summaryrefslogtreecommitdiffstats
path: root/src/helper/geom-pathstroke.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/helper/geom-pathstroke.cpp')
-rw-r--r--src/helper/geom-pathstroke.cpp1158
1 files changed, 1158 insertions, 0 deletions
diff --git a/src/helper/geom-pathstroke.cpp b/src/helper/geom-pathstroke.cpp
new file mode 100644
index 0000000..228ea5c
--- /dev/null
+++ b/src/helper/geom-pathstroke.cpp
@@ -0,0 +1,1158 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/* Authors:
+ * Liam P. White
+ * Tavmjong Bah
+ * Alexander Brock
+ *
+ * Copyright (C) 2014-2015 Authors
+ *
+ * Released under GNU GPL v2+, read the file 'COPYING' for more information.
+ */
+
+#include <iomanip>
+#include <2geom/path-sink.h>
+#include <2geom/sbasis-to-bezier.h> // cubicbezierpath_from_sbasis
+#include <2geom/path-intersection.h>
+#include <2geom/circle.h>
+
+#include "helper/geom-pathstroke.h"
+
+namespace Geom {
+
+static Point intersection_point(Point origin_a, Point vector_a, Point origin_b, Point vector_b)
+{
+ Coord denom = cross(vector_a, vector_b);
+ if (!are_near(denom,0.)) {
+ Coord t = (cross(vector_b, origin_a) + cross(origin_b, vector_b)) / denom;
+ return origin_a + vector_a*t;
+ }
+ return Point(infinity(), infinity());
+}
+
+/**
+* Find circle that touches inside of the curve, with radius matching the curvature, at time value \c t.
+* Because this method internally uses unitTangentAt, t should be smaller than 1.0 (see unitTangentAt).
+*/
+static Circle touching_circle( D2<SBasis> const &curve, double t, double tol=0.01 )
+{
+ D2<SBasis> dM=derivative(curve);
+ if ( are_near(L2sq(dM(t)), tol) ) {
+ dM=derivative(dM);
+ }
+ if ( are_near(L2sq(dM(t)), tol) ) { // try second time
+ dM=derivative(dM);
+ }
+ Piecewise<D2<SBasis> > unitv = unitVector(dM,tol);
+ Piecewise<SBasis> dMlength = dot(Piecewise<D2<SBasis> >(dM),unitv);
+ Piecewise<SBasis> k = cross(derivative(unitv),unitv);
+ k = divide(k,dMlength,tol,3);
+ double curv = k(t); // note that this value is signed
+
+ Geom::Point normal = unitTangentAt(curve, t).cw();
+ double radius = 1/curv;
+ Geom::Point center = curve(t) + radius*normal;
+ return Geom::Circle(center, fabs(radius));
+}
+
+
+// Area of triangle given three corner points
+static double area( Geom::Point a, Geom::Point b, Geom::Point c ) {
+
+ using Geom::X;
+ using Geom::Y;
+ return( 0.5 * fabs( ( a[X]*(b[Y]-c[Y]) + b[X]*(c[Y]-a[Y]) + c[X]*(a[Y]-b[Y]) ) ) );
+}
+
+// Alternative touching circle routine directly using Beziers. Works only at end points.
+static Circle touching_circle( CubicBezier const &curve, bool start ) {
+
+ double k = 0;
+ Geom::Point p;
+ Geom::Point normal;
+ if ( start ) {
+ double distance = Geom::distance( curve[1], curve[0] );
+ k = 4.0/3.0 * area( curve[0], curve[1], curve[2] ) /
+ (distance * distance * distance);
+ if( Geom::cross(curve[0]-curve[1], curve[1]-curve[2]) < 0 ) {
+ k = -k;
+ }
+ p = curve[0];
+ normal = Geom::Point(curve[1] - curve[0]).cw();
+ normal.normalize();
+ // std::cout << "Start k: " << k << " d: " << distance << " normal: " << normal << std::endl;
+ } else {
+ double distance = Geom::distance( curve[3], curve[2] );
+ k = 4.0/3.0 * area( curve[1], curve[2], curve[3] ) /
+ (distance * distance * distance);
+ if( Geom::cross(curve[1]-curve[2], curve[2]-curve[3]) < 0 ) {
+ k = -k;
+ }
+ p = curve[3];
+ normal = Geom::Point(curve[3] - curve[2]).cw();
+ normal.normalize();
+ // std::cout << "End k: " << k << " d: " << distance << " normal: " << normal << std::endl;
+ }
+ if( k == 0 ) {
+ return Geom::Circle( Geom::Point(0,std::numeric_limits<float>::infinity()),
+ std::numeric_limits<float>::infinity());
+ } else {
+ double radius = 1/k;
+ Geom::Point center = p + normal * radius;
+ return Geom::Circle( center, fabs(radius) );
+ }
+}
+}
+
+namespace {
+
+// Internal data structure
+
+struct join_data {
+ join_data(Geom::Path &_res, Geom::Path const&_outgoing, Geom::Point _in_tang, Geom::Point _out_tang, double _miter, double _width)
+ : res(_res), outgoing(_outgoing), in_tang(_in_tang), out_tang(_out_tang), miter(_miter), width(_width) {};
+
+ // contains the current path that is being built on
+ Geom::Path &res;
+
+ // contains the next curve to append
+ Geom::Path const& outgoing;
+
+ // input tangents
+ Geom::Point in_tang;
+ Geom::Point out_tang;
+
+ // line parameters
+ double miter;
+ double width; // half stroke width
+};
+
+// Join functions must append the outgoing path
+
+typedef void join_func(join_data jd);
+
+void bevel_join(join_data jd)
+{
+ jd.res.appendNew<Geom::LineSegment>(jd.outgoing.initialPoint());
+ jd.res.append(jd.outgoing);
+}
+
+void round_join(join_data jd)
+{
+ jd.res.appendNew<Geom::EllipticalArc>(jd.width, jd.width, 0, false, jd.width <= 0, jd.outgoing.initialPoint());
+ jd.res.append(jd.outgoing);
+}
+
+void miter_join_internal(join_data const &jd, bool clip)
+{
+ using namespace Geom;
+
+ Curve const& incoming = jd.res.back();
+ Curve const& outgoing = jd.outgoing.front();
+ Path &res = jd.res;
+ double width = jd.width, miter = jd.miter;
+
+ Point tang1 = jd.in_tang;
+ Point tang2 = jd.out_tang;
+ Point p = intersection_point(incoming.finalPoint(), tang1, outgoing.initialPoint(), tang2);
+
+ bool satisfied = false;
+ bool inc_ls = res.back_open().degreesOfFreedom() <= 4;
+
+ if (p.isFinite()) {
+ // check size of miter
+ Point point_on_path = incoming.finalPoint() + rot90(tang1)*width;
+ // SVG defines miter length as distance between inner intersection and outer intersection,
+ // which is twice the distance from p to point_on_path but width is half stroke width.
