.__xmax = pt.x
+ if pt.y > self.__ymax:
+ self.__ymax = pt.y
+ self.__sites.sort()
+
+ def setSiteNumber(self, site):
+ site.sitenum = self.__sitenum
+ self.__sitenum += 1
+
+ class Iterator(object):
+ def __init__(this, lst):
+ this.generator = (s for s in lst)
+
+ def __iter__(this):
+ return this
+
+ def next(this):
+ try:
+ return next(this.generator)
+ except StopIteration:
+ return None
+
+ def iterator(self):
+ return SiteList.Iterator(self.__sites)
+
+ def __iter__(self):
+ return SiteList.Iterator(self.__sites)
+
+ def __len__(self):
+ return len(self.__sites)
+
+ def _getxmin(self):
+ return self.__xmin
+
+ def _getymin(self):
+ return self.__ymin
+
+ def _getxmax(self):
+ return self.__xmax
+
+ def _getymax(self):
+ return self.__ymax
+
+ xmin = property(_getxmin)
+ ymin = property(_getymin)
+ xmax = property(_getxmax)
+ ymax = property(_getymax)
+
+
+# ------------------------------------------------------------------
+def computeVoronoiDiagram(points):
+ """Takes a list of point objects (which must have x and y fields).
+ Returns a 3-tuple of:
+
+ (1) a list of 2-tuples, which are the x,y coordinates of the
+ Voronoi diagram vertices
+ (2) a list of 3-tuples (a,b,c) which are the equations of the
+ lines in the Voronoi diagram: a*x + b*y = c
+ (3) a list of 3-tuples, (l, v1, v2) representing edges of the
+ Voronoi diagram. l is the index of the line, v1 and v2 are
+ the indices of the vetices at the end of the edge. If
+ v1 or v2 is -1, the line extends to infinity.
+ """
+ Edge.EDGE_NUM = 0
+ siteList = SiteList(points)
+ context = Context()
+ voronoi(siteList, context)
+ return context.vertices, context.lines, context.edges
+
+
+# ------------------------------------------------------------------
+def computeDelaunayTriangulation(points):
+ """Takes a list of point objects (which must have x and y fields).
+ Returns a list of 3-tuples: the indices of the points that form a
+ Delaunay triangle.
+ """
+ Edge.EDGE_NUM = 0
+ siteList = SiteList(points)
+ context = Context()
+ context.triangulate = True
+ voronoi(siteList, context)
+ return context.triangles
+
+
+# -----------------------------------------------------------------------------
+if __name__ == "__main__":
+ optlist, args = getopt.getopt(sys.argv[1:], "thdp")
+
+ doHelp = 0
+ c = Context()
+ c.doPrint = 1
+ for opt in optlist:
+ if opt[0] == "-d":
+ c.debug = 1
+ if opt[0] == "-p":
+ c.plot = 1
+ if opt[0] == "-t":
+ c.triangulate = 1
+ if opt[0] == "-h":
+ doHelp = 1
+
+ if not doHelp:
+ pts = []
+ fp = sys.stdin
+ if len(args) > 0:
+ fp = open(args[0], "r")
+ for line in fp:
+ fld = line.split()
+ x = float(fld[0])
+ y = float(fld[1])
+ pts.append(Site(x, y))
+ if len(args) > 0:
+ fp.close()
+
+ sl = SiteList(pts)
+ voronoi(sl, c)