diff options
Diffstat (limited to 'src/object/sp-item-transform.cpp')
-rw-r--r-- | src/object/sp-item-transform.cpp | 377 |
1 files changed, 377 insertions, 0 deletions
diff --git a/src/object/sp-item-transform.cpp b/src/object/sp-item-transform.cpp new file mode 100644 index 0000000..a4cfc93 --- /dev/null +++ b/src/object/sp-item-transform.cpp @@ -0,0 +1,377 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Transforming single items + * + * Authors: + * Lauris Kaplinski <lauris@kaplinski.com> + * Frank Felfe <innerspace@iname.com> + * bulia byak <buliabyak@gmail.com> + * Johan Engelen <goejendaagh@zonnet.nl> + * Abhishek Sharma + * Diederik van Lierop <mail@diedenrezi.nl> + * + * Copyright (C) 1999-2011 authors + * + * Released under GNU GPL v2+, read the file 'COPYING' for more information. + */ + +#include <2geom/transforms.h> +#include "sp-item.h" +#include "sp-item-transform.h" + +#include <glib.h> + +/** + * Calculate the affine transformation required to transform one visual bounding box into another, accounting for a uniform strokewidth. + * + * PS: This function will only return accurate results for the visual bounding box of a selection of one or more objects, all having + * the same strokewidth. If the stroke width varies from object to object in this selection, then the function + * get_scale_transform_for_variable_stroke() should be called instead + * + * When scaling or stretching an object using the selector, e.g. by dragging the handles or by entering a value, we will + * need to calculate the affine transformation for the old dimensions to the new dimensions. When using a geometric bounding + * box this is very straightforward, but when using a visual bounding box this become more tricky as we need to account for + * the strokewidth, which is either constant or scales width the area of the object. This function takes care of the calculation + * of the affine transformation: + * @param bbox_visual Current visual bounding box + * @param stroke_x Apparent strokewidth in horizontal direction + * @param stroke_y Apparent strokewidth in vertical direction + * @param transform_stroke If true then the stroke will be scaled proportional to the square root of the area of the geometric bounding box + * @param preserve If true then the transform element will be preserved in XML, and evaluated after stroke is applied + * @param x0 Coordinate of the target visual bounding box + * @param y0 Coordinate of the target visual bounding box + * @param x1 Coordinate of the target visual bounding box + * @param y1 Coordinate of the target visual bounding box + * PS: we have to pass each coordinate individually, to find out if we are mirroring the object; Using a Geom::Rect() instead is + * not possible here because it will only allow for a positive width and height, and therefore cannot mirror + * @return + */ +Geom::Affine get_scale_transform_for_uniform_stroke(Geom::Rect const &bbox_visual, gdouble stroke_x, gdouble stroke_y, bool transform_stroke, bool preserve, gdouble x0, gdouble y0, gdouble x1, gdouble y1) +{ + Geom::Affine p2o = Geom::Translate (-bbox_visual.min()); + Geom::Affine o2n = Geom::Translate (x0, y0); + + Geom::Affine scale = Geom::Scale (1, 1); + Geom::Affine unbudge = Geom::Translate (0, 0); // moves the object(s) to compensate for the drift caused by stroke width change + + // 1) We start with a visual bounding box (w0, h0) which we want to transfer into another visual bounding box (w1, h1) + // 2) The stroke is r0, equal for all edges, if preserve transforms is false + // 3) Given this visual bounding box we can calculate the geometric bounding box by subtracting half the stroke from each side; + // -> The width and height of the geometric bounding box will therefore be (w0 - 2*0.5*r0) and (h0 - 2*0.5*r0) + // 4) If preserve transforms is true, then stroke_x != stroke_y, since these are the apparent stroke widths, after transforming + + if ((stroke_x == Geom::infinity()) || (fabs(stroke_x) < 1e-6)) stroke_x = 0; + if ((stroke_y == Geom::infinity()) || (fabs(stroke_y) < 1e-6)) stroke_y = 0; + + gdouble w0 = bbox_visual.width(); // will return a value >= 0, as required further down the road + gdouble h0 = bbox_visual.height(); + + // We also know the width and height of the new visual bounding box + gdouble w1 = x1 - x0; // can have any sign + gdouble h1 = y1 - y0; + // The new visual bounding box will have a stroke r1 + + // Here starts the calculation you've been waiting for; first do some preparation + int flip_x = (w1 > 0) ? 