+ satisfied = distance(p, point_on_path) <= miter * width;
+ if (satisfied) {
+ // miter OK, check to see if we can do a relocation
+ if (inc_ls) {
+ res.setFinal(p);
+ } else {
+ res.appendNew<LineSegment>(p);
+ }
+ } else if (clip) {
+ // std::cout << " Clipping ------------ " << std::endl;
+ // miter needs clipping, find two points
+ Point bisector_versor = Line(point_on_path, p).versor();
+ Point point_limit = point_on_path + miter * width * bisector_versor;
+ // std::cout << " bisector_versor: " << bisector_versor << std::endl;
+ // std::cout << " point_limit: " << point_limit << std::endl;
+ Point p1 = intersection_point(incoming.finalPoint(), tang1, point_limit, bisector_versor.cw());
+ Point p2 = intersection_point(outgoing.initialPoint(), tang2, point_limit, bisector_versor.cw());
+ // std::cout << " p1: " << p1 << std::endl;
+ // std::cout << " p2: " << p2 << std::endl;
+ if (inc_ls) {
+ res.setFinal(p1);
+ } else {
+ res.appendNew<LineSegment>(p1);
+ }
+ res.appendNew<LineSegment>(p2);
+ }
+ }
+
+ res.appendNew<LineSegment>(outgoing.initialPoint());
+
+ // check if we can do another relocation
+ bool out_ls = outgoing.degreesOfFreedom() <= 4;
+
+ if ((satisfied || clip) && out_ls) {
+ res.setFinal(outgoing.finalPoint());
+ } else {
+ res.append(outgoing);
+ }
+
+ // either way, add the rest of the path
+ res.insert(res.end(), ++jd.outgoing.begin(), jd.outgoing.end());
+}
+
+void miter_join(join_data jd) { miter_join_internal(jd, false); }
+void miter_clip_join(join_data jd) { miter_join_internal(jd, true); }
+
+Geom::Point pick_solution(std::vector<Geom::ShapeIntersection> points, Geom::Point tang2, Geom::Point endPt)
+{
+ assert(points.size() == 2);
+ Geom::Point sol;
+ if ( dot(tang2, points[0].point() - endPt) > 0 ) {
+ // points[0] is bad, choose points[1]
+ sol = points[1];
+ } else if ( dot(tang2, points[1].point() - endPt) > 0 ) { // points[0] could be good, now check points[1]
+ // points[1] is bad, choose points[0]
+ sol = points[0];
+ } else {
+ // both points are good, choose nearest
+ sol = ( distanceSq(endPt, points[0].point()) < distanceSq(endPt, points[1].point()) )
+ ? points[0].point() : points[1].point();
+ }
+ return sol;
+}
+
+// Arcs line join. If two circles don't intersect, expand inner circle.
+Geom::Point expand_circle( Geom::Circle &inner_circle, Geom::Circle const &outer_circle, Geom::Point const &start_pt, Geom::Point const &start_tangent ) {
+ // std::cout << "expand_circle:" << std::endl;
+ // std::cout << " outer_circle: radius: " << outer_circle.radius() << " center: " << outer_circle.center() << std::endl;
+ // std::cout << " start: point: " << start_pt << " tangent: " << start_tangent << std::endl;
+
+ if( !(outer_circle.contains(start_pt) ) ) {
+ // std::cout << " WARNING: Outer circle does not contain starting point!" << std::endl;
+ return Geom::Point(0,0);
+ }
+
+ Geom::Line secant1(start_pt, start_pt + start_tangent);
+ std::vector<Geom::ShapeIntersection> chord1_pts = outer_circle.intersect(secant1);
+ // std::cout << " chord1: " << chord1_pts[0].point() << ", " << chord1_pts[1].point() << std::endl;
+ Geom::LineSegment chord1(chord1_pts[0].point(), chord1_pts[1].point());
+
+ Geom::Line bisector = make_bisector_line( chord1 );
+ std::vector<Geom::ShapeIntersection> chord2_pts = outer_circle.intersect(bisector);
+ // std::cout << " chord2: " << chord2_pts[0].point() << ", " << chord2_pts[1].point() << std::endl;
+ Geom::LineSegment chord2(chord2_pts[0].point(), chord2_pts[1].point());
+
+ // Find D, point on chord2 and on circle closest to start point
+ Geom::Coord d0 = Geom::distance(chord2_pts[0].point(),start_pt);
+ Geom::Coord d1 = Geom::distance(chord2_pts[1].point(),start_pt);
+ // std::cout << " d0: " << d0 << " d1: " << d1 << std::endl;
+ Geom::Point d = (d0 < d1) ? chord2_pts[0].point() : chord2_pts[1].point();
+ Geom::Line da(d,start_pt);
+
+ // Chord through start point and point D
+ std::vector<Geom::ShapeIntersection> chord3_pts = outer_circle.intersect(da);
+ // std::cout << " chord3: " << chord3_pts[0].point() << ", " << chord3_pts[1].point() << std::endl;
+
+ // Find farthest point on chord3 and on circle (could be more robust)
+ Geom::Coord d2 = Geom::distance(chord3_pts[0].point(),d);
+ Geom::Coord d3 = Geom::distance(chord3_pts[1].point(),d);
+ // std::cout << " d2: " << d2 << " d3: " << d3 << std::endl;
+
+ // Find point P, the intersection of outer circle and new inner circle
+ Geom::Point p = (d2 > d3) ? chord3_pts[0].point() : chord3_pts[1].point();
+
+ // Find center of new circle: it is at the intersection of the bisector
+ // of the chord defined by the start point and point P and a line through
+ // the start point and parallel to the first bisector.