1 : -1; + int flip_y = (h1 > 0) ? 1 : -1; + + // w1 and h1 will be negative when mirroring, but if so then e.g. w1-r0 won't make sense + // Therefore we will use the absolute values from this point on + w1 = fabs(w1); + h1 = fabs(h1); + // w0 and h0 will always be positive due to the definition of the width() and height() methods. + + // Check whether the stroke is negative; i.e. the geometric bounding box is larger than the visual bounding box, which + // occurs for example for clipped objects (see launchpad bug #811819) + if (stroke_x < 0 || stroke_y < 0) { + Geom::Affine direct = Geom::Scale(flip_x * w1 / w0, flip_y* h1 / h0); // Scaling of the visual bounding box + // How should we handle the stroke width scaling of clipped object? I don't know if we can/should handle this, + // so for now we simply return the direct scaling + return (p2o * direct * o2n); + } + gdouble r0 = sqrt(stroke_x*stroke_y); // r0 is redundant, used only for those cases where stroke_x = stroke_y + + // We will now try to calculate the affine transformation required to transform the first visual bounding box into + // the second one, while accounting for strokewidth + + if ((fabs(w0 - stroke_x) < 1e-6) && (fabs(h0 - stroke_y) < 1e-6)) { + return Geom::Affine(); + } + + gdouble scale_x = 1; + gdouble scale_y = 1; + gdouble r1; + + if ((fabs(w0 - stroke_x) < 1e-6) || w1 == 0) { // We have a vertical line at hand + scale_y = h1/h0; + scale_x = transform_stroke ? 1 : scale_y; + unbudge *= Geom::Translate (-flip_x * 0.5 * (scale_x - 1.0) * w0, 0); + unbudge *= Geom::Translate ( flip_x * 0.5 * (w1 - w0), 0); // compensate for the fact that this operation cannot be performed + } else if ((fabs(h0 - stroke_y) < 1e-6) || h1 == 0) { // We have a horizontal line at hand + scale_x = w1/w0; + scale_y = transform_stroke ? 1 : scale_x; + unbudge *= Geom::Translate (0, -flip_y * 0.5 * (scale_y - 1.0) * h0); + unbudge *= Geom::Translate (0, flip_y * 0.5 * (h1 - h0)); // compensate for the fact that this operation cannot be performed + } else { // We have a true 2D object at hand + if (transform_stroke && !preserve) { + /* Initial area of the geometric bounding box: A0 = (w0-r0)*(h0-r0) + * Desired area of the geometric bounding box: A1 = (w1-r1)*(h1-r1) + * This is how the stroke should scale: r1^2 / A1 = r0^2 / A0 + * So therefore we will need to solve this equation: + * + * r1^2 * (w0-r0) * (h0-r0) = r0^2 * (w1-r1) * (h1-r1) + * + * This is a quadratic equation in r1, of which the roots can be found using the ABC formula + * */ + gdouble A = -w0*h0 + r0*(w0 + h0); + gdouble B = -(w1 + h1) * r0*r0; + gdouble C = w1 * h1 * r0*r0; + if (B*B - 4*A*C < 0) { + g_message("stroke scaling error : %d, %f, %f, %f, %f, %f", preserve, r0, w0, h0, w1, h1); + } else { + r1 = -C/B; + if (!Geom::are_near(A*C/B/B, 0.0, Geom::EPSILON)) + r1 = fabs((-B - sqrt(B*B - 4*A*C))/(2*A)); + // If w1 < 0 then the scale will be wrong if we just assume that scale_x = (w1 - r1)/(w0 - r0); + // Therefore we here need the absolute values of w0, w1, h0, h1, and r0, as taken care of earlier + scale_x = (w1 - r1)/(w0 - r0); + scale_y = (h1 - r1)/(h0 - r0); + // Make sure that the lower-left corner of the visual bounding box stays where it is, even though the stroke width has changed + unbudge *= Geom::Translate (-flip_x * 0.5 * (r0 * scale_x - r1), -flip_y * 0.5 * (r0 * scale_y - r1)); + } + } else if (!transform_stroke && !preserve) { // scale the geometric bbox with constant stroke + scale_x = (w1 - r0) / (w0 - r0); + scale_y = (h1 - r0) / (h0 - r0); + unbudge *= Geom::Translate (-flip_x * 0.5 * r0 * (scale_x - 1), -flip_y * 0.5 * r0 * (scale_y - 1)); + } else if (!transform_stroke) { // 'Preserve Transforms' was chosen. + // geometric mean of stroke_x and stroke_y will be preserved + // new_stroke_x = stroke_x*sqrt(scale_x/scale_y) + // new_stroke_y = stroke_y*sqrt(scale_y/scale_x) + // scale_x = (w1 - new_stroke_x)/(w0 - stroke_x) + // scale_y = (h1 - new_stroke_y)/(h0 - stroke_y) + gdouble A = h1*(w0 - stroke_x); + gdouble B = (h0*stroke_x - w0*stroke_y); + gdouble C = -w1*(h0 - stroke_y); + gdouble Sx_div_Sy; // Sx_div_Sy = sqrt(scale_x/scale_y) + if (B*B - 4*A*C < 0) { + g_message("stroke scaling error : %d, %f, %f, %f, %f, %f, %f", preserve, stroke_x, stroke_y, w0, h0, w1, h1); + } else { + Sx_div_Sy = (-B + sqrt(B*B - 4*A*C))/2/A; + scale_x = (w1 - stroke_x*Sx_div_Sy)/(w0 - stroke_x); + scale_y = (h1 - stroke_y/Sx_div_Sy)/(h0 - stroke_y); + unbudge *= Geom::Translate (-flip_x * 0.5 * stroke_x * scale_x * (1.0 - sqrt(1.0/scale_x/scale_y)), -flip_y * 0.5 * stroke_y * scale_y * (1.0 - sqrt(1.0/scale_x/scale_y))); + } + } else { // 'Preserve Transforms' was chosen, and stroke is scaled + scale_x = w1 / w0; + scale_y = h1 / h0; + } + } + + // Now we account for mirroring by flipping if needed + scale *= Geom::Scale(flip_x * scale_x, flip_y * scale_y); + + return (p2o * scale * unbudge * o2n); +} + +/** + * Calculate the affine transformation required to transform one visual bounding box into another, accounting for a VARIABLE strokewidth. + * + * Note: Please try to understand get_scale_transform_for_uniform_stroke() first, and read all it's comments carefully. This function + * (get_scale_transform_for_variable_stroke) is a bit different because it will allow for a strokewidth that's different for each + * side of the visual bounding box. Such a situation will arise when transforming the visual bounding box of a selection of objects, + * each having a different stroke width. In fact this function is a generalized version of get_scale_transform_for_uniform_stroke(), but + * will not (yet) replace it because it has not been tested as carefully, and because the old function is can serve as an introduction to + * understand the new one. + * + * When scaling or stretching an object using the selector, e.g. by dragging the handles or by entering a value, we will + * need to calculate the affine transformation for the old dimensions to the new dimensions. When using a geometric bounding + * box this is very straightforward, but when using a visual bounding box this become more tricky as we need to account for + * the strokewidth, which is either constant or scales width the area of the object. This function takes care of the calculation + * of the affine transformation: + * + * @param bbox_visual Current visual bounding box + * @param bbox_geometric Current geometric bounding box (allows for calculating the strokewidth of each edge) + * @param transform_stroke If true then the stroke will be scaled proportional to the square root of the area of the geometric bounding box + * @param preserve If true then the transform element will be preserved in XML, and evaluated after stroke is applied + * @param x0 Coordinate of the target visual bounding box + * @param y0 Coordinate of the target visual bounding box + * @param x1 Coordinate of the target visual bounding box + * @param y1 Coordinate of the target visual bounding box + * PS: we have to pass each coordinate individually, to find out if we are mirroring the object; Using a Geom::Rect() instead is + * not possible here because it will only allow for a positive width and height, and therefore cannot mirror + * @return + */ +Geom::Affine get_scale_transform_for_variable_stroke(Geom::Rect const &bbox_visual, Geom::Rect const &bbox_geom, bool transform_stroke, bool preserve, gdouble x0, gdouble y0, gdouble x1, gdouble y1) +{ + Geom::Affine p2o = Geom::Translate (-bbox_visual.min()); + Geom::Affine o2n = Geom::Translate (x0, y0); + + Geom::Affine scale = Geom::Scale (1, 1); + Geom::Affine