+ Geom::LineSegment chord4(start_pt,p);
+ Geom::Line bisector2 = make_bisector_line( chord4 );
+ Geom::Line diameter = make_parallel_line( start_pt, bisector );
+ std::vector<Geom::ShapeIntersection> center_new = bisector2.intersect( diameter );
+ // std::cout << " center_new: " << center_new[0].point() << std::endl;
+ Geom::Coord r_new = Geom::distance( center_new[0].point(), start_pt );
+ // std::cout << " r_new: " << r_new << std::endl;
+
+ inner_circle.setCenter( center_new[0].point() );
+ inner_circle.setRadius( r_new );
+ return p;
+}
+
+// Arcs line join. If two circles don't intersect, adjust both circles so they just touch.
+// Increase (decrease) the radius of circle 1 and decrease (increase) of circle 2 by the same amount keeping the given points and tangents fixed.
+Geom::Point adjust_circles( Geom::Circle &circle1, Geom::Circle &circle2, Geom::Point const &point1, Geom::Point const &point2, Geom::Point const &tan1, Geom::Point const &tan2 ) {
+
+ Geom::Point n1 = (circle1.center() - point1).normalized(); // Always points towards center
+ Geom::Point n2 = (circle2.center() - point2).normalized();
+ Geom::Point sum_n = n1 + n2;
+
+ double r1 = circle1.radius();
+ double r2 = circle2.radius();
+ double delta_r = r2 - r1;
+ Geom::Point c1 = circle1.center();
+ Geom::Point c2 = circle2.center();
+ Geom::Point delta_c = c2 - c1;
+
+ // std::cout << "adjust_circles:" << std::endl;
+ // std::cout << " norm: " << n1 << "; " << n2 << std::endl;
+ // std::cout << " sum_n: " << sum_n << std::endl;
+ // std::cout << " delta_r: " << delta_r << std::endl;
+ // std::cout << " delta_c: " << delta_c << std::endl;
+
+ // Quadratic equation
+ double A = 4 - sum_n.length() * sum_n.length();
+ double B = 4.0 * delta_r - 2.0 * Geom::dot( delta_c, sum_n );
+ double C = delta_r * delta_r - delta_c.length() * delta_c.length();
+
+ double s1 = 0;
+ double s2 = 0;
+
+ if( fabs(A) < 0.01 ) {
+ // std::cout << " A near zero! $$$$$$$$$$$$$$$$$$" << std::endl;
+ if( B != 0 ) {
+ s1 = -C/B;
+ s2 = -s1;
+ }
+ } else {
+ s1 = (-B + sqrt(B*B - 4*A*C))/(2*A);
+ s2 = (-B - sqrt(B*B - 4*A*C))/(2*A);
+ }
+
+ double dr = (fabs(s1)<=fabs(s2)?s1:s2);
+
+ // std::cout << " A: " << A << std::endl;
+ // std::cout << " B: " << B << std::endl;
+ // std::cout << " C: " << C << std::endl;
+ // std::cout << " s1: " << s1 << " s2: " << s2 << " dr: " << dr << std::endl;
+
+ circle1 = Geom::Circle( c1 - dr*n1, r1-dr );
+ circle2 = Geom::Circle( c2 + dr*n2, r2+dr );
+
+ // std::cout << " C1: " << circle1 << std::endl;
+ // std::cout << " C2: " << circle2 << std::endl;
+ // std::cout << " d': " << Geom::Point( circle1.center() - circle2.center() ).length() << std::endl;
+
+ Geom::Line bisector( circle1.center(), circle2.center() );
+ std::vector<Geom::ShapeIntersection> points = circle1.intersect( bisector );
+ Geom::Point p0 = points[0].point();
+ Geom::Point p1 = points[1].point();
+ // std::cout << " points: " << p0 << "; " << p1 << std::endl;
+ if( std::abs( Geom::distance( p0, circle2.center() ) - circle2.radius() ) <
+ std::abs( Geom::distance( p1, circle2.center() ) - circle2.radius() ) ) {
+ return p0;
+ } else {
+ return p1;
+ }
+}
+
+void extrapolate_join_internal(join_data const &jd, int alternative)
+{
+ // std::cout << "\nextrapolate_join: entrance: alternative: " << alternative << std::endl;
+ using namespace Geom;
+
+ Geom::Path &res = jd.res;
+ Geom::Curve const& incoming = res.back();
+ Geom::Curve const& outgoing = jd.outgoing.front();
+ Geom::Point startPt = incoming.finalPoint();
+ Geom::Point endPt = outgoing.initialPoint();
+ Geom::Point tang1 = jd.in_tang;
+ Geom::Point tang2 = jd.out_tang;
+ // width is half stroke-width
+ double width = jd.width, miter = jd.miter;
+
+ // std::cout << " startPt: " << startPt << " endPt: " << endPt << std::endl;
+ // std::cout << " tang1: " << tang1 << " tang2: " << tang2 << std::endl;
+ // std::cout << " dot product: " << Geom::dot( tang1, tang2 ) << std::endl;
+ // std::cout << " width: " << width << std::endl;
+
+ // CIRCLE CALCULATION TESTING
+ Geom::Circle circle1 = touching_circle(Geom::reverse(incoming.toSBasis()), 0.);
+ Geom::Circle circle2 = touching_circle(outgoing.toSBasis(), 0);
+ // std::cout << " circle1: " << circle1 << std::endl;
+ // std::cout << " circle2: " << circle2 << std::endl;
+ if( Geom::CubicBezier const * in_bezier = dynamic_cast<Geom::CubicBezier const*>(&incoming) ) {
+ Geom::Circle circle_test1 = touching_circle(*in_bezier, false);
+ if( !Geom::are_near( circle1, circle_test1, 0.01 ) ) {
+ // std::cout << " Circle 1 error!!!!!!!!!!!!!!!!!" << std::endl;
+ // std::cout << " " << circle_test1 << std::endl;
+ }
+ }
+ if( Geom::CubicBezier const * out_bezier = dynamic_cast<Geom::CubicBezier const*>(&outgoing) ) {
+ Geom::Circle circle_test2 = touching_circle(*out_bezier, true);
+ if( !Geom::are_near( circle2, circle_test2, 0.01 ) ) {
+ // std::cout << " Circle 2 error!!!!!!!!!!!!!!!!!" << std::endl;
+ // std::cout << " " << circle_test2 << std::endl;
+ }
+ }
+ // END TESTING
+
+ Geom::Point center1 = circle1.center();
+ double side1 = tang1[Geom::X]*(startPt[Geom::Y]-center1[Geom::Y]) - tang1[Geom::Y]*(startPt[Geom::X]-center1[Geom::X]);
+ // std::cout << " side1: " << side1 << std::endl;
+
+ bool inc_ls = !circle1.center().isFinite();
+ bool out_ls = !circle2.center().isFinite();
+
+ std::vector<Geom::ShapeIntersection> points;
+
+ Geom::EllipticalArc *arc1 = nullptr;
+ Geom::EllipticalArc *arc2 = nullptr;
+ Geom::LineSegment *seg1 = nullptr;
+ Geom::LineSegment *seg2 = nullptr;
+ Geom::Point sol;
+ Geom::Point p1;
+ Geom::Point p2;
+
+ if (!inc_ls && !out_ls) {
+ // std::cout << " two circles" << std::endl;
+
+ // See if tangent is backwards (radius < width/2 and circle is inside stroke).
+ Geom::Point node_on_path = startPt + Geom::rot90(tang1)*width;
+ // std::cout << " node_on_path: " << node_on_path << " -------------- " << std::endl;
+ bool b1 = false;
+ bool b2 = false;
+ if (circle1.radius() < width && distance( circle1.center(), node_on_path ) < width) {
+ b1 = true;
+ }
+ if (circle2.radius() < width && distance( circle2.center(), node_on_path ) < width) {
+ b2 = true;
+ }
+ // std::cout << " b1: " << (b1?"true":"false")
+ // << " b2: " << (b2?"true":"false") << std::endl;
+
+ // Two circles
+ points = circle1.intersect(circle2);
+
+ if (points.size() != 2) {
+ // std::cout << " Circles do not intersect, do backup" << std::endl;
+ switch (alternative) {
+ case 1:
+ {
+ // Fallback to round if one path has radius smaller than half line width.
+ if(b1 || b2) {
+ // std::cout << "At one least path has radius smaller than half line width." << std::endl;
+ return( round_join(jd) );
+ }
+
+ Point p;
+ if( circle2.contains( startPt ) && !circle1.contains( endPt ) ) {
+ // std::cout << "Expand circle1" << std::endl;
+ p = expand_circle( circle1, circle2, startPt, tang1 );
+ points.emplace_back( 0, 0, p );
+ points.emplace_back( 0, 0, p );
+ } else if( circle1.contains( endPt ) && !circle2.contains( startPt ) ) {
+ // std::cout << "Expand circle2" << std::endl;
+ p = expand_circle( circle2, circle1, endPt, tang2 );
+ points.emplace_back( 0, 0, p );
+ points.emplace_back( 0, 0, p );
+ } else {
+ // std::cout << "Either both points inside or both outside" << std::endl;
+ return( miter_clip_join(jd) );
+ }
+ break;
+
+ }
+ case 2:
+ {
+ // Fallback to round if one path has radius smaller than half line width.
+ if(b1 || b2) {
+ // std::cout << "At one least path has radius smaller than half line width." << std::endl;
+ return( round_join(jd) );
+ }
+
+ if( ( circle2.contains( startPt ) && !circle1.contains( endPt ) ) ||
+ ( circle1.contains( endPt ) && !circle2.contains( startPt ) ) ) {
+
+ Geom::Point apex = adjust_circles( circle1, circle2, startPt, endPt, tang1, tang2 );
+ points.emplace_back( 0, 0, apex );
+ points.emplace_back( 0, 0, apex );
+ } else {
+ // std::cout << "Either both points inside or both outside" << std::endl;
+ return( miter_clip_join(jd) );
+ }
+
+ break;
+ }
+ case 3:
+ if( side1 > 0 ) {
+ Geom::Line secant(startPt, startPt + tang1);
+ points = circle2.intersect(secant);
+ circle1.setRadius(std::numeric_limits<float>::infinity());
+ circle1.setCenter(Geom::Point(0,std::numeric_limits<float>::infinity()));
+ } else {
+ Geom::Line secant(endPt, endPt + tang2);
+ points = circle1.intersect(secant);
+ circle2.setRadius(std::numeric_limits<float>::infinity());
+ circle2.setCenter(Geom::Point(0,std::numeric_limits<float>::infinity()));
+ }
+ break;
+
+
+ case 0:
+ default:
+ // Do nothing
+ break;
+ }
+ }
+
+ if (points.size() == 2) {
+ sol = pick_solution(points, tang2, endPt);
+ if( circle1.radius() != std::numeric_limits<float>::infinity() ) {
+ arc1 = circle1.arc(startPt, 0.5*(startPt+sol), sol);
+ } else {
+ seg1 = new Geom::LineSegment(startPt, sol);
+ }
+ if( circle2.radius() != std::numeric_limits<float>::infinity() ) {
+ arc2 = circle2.arc(sol, 0.5*(sol+endPt), endPt);
+ } else {
+ seg2 = new Geom::LineSegment(sol, endPt);
+ }
+ }
+ } else if (inc_ls && !out_ls) {
+ // Line and circle
+ // std::cout << " line circle" << std::endl;
+ points = circle2.intersect(Line(incoming.initialPoint(), incoming.finalPoint()));
+ if (points.size() == 2) {
+ sol = pick_solution(points, tang2, endPt);
+ arc2 = circle2.arc(sol, 0.5*(sol+endPt), endPt);
+ }
+ } else if (!inc_ls && out_ls) {
+ // Circle and line
+ // std::cout << " circle line" << std::endl;
+ points = circle1.intersect(Line(outgoing.initialPoint(), outgoing.finalPoint()));
+ if (points.size() == 2) {
+ sol = pick_solution(points, tang2, endPt);
+ arc1 = circle1.arc(startPt, 0.5*(sol+startPt), sol);
+ }
+ }
+ if (points.size() != 2) {
+ // std::cout << " no solutions" << std::endl;
+ // no solutions available, fall back to miter
+ return miter_join(jd);
+ }
+
+ // We have a solution, thus sol is defined.