unbudge = Geom::Translate (0, 0); // moves the object(s) to compensate for the drift caused by stroke width change + + // 1) We start with a visual bounding box (w0, h0) which we want to transfer into another visual bounding box (w1, h1) + // 2) We will also know the geometric bounding box, which can be used to calculate the strokewidth. The strokewidth will however + // be different for each of the four sides (left/right/top/bottom: r0l, r0r, r0t, r0b) + + gdouble w0 = bbox_visual.width(); // will return a value >= 0, as required further down the road + gdouble h0 = bbox_visual.height(); + + // We also know the width and height of the new visual bounding box + gdouble w1 = x1 - x0; // can have any sign + gdouble h1 = y1 - y0; + // The new visual bounding box will have strokes r1l, r1r, r1t, and r1b + + // We will now try to calculate the affine transformation required to transform the first visual bounding box into + // the second one, while accounting for strokewidth + gdouble r0w = w0 - bbox_geom.width(); // r0w is the average strokewidth of the left and right edges, i.e. 0.5*(r0l + r0r) + gdouble r0h = h0 - bbox_geom.height(); // r0h is the average strokewidth of the top and bottom edges, i.e. 0.5*(r0t + r0b) + if ((r0w == Geom::infinity()) || (fabs(r0w) < 1e-6)) r0w = 0; + if ((r0h == Geom::infinity()) || (fabs(r0h) < 1e-6)) r0h = 0; + + int flip_x = (w1 > 0) ? 1 : -1; + int flip_y = (h1 > 0) ? 1 : -1; + + // w1 and h1 will be negative when mirroring, but if so then e.g. w1-r0 won't make sense + // Therefore we will use the absolute values from this point on + w1 = fabs(w1); + h1 = fabs(h1); + // w0 and h0 will always be positive due to the definition of the width() and height() methods. + + if ((fabs(w0 - r0w) < 1e-6) && (fabs(h0 - r0h) < 1e-6)) { + return Geom::Affine(); + } + + // Check whether the stroke is negative; i.e. the geometric bounding box is larger than the visual bounding box, which + // occurs for example for clipped objects (see launchpad bug #811819) + if (r0w < 0 || r0h < 0) { + Geom::Affine direct = Geom::Scale(flip_x * w1 / w0, flip_y* h1 / h0); // Scaling of the visual bounding box + // How should we handle the stroke width scaling of clipped object? I don't know if we can/should handle this, + // so for now we simply return the direct scaling + return (p2o * direct * o2n); + } + + // The calculation of the new strokewidth will only use the average stroke for each of the dimensions; To find the new stroke for each + // of the edges individually though, we will use the boundary condition that the ratio of the left/right strokewidth will not change due to the + // scaling. The same holds for the ratio of the top/bottom strokewidth. + gdouble stroke_ratio_w = fabs(r0w) < 1e-6 ? 1 : (bbox_geom[Geom::X].min() - bbox_visual[Geom::X].min())/r0w; + gdouble stroke_ratio_h = fabs(r0h) < 1e-6 ? 1 : (bbox_geom[Geom::Y].min() - bbox_visual[Geom::Y].min())/r0h; + + gdouble scale_x = 1; + gdouble scale_y = 1; + gdouble r1h; + gdouble r1w; + + if ((fabs(w0 - r0w) < 1e-6) || w1 == 0) { // We have a vertical line at hand + scale_y = h1/h0; + scale_x = transform_stroke ? 1 : scale_y; + unbudge *= Geom::Translate (-flip_x * 0.5 * (scale_x - 1.0) * w0, 0); + unbudge *= Geom::Translate ( flip_x * 0.5 * (w1 - w0), 0); // compensate for the fact that this operation cannot be performed + } else if ((fabs(h0 - r0h) < 1e-6) || h1 == 0) { // We have a horizontal line at hand + scale_x = w1/w0; + scale_y = transform_stroke ? 