+ p1 = sol;
+
+ // See if we need to clip. Miter length is measured along a circular arc that is tangent to the
+ // bisector of the incoming and out going angles and passes through the end point (sol) of the
+ // line join.
+
+ // Center of circle is intersection of a line orthogonal to bisector and a line bisecting
+ // a chord connecting the path end point (point_on_path) and the join end point (sol).
+ Geom::Point point_on_path = startPt + Geom::rot90(tang1)*width;
+ Geom::Line bisector = make_angle_bisector_line(startPt, point_on_path, endPt);
+ Geom::Line ortho = make_orthogonal_line(point_on_path, bisector);
+
+ Geom::LineSegment chord(point_on_path, sol);
+ Geom::Line bisector_chord = make_bisector_line(chord);
+
+ Geom::Line limit_line;
+ double miter_limit = width * miter;
+ bool clipped = false;
+
+ if (are_parallel(bisector_chord, ortho)) {
+ // No intersection (can happen if curvatures are equal but opposite)
+ if (Geom::distance(point_on_path, sol) > miter_limit) {
+ clipped = true;
+ Geom::Point temp = bisector.versor();
+ Geom::Point limit_point = point_on_path + miter_limit * temp;
+ limit_line = make_parallel_line( limit_point, ortho );
+ }
+ } else {
+ Geom::Point center =
+ Geom::intersection_point( bisector_chord.pointAt(0), bisector_chord.versor(),
+ ortho.pointAt(0), ortho.versor() );
+ Geom::Coord radius = distance(center, point_on_path);
+ Geom::Circle circle_center(center, radius);
+
+ double limit_angle = miter_limit / radius;
+
+ Geom::Ray start_ray(center, point_on_path);
+ Geom::Ray end_ray(center, sol);
+ Geom::Line limit_line(center, 0); // Angle set below
+
+ if (Geom::cross(start_ray.versor(), end_ray.versor()) < 0) {
+ limit_line.setAngle(start_ray.angle() - limit_angle);
+ } else {
+ limit_line.setAngle(start_ray.angle() + limit_angle);
+ }
+
+ Geom::EllipticalArc *arc_center = circle_center.arc(point_on_path, 0.5*(point_on_path + sol), sol);
+ if (arc_center && arc_center->sweepAngle() > limit_angle) {
+ // We need to clip
+ clipped = true;
+
+ if (!inc_ls) {
+ // Incoming circular
+ points = circle1.intersect(limit_line);
+ if (points.size() == 2) {
+ p1 = pick_solution(points, tang2, endPt);
+ delete arc1;
+ arc1 = circle1.arc(startPt, 0.5*(p1+startPt), p1);
+ }
+ } else {
+ p1 = Geom::intersection_point(startPt, tang1, limit_line.pointAt(0), limit_line.versor());
+ }
+
+ if (!out_ls) {
+ // Outgoing circular
+ points = circle2.intersect(limit_line);
+ if (points.size() == 2) {
+ p2 = pick_solution(points, tang1, endPt);
+ delete arc2;
+ arc2 = circle2.arc(p2, 0.5*(p2+endPt), endPt);
+ }
+ } else {
+ p2 = Geom::intersection_point(endPt, tang2, limit_line.pointAt(0), limit_line.versor());
+ }
+ }
+ }
+
+ // Add initial
+ if (arc1) {
+ res.append(*arc1);
+ } else if (seg1 ) {
+ res.append(*seg1);
+ } else {
+ // Straight line segment: move last point
+ res.setFinal(p1);
+ }
+
+ if (clipped) {
+ res.appendNew<Geom::LineSegment>(p2);
+ }
+
+ // Add outgoing
+ if (arc2) {
+ res.append(*arc2);
+ res.append(outgoing);
+ } else if (seg2 ) {
+ res.append(*seg2);
+ res.append(outgoing);
+ } else {
+ // Straight line segment:
+ res.appendNew<Geom::LineSegment>(outgoing.finalPoint());
+ }
+
+ // add the rest of the path
+ res.insert(res.end(), ++jd.outgoing.begin(), jd.outgoing.end());
+
+ delete arc1;
+ delete arc2;
+ delete seg1;
+ delete seg2;
+}
+
+void extrapolate_join( join_data jd) { extrapolate_join_internal(jd, 0); }
+void extrapolate_join_alt1(join_data jd) { extrapolate_join_internal(jd, 1); }
+void extrapolate_join_alt2(join_data jd) { extrapolate_join_internal(jd, 2); }
+void extrapolate_join_alt3(join_data jd) { extrapolate_join_internal(jd, 3); }
+
+
+void tangents(Geom::Point tang[2], Geom::Curve const& incoming, Geom::Curve const& outgoing)
+{
+ Geom::Point tang1 = Geom::unitTangentAt(reverse(incoming.toSBasis()), 0.);
+ Geom::Point tang2 = outgoing.unitTangentAt(0.);
+ tang[0] = tang1, tang[1] = tang2;
+}
+
+// Offsetting a line segment is mathematically stable and quick to do
+Geom::LineSegment offset_line(Geom::LineSegment const& l, double width)
+{
+ Geom::Point tang1 = Geom::rot90(l.unitTangentAt(0));
+ Geom::Point tang2 = Geom::rot90(unitTangentAt(reverse(l.toSBasis()), 0.));
+
+ Geom::Point start = l.initialPoint() + tang1 * width;
+ Geom::Point end = l.finalPoint() - tang2 * width;
+
+ return Geom::LineSegment(start, end);
+}
+
+void get_cubic_data(Geom::CubicBezier const& bez, double time, double& len, double& rad)
+{
+ // get derivatives
+ std::vector<Geom::Point> derivs = bez.pointAndDerivatives(time, 3);
+
+ Geom::Point der1 = derivs[1]; // first deriv (tangent vector)
+ Geom::Point der2 = derivs[2]; // second deriv (tangent's tangent)
+ double l = Geom::L2(der1); // length
+
+ len = rad = 0;
+
+ // TODO: we might want to consider using Geom::touching_circle to determine the
+ // curvature radius here. Less code duplication, but slower
+
+ if (Geom::are_near(l, 0, 1e-4)) {
+ l = Geom::L2(der2);
+ Geom::Point der3 = derivs.at(3); // try second time
+ if (Geom::are_near(l, 0, 1e-4)) {
+ l = Geom::L2(der3);
+ if (Geom::are_near(l, 0)) {
+ return; // this isn't a segment...
+ }
+ rad = 1e8;
+ } else {
+ rad = -l * (Geom::dot(der2, der2) / Geom::cross(der2, der3));
+ }
+ } else {
+ rad = -l * (Geom::dot(der1, der1) / Geom::cross(der1, der2));
+ }
+ len = l;
+}
+
+double _offset_cubic_stable_sub(
+ Geom::CubicBezier const& bez,
+ Geom::CubicBezier& c,
+ const Geom::Point& start_normal,
+ const Geom::Point& end_normal,
+ const Geom::Point& start_new,
+ const Geom::Point& end_new,
+ const double start_rad,
+ const double end_rad,
+ const double start_len,
+ const double end_len,
+ const double width,
+ const double width_correction) {
+ using Geom::X;
+ using Geom::Y;
+
+ double start_off = 1, end_off = 1;
+ // correction of the lengths of the tangent to the offset
+ if (!Geom::are_near(start_rad, 0))
+ start_off += (width + width_correction) / start_rad;
+ if (!Geom::are_near(end_rad, 0))
+ end_off += (width + width_correction) / end_rad;
+
+ // We don't change the direction of the control points
+ if (start_off < 0) {
+ start_off = 0;
+ }
+ if (end_off < 0) {
+ end_off = 0;
+ }
+ start_off *= start_len;
+ end_off *= end_len;
+ // --------
+
+ Geom::Point mid1_new = start_normal.ccw()*start_off;
+ mid1_new = Geom::Point(start_new[X] + mid1_new[X]/3., start_new[Y] + mid1_new[Y]/3.);
+ Geom::Point mid2_new = end_normal.ccw()*end_off;
+ mid2_new = Geom::Point(end_new[X] - mid2_new[X]/3., end_new[Y] - mid2_new[Y]/3.);
+
+ // create the estimate curve
+ c = Geom::CubicBezier(start_new, mid1_new, mid2_new, end_new);
+
+ // check the tolerance for our estimate to be a parallel curve
+
+ double worst_residual = 0;
+ for (size_t ii = 3; ii <= 7; ii+=2) {
+ const double t = static_cast<double>(ii) / 10;
+ const Geom::Point req = bez.pointAt(t);
+ const Geom::Point chk = c.pointAt(c.nearestTime(req));
+ const double current_residual = (chk-req).length() - std::abs(width);
+ if (std::abs(current_residual) > std::abs(worst_residual)) {
+ worst_residual = current_residual;
+ }
+ }
+ return worst_residual;
+}
+
+void offset_cubic(Geom::Path& p, Geom::CubicBezier const& bez, double width, double tol, size_t levels)
+{
+ using Geom::X;
+ using Geom::Y;
+
+ const Geom::Point start_pos = bez.initialPoint();
+ const Geom::Point end_pos = bez.finalPoint();
+
+ const Geom::Point start_normal = Geom::rot90(bez.unitTangentAt(0));
+ const Geom::Point end_normal = -Geom::rot90(Geom::unitTangentAt(Geom::reverse(bez.toSBasis()), 0.));
+
+ // offset the start and end control points out by the width
+ const Geom::Point start_new = start_pos + start_normal*width;
+ const Geom::Point end_new = end_pos + end_normal*width;
+
+ // --------
+ double start_rad, end_rad;
+ double start_len, end_len; // tangent lengths
+ get_cubic_data(bez, 0, start_len, start_rad);
+ get_cubic_data(bez, 1, end_len, end_rad);
+
+
+ Geom::CubicBezier c;
+
+ double best_width_correction = 0;
+ double best_residual = _offset_cubic_stable_sub(
+ bez, c,
+ start_normal, end_normal,
+ start_new, end_new,
+ start_rad, end_rad,
+ start_len, end_len,
+ width, best_width_correction);
+ double stepsize = std::abs(width)/2;
+ bool seen_success = false;
+ double stepsize_threshold = 0;
+ // std::cout << "Residual from " << best_residual << " ";
+ size_t ii = 0;
+ for (; ii < 100 && stepsize > stepsize_threshold; ++ii) {
+ bool success = false;
+ const double width_correction = best_width_correction - (best_residual > 0 ? 1 : -1) * stepsize;
+ Geom::CubicBezier current_curve;
+ const double residual = _offset_cubic_stable_sub(
+ bez, current_curve,
+ start_normal, end_normal,
+ start_new, end_new,
+ start_rad, end_rad,
+ start_len, end_len,
+ width, width_correction);
+ if (std::abs(residual) < std::abs(best_residual)) {
+ best_residual = residual;
+ best_width_correction = width_correction;
+ c = current_curve;
+ success = true;
+ if (std::abs(best_residual) < tol/4) {
+ break;
+ }
+ }
+
+ if (success) {
+ if (!seen_success) {
+ seen_success = true;
+ //std::cout << "Stepsize factor: " << std::abs(width) / stepsize << std::endl;
+ stepsize_threshold = stepsize / 1000;
+ }
+ }
+ else {
+ stepsize /= 2;
+ }
+ if (std::abs(best_width_correction) >= std::abs(width)/2) {
+ //break; // Seems to prevent some numerical instabilities, not clear if useful
+ }
+ }
+
+ // reached maximum recursive depth
+ // don't bother with any more correction
+ if (levels == 0) {
+ try {
+ p.append(c);
+ }
+ catch (...) {
+ if ((p.finalPoint() - c.initialPoint()).length() < 1e-6) {
+ c.setInitial(p.finalPoint());
+ }
+ else {
+ auto line = Geom::LineSegment(p.finalPoint(), c.initialPoint());
+ p.append(line);
+ }
+ p.append(c);
+ }
+
+ return;
+ }
+
+ // We find the point on our new curve (c) for which the distance between
+ // (c) and (bez) differs the most from the desired distance (width).
+ double worst_err = std::abs(best_residual);
+ double worst_time = .5;
+ for (size_t ii = 1; ii <= 9; ++ii) {
+ const double t = static_cast<double>(ii) / 10;
+ const Geom::Point req = bez.pointAt(t);
+ // We use the exact solution with nearestTime because it is numerically
+ // much more stable than simply assuming that the point on (c) closest
+ // to bez.pointAt(t) is given by c.pointAt(t)
+ const Geom::Point chk = c.pointAt(c.nearestTime(req));
+
+ Geom::Point const diff = req - chk;
+ const double err = std::abs(diff.length() - std::abs(width));
+ if (err > worst_err) {
+ worst_err = err;
+ worst_time = t;
+ }
+ }
+
+ if (worst_err < tol) {
+ if (Geom::are_near(start_new, p.finalPoint())) {
+ p.setFinal(start_new); // if it isn't near, we throw
+ }
+
+ // we're good, curve is accurate enough
+ p.append(c);
+ return;
+ } else {
+ // split the curve in two
+ std::pair<Geom::CubicBezier, Geom::CubicBezier> s = bez.subdivide(worst_time);
+ offset_cubic(p, s.first, width, tol, levels - 1);
+ offset_cubic(p, s.second, width, tol, levels - 1);
+ }
+}
+
+void offset_quadratic(Geom::Path& p, Geom::QuadraticBezier const& bez, double width, double tol, size_t levels)
+{
+ // cheat
+ // it's faster
+ // seriously
+ std::vector<Geom::Point> points = bez.controlPoints();
+ Geom::Point b1 = points[0] + (2./3) * (points[1] - points[0]);
+ Geom::Point b2 = b1 + (1./3) * (points[2] - points[0]);
+ Geom::CubicBezier cub = Geom::CubicBezier(points[0], b1, b2, points[2]);
+ offset_cubic(p, cub, width, tol, levels);
+}
+
+void offset_curve(Geom::Path& res, Geom::Curve const* current, double width, double tolerance)
+{
+ size_t levels = 8;
+
+ if (current->isDegenerate()) return; // don't do anything
+
+ // TODO: we can handle SVGEllipticalArc here as well, do that!
+
+ if (Geom::BezierCurve const *b = dynamic_cast<Geom::BezierCurve const*>(current)) {
+ size_t order = b->order();
+ switch (order) {
+ case 1:
+ res.append(offset_line(static_cast<Geom::LineSegment const&>(*current), width));
+ break;
+ case 2: {
+ Geom::QuadraticBezier const& q = static_cast<Geom::QuadraticBezier const&>(*current);
+ offset_quadratic(res, q, width, tolerance, levels);
+ break;
+ }
+ case 3: {
+ Geom::CubicBezier const& cb = static_cast<Geom::CubicBezier const&>(*current);
+ offset_cubic(res, cb, width, tolerance, levels);
+ break;
+ }
+ default: {
+ Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(current->toSBasis(), tolerance);
+ for (const auto & i : sbasis_path)
+ offset_curve(res, &i, width, tolerance);
+ break;
+ }
+ }
+ } else {
+ Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(current->toSBasis(), 0.1);
+ for (const auto & i : sbasis_path)
+ offset_curve(res, &i, width, tolerance);
+ }
+}
+
+typedef void cap_func(Geom::PathBuilder& res, Geom::Path const& with_dir, Geom::Path const& against_dir, double width);
+
+void flat_cap(Geom::PathBuilder& res, Geom::Path const&, Geom::Path const& against_dir, double)
+{
+ res.lineTo(against_dir.initialPoint());
+}
+
+void round_cap(Geom::PathBuilder& res, Geom::Path const&, Geom::Path const& against_dir, double width)
+{
+ res.arcTo(width / 2., width / 2., 0., true, false, against_dir.initialPoint());
+}
+
+void square_cap(Geom::PathBuilder& res, Geom::Path const& with_dir, Geom::Path const& against_dir, double width)
+{
+ width /= 2.;
+ Geom::Point normal_1 = -Geom::unitTangentAt(Geom::reverse(with_dir.back().toSBasis()), 0.);
+ Geom::Point normal_2 = -against_dir[0].unitTangentAt(0.);
+ res.lineTo(with_dir.finalPoint() + normal_1*width);
+ res.lineTo(against_dir.initialPoint() + normal_2*width);
+ res.lineTo(against_dir.initialPoint());
+}
+
+void peak_cap(Geom::PathBuilder& res, Geom::Path const& with_dir, Geom::Path const& against_dir, double width)
+{
+ width /= 2.;
+ Geom::Point normal_1 = -Geom::unitTangentAt(Geom::reverse(with_dir.back().toSBasis()), 0.);
+ Geom::Point normal_2 = -against_dir[0].unitTangentAt(0.);
+ Geom::Point midpoint = ((with_dir.finalPoint() + normal_1*width) + (against_dir.initialPoint() + normal_2*width)) * 0.5;
+ res.lineTo(midpoint);
+ res.lineTo(against_dir.initialPoint());
+}
+
+} // namespace
+
+namespace Inkscape {
+
+Geom::PathVector outline(
+ Geom::Path const& input,
+ double width,
+ double miter,
+ LineJoinType join,
+ LineCapType butt,
+ double tolerance)
+{
+ if (input.size() == 0) return Geom::PathVector(); // nope, don't even try
+
+ Geom::PathBuilder res;
+ Geom::Path with_dir = half_outline(input, width/2., miter, join, tolerance);
+ Geom::Path against_dir = half_outline(input.reversed(), width/2., miter, join, tolerance);
+ res.moveTo(with_dir[0].initialPoint());
+ res.append(with_dir);
+
+ cap_func *cf;
+ switch (butt) {
+ case BUTT_ROUND:
+ cf = &round_cap;
+ break;
+ case BUTT_SQUARE:
+ cf = &square_cap;
+ break;
+ case BUTT_PEAK:
+ cf = &peak_cap;
+ break;
+ default:
+ cf = &flat_cap;
+ }
+
+ // glue caps
+ if (!input.closed()) {
+ cf(res, with_dir, against_dir, width);
+ } else {
+ res.closePath();
+ res.moveTo(against_dir.initialPoint());
+ }
+
+ res.append(against_dir);
+
+ if (!input.closed()) {
+ cf(res, against_dir, with_dir, width);
+ }
+
+ res.closePath();
+ res.flush();
+ return res.peek();
+}
+
+Geom::Path half_outline(
+ Geom::Path const& input,
+ double width,
+ double miter,
+ LineJoinType join,
+ double tolerance)
+{
+ if (tolerance <= 0) {
+ if (std::abs(width) > 0) {
+ tolerance = 5.0 * (std::abs(width)/100);
+ }
+ else {
+ tolerance = 1e-4;
+ }
+ }
+ Geom::Path res;
+ if (input.size() == 0) return res;
+
+ Geom::Point tang1 = input[0].unitTangentAt(0);
+ Geom::Point start = input.initialPoint() + tang1 * width;
+ Geom::Path temp;
+ Geom::Point tang[2];
+
+ res.setStitching(true);
+ temp.setStitching(true);
+
+ res.start(start);
+
+ // Do two curves at a time for efficiency, since the join function needs to know the outgoing curve as well
+ const Geom::Curve &closingline = input.back_closed();
+ const size_t k = (are_near(closingline.initialPoint(), closingline.finalPoint()) && input.closed() )
+ ?input.size_open():input.size_default();
+
+ for (size_t u = 0; u < k; u += 2) {
+ temp.clear();
+
+ offset_curve(temp, &input[u], width, tolerance);
+
+ // on the first run through, there isn't a join
+ if (u == 0) {
+ res.append(temp);
+ } else {
+ tangents(tang, input[u-1], input[u]);
+ outline_join(res, temp, tang[0], tang[1], width, miter, join);
+ }
+
+ // odd number of paths
+ if (u < k - 1) {
+ temp.clear();
+ offset_curve(temp, &input[u+1], width, tolerance);
+ tangents(tang, input[u], input[u+1]);
+ outline_join(res, temp, tang[0], tang[1], width, miter, join);
+ }
+ }
+ if (input.closed()) {
+ Geom::Curve const &c1 = res.back();
+ Geom::Curve const &c2 = res.front();
+ temp.clear();
+ temp.append(c1);
+ Geom::Path temp2;
+ temp2.append(c2);
+ tangents(tang, input.back(), input.front());
+ outline_join(temp, temp2, tang[0], tang[1], width, miter, join);
+ res.erase(res.begin());
+ res.erase_last();
+ res.append(temp);
+ res.close();
+ }
+ return res;
+}
+
+void outline_join(Geom::Path &res, Geom::Path const& temp, Geom::Point in_tang, Geom::Point out_tang, double width, double miter, Inkscape::LineJoinType join)
+{
+ if (res.size() == 0 || temp.size() == 0)
+ return;
+ Geom::Curve const& outgoing = temp.front();
+ if (Geom::are_near(res.finalPoint(), outgoing.initialPoint(), 0.01)) {
+ // if the points are /that/ close, just ignore this one
+ res.setFinal(temp.initialPoint());
+ res.append(temp);
+ return;
+ }
+
+ join_data jd(res, temp, in_tang, out_tang, miter, width);
+ if (!(Geom::cross(in_tang, out_tang) > 0)) {
+ join = Inkscape::JOIN_BEVEL;
+ }
+ join_func *jf;
+ switch (join) {
+ case Inkscape::JOIN_BEVEL:
+ jf = &bevel_join;
+ break;
+ case Inkscape::JOIN_ROUND:
+ jf = &round_join;
+ break;
+ case Inkscape::JOIN_EXTRAPOLATE:
+ jf = &extrapolate_join;
+ break;
+ case Inkscape::JOIN_EXTRAPOLATE1:
+ jf = &extrapolate_join_alt1;
+ break;
+ case Inkscape::JOIN_EXTRAPOLATE2:
+ jf = &extrapolate_join_alt2;
+ break;
+ case Inkscape::JOIN_EXTRAPOLATE3:
+ jf = &extrapolate_join_alt3;
+ break;
+ case Inkscape::JOIN_MITER_CLIP:
+ jf = &miter_clip_join;
+ break;
+ default:
+ jf = &miter_join;
+ }
+ jf(jd);
+ }
+
+} // namespace Inkscape
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8 :