1 : scale_x; + unbudge *= Geom::Translate (0, -flip_y * 0.5 * (scale_y - 1.0) * h0); + unbudge *= Geom::Translate (0, flip_y * 0.5 * (h1 - h0)); // compensate for the fact that this operation cannot be performed + } else { // We have a true 2D object at hand + if (transform_stroke && !preserve) { + /* Initial area of the geometric bounding box: A0 = (w0-r0w)*(h0-r0h) + * Desired area of the geometric bounding box: A1 = (w1-r1w)*(h1-r1h) + * This is how the stroke should scale: r1w^2 = A1/A0 * r0w^2, AND + * r1h^2 = A1/A0 * r0h^2 + * These can be re-expressed as : r1w/r0w = r1h/r0h + * and : r1w*r1w*(w0 - r0w)*(h0 - r0h) = r0w*r0w*(w1 - r1w)*(h1 - r1h) + * This leads to a quadratic equation in r1w, solved as follows: + * */ + + gdouble A = w0*h0 - r0h*w0 - r0w*h0; + gdouble B = r0h*w1 + r0w*h1; + gdouble C = -w1*h1; + + if (B*B - 4*A*C < 0) { + g_message("variable stroke scaling error : %d, %d, %f, %f, %f, %f, %f, %f", transform_stroke, preserve, r0w, r0h, w0, h0, w1, h1); + } else { + gdouble det = -C/B; + if (!Geom::are_near(A*C/B/B, 0.0, Geom::EPSILON)) + det = (-B + sqrt(B*B - 4*A*C))/(2*A); + r1w = r0w*det; + r1h = r0h*det; + // If w1 < 0 then the scale will be wrong if we just assume that scale_x = (w1 - r1)/(w0 - r0); + // Therefore we here need the absolute values of w0, w1, h0, h1, and r0, as taken care of earlier + scale_x = (w1 - r1w)/(w0 - r0w); + scale_y = (h1 - r1h)/(h0 - r0h); + // Make sure that the lower-left corner of the visual bounding box stays where it is, even though the stroke width has changed + unbudge *= Geom::Translate (-flip_x * stroke_ratio_w * (r0w * scale_x - r1w), -flip_y * stroke_ratio_h * (r0h * scale_y - r1h)); + } + } else if (!transform_stroke && !preserve) { // scale the geometric bbox with constant stroke + scale_x = (w1 - r0w) / (w0 - r0w); + scale_y = (h1 - r0h) / (h0 - r0h); + unbudge *= Geom::Translate (-flip_x * stroke_ratio_w * r0w * (scale_x - 1), -flip_y * stroke_ratio_h * r0h * (scale_y - 1)); + } else if (!transform_stroke) { // 'Preserve Transforms' was chosen. + // geometric mean of r0w and r0h will be preserved + // new_r0w = r0w*sqrt(scale_x/scale_y) + // new_r0h = r0h*sqrt(scale_y/scale_x) + // scale_x = (w1 - new_r0w)/(w0 - r0w) + // scale_y = (h1 - new_r0h)/(h0 - r0h) + gdouble A = h1*(w0 - r0w); + gdouble B = (h0*r0w - w0*r0h); + gdouble C = -w1*(h0 - r0h); + gdouble Sx_div_Sy; // Sx_div_Sy = sqrt(scale_x/scale_y) + if (B*B - 4*A*C < 0) { + g_message("variable stroke scaling error : %d, %d, %f, %f, %f, %f, %f, %f", transform_stroke, preserve, r0w, r0h, w0, h0, w1, h1); + } else { + Sx_div_Sy = (-B + sqrt(B*B - 4*A*C))/2/A; + scale_x = (w1 - r0w*Sx_div_Sy)/(w0 - r0w); + scale_y = (h1 - r0h/Sx_div_Sy)/(h0 - r0h); + unbudge *= Geom::Translate (-flip_x * stroke_ratio_w * r0w * scale_x * (1.0 - sqrt(1.0/scale_x/scale_y)), -flip_y * stroke_ratio_h * r0h * scale_y * (1.0 - sqrt(1.0/scale_x/scale_y))); + } + } else { // 'Preserve Transforms' was chosen, and stroke is scaled + scale_x = w1 / w0; + scale_y = h1 / h0; + } + } + + // Now we account for mirroring by flipping if needed + scale *= Geom::Scale(flip_x * scale_x, flip_y * scale_y); + + return (p2o * scale * unbudge * o2n); +} + +Geom::Rect get_visual_bbox(Geom::OptRect const &initial_geom_bbox, Geom::Affine const &abs_affine, gdouble const initial_strokewidth, bool const transform_stroke) +{ + g_assert(initial_geom_bbox); + + // Find the new geometric bounding box; Do this by transforming each corner of + // the initial geometric bounding box individually and fitting a new boundingbox + // around the transformed corners + Geom::Point const p0 = Geom::Point(initial_geom_bbox->corner(0)) * abs_affine; + Geom::Rect new_geom_bbox(p0, p0); + for (unsigned i = 1 ; i < 4 ; i++) { + new_geom_bbox.expandTo(Geom::Point(initial_geom_bbox->corner(i)) * abs_affine); + } + + Geom::Rect new_visual_bbox = new_geom_bbox; + if (initial_strokewidth > 0 && initial_strokewidth < Geom::infinity()) { + if (transform_stroke) { + // scale stroke by: sqrt (((w1-r0)/(w0-r0))*((h1-r0)/(h0-r0))) (for visual bboxes, see get_scale_transform_for_stroke) + // equals scaling by: sqrt ((w1/w0)*(h1/h0)) for geometrical bboxes + // equals scaling by: sqrt (area1/area0) for geometrical bboxes + gdouble const new_strokewidth = initial_strokewidth * sqrt (new_geom_bbox.area() / initial_geom_bbox->area()); + new_visual_bbox.expandBy(0.5 * new_strokewidth); + } else { + // Do not transform the stroke + new_visual_bbox.expandBy(0.5 * initial_strokewidth); + } + } + + return new_visual_bbox; +} + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |