summaryrefslogtreecommitdiffstats
path: root/src/pure-transform.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/pure-transform.cpp374
1 files changed, 374 insertions, 0 deletions
diff --git a/src/pure-transform.cpp b/src/pure-transform.cpp
new file mode 100644
index 0000000..847bbdb
--- /dev/null
+++ b/src/pure-transform.cpp
@@ -0,0 +1,374 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Class for pure transformations, such as translating, scaling, stretching, skewing, and rotating
+ *
+ * Authors:
+ * Diederik van Lierop <mail@diedenrezi.nl>
+ *
+ * Copyright (C) 2015 Diederik van Lierop
+ *
+ * Released under GNU GPL v2+, read the file 'COPYING' for more information.
+ */
+
+#include "pure-transform.h"
+#include "snap.h"
+
+namespace Inkscape
+
+{
+
+void PureTransform::snap(::SnapManager *sm, std::vector<Inkscape::SnapCandidatePoint> const &points, Geom::Point const &pointer) {
+ std::vector<Inkscape::SnapCandidatePoint> transformed_points;
+ Geom::Rect bbox;
+
+ long source_num = 0;
+ for (std::vector<Inkscape::SnapCandidatePoint>::const_iterator i = points.begin(); i != points.end(); ++i) {
+
+ /* Work out the transformed version of this point */
+ Geom::Point transformed = getTransformedPoint(*i); // _transformPoint(*i, transformation_type, transformation, origin, dim, uniform);
+
+ // add the current transformed point to the box hulling all transformed points
+ if (i == points.begin()) {
+ bbox = Geom::Rect(transformed, transformed);
+ } else {
+ bbox.expandTo(transformed);
+ }
+
+ transformed_points.emplace_back(transformed, (*i).getSourceType(), source_num, Inkscape::SNAPTARGET_UNDEFINED, Geom::OptRect());
+ source_num++;
+ }
+
+ /* The current best metric for the best transformation; lower is better, whereas Geom::infinity()
+ ** means that we haven't snapped anything.
+ */
+ Inkscape::SnapCandidatePoint best_original_point;
+ g_assert(best_snapped_point.getAlwaysSnap() == false); // Check initialization of snapped point
+ g_assert(best_snapped_point.getAtIntersection() == false);
+ g_assert(best_snapped_point.getSnapped() == false); // Check initialization to catch any regression
+
+ std::vector<Inkscape::SnapCandidatePoint>::iterator j = transformed_points.begin();
+
+ // std::cout << std::endl;
+ bool first_free_snap = true;
+
+ for (std::vector<Inkscape::SnapCandidatePoint>::const_iterator i = points.begin(); i != points.end(); ++i) {
+
+ // If we have a collection of SnapCandidatePoints, with mixed constrained snapping and free snapping
+ // requirements (this can happen when scaling, see PureScale::snap()), then freeSnap might never see the
+ // SnapCandidatePoint with source_num == 0. The freeSnap() method in the object snapper depends on this,
+ // because only for source-num == 0 the target nodes will be collected. Therefore we enforce that the first
+ // SnapCandidatePoint that is to be freeSnapped always has source_num == 0;
+ // TODO: This is a bit ugly so fix this; do we need sourcenum for anything else? if we don't then get rid
+ // of it and explicitly communicate to the object snapper that this is a first point
+ if (first_free_snap) {
+ (*j).setSourceNum(0);
+ first_free_snap = false;
+ }
+
+ Inkscape::SnappedPoint snapped_point = snap(sm, *j, (*i).getPoint(), bbox); // Calls the snap() method of the derived classes
+
+ snapped_point.setPointerDistance(Geom::L2(pointer - (*i).getPoint()));
+
+ /*Find the transformation that describes where the snapped point has
+ ** ended up, and also the metric for this transformation.
+ */
+
+ bool store_best_snap = false;
+ if (snapped_point.getSnapped()) {
+ // We snapped; keep track of the best snap
+ if (best_snapped_point.isOtherSnapBetter(snapped_point, true)) {
+ store_best_snap = true;
+ }
+ } else {
+ // So we didn't snap for this point
+ if (!best_snapped_point.getSnapped()) {
+ // ... and none of the points before snapped either
+ // We might still need to apply a constraint though, if we tried a constrained snap. And
+ // in case of a free snap we might have use for the transformed point, so let's return that
+ // point, whether it's constrained or not
+
+ if (best_snapped_point.isOtherSnapBetter(snapped_point, true) ) {
+ // .. so we must keep track of the best non-snapped constrained point.. but what
+ // is the best? There is no best, or is there? We cannot compare on snapped distance
+ // because neither has snapped, and both have their snapped distance set to infinity.
+ // There might be a difference in "constrainedness" though, 1D vs 2D snapping
+ store_best_snap = true;
+ }
+ }
+ }
+
+ if (store_best_snap || i == points.begin()) {
+ best_original_point = (*i);
+ best_snapped_point = snapped_point; // Can be a point that didn't snap, but then at least we
+ // return something meaningful; we might have use for the transformation. The default
+ // snapped_point, as initialized before this loop, is not very meaningful at all.
+ }
+
+ ++j;
+ }
+
+ /* The current best transformation */
+ //Geom::Point best_transformation = getResult(best_original_point, best_snapped_point);
+ storeTransform(best_original_point, best_snapped_point);
+
+ Geom::Coord best_metric = best_snapped_point.getSnapDistance();
+
+ // Using " < 1e6" instead of " < Geom::infinity()" for catching some rounding errors
+ // These rounding errors might be caused by NRRects, see bug #1584301
+ best_snapped_point.setSnapDistance(best_metric < 1e6 ? best_metric : Geom::infinity());
+}
+
+
+
+
+
+Geom::Point PureTranslate::getTransformedPoint(SnapCandidatePoint const &p) const {
+ return p.getPoint() + _vector;
+}
+
+void PureTranslate::storeTransform(SnapCandidatePoint const &original_point, SnappedPoint &snapped_point) {
+ /* Consider the case in which a box is almost aligned with a grid in both
+ * horizontal and vertical directions. The distance to the intersection of
+ * the grid lines will always be larger then the distance to a single grid
+ * line. If we prefer snapping to an intersection over to a single
+ * grid line, then we cannot use "metric = Geom::L2(result)". Therefore the
+ * snapped distance will be used as a metric. Please note that the snapped
+ * distance to an intersection is defined as the distance to the nearest line
+ * of the intersection, and not to the intersection itself!
+ */
+ // Only for translations, the relevant metric will be the real snapped distance,
+ // so we don't have to do anything special here
+ _vector_snapped = snapped_point.getPoint() - original_point.getPoint();
+}
+
+SnappedPoint PureTranslate::snap(::SnapManager *sm, SnapCandidatePoint const &p, Geom::Point /*pt_orig*/, Geom::OptRect const &bbox_to_snap) const {
+ return sm->freeSnap(p, bbox_to_snap);
+}
+
+SnappedPoint PureTranslateConstrained::snap(::SnapManager *sm, SnapCandidatePoint const &p, Geom::Point pt_orig, Geom::OptRect const &bbox_to_snap) const {
+ // Calculate a constraint dedicated for this specific point
+ // When doing a constrained translation, all points will move in the same direction, i.e.
+ // either horizontally or vertically. The lines along which they move are therefore all
+ // parallel, but might not be co-linear. Therefore we will have to specify the point through
+ // which the constraint-line runs here, for each point individually.
+ Snapper::SnapConstraint dedicated_constraint = Snapper::SnapConstraint(pt_orig, _direction);
+ return sm->constrainedSnap(p, dedicated_constraint, bbox_to_snap);
+}
+
+
+
+
+
+Geom::Point PureScale::getTransformedPoint(SnapCandidatePoint const &p) const {
+ return (p.getPoint() - _origin) * _scale + _origin;
+}
+
+void PureScale::storeTransform(SnapCandidatePoint const &original_point, SnappedPoint &snapped_point) {
+ _scale_snapped = Geom::Scale(Geom::infinity(), Geom::infinity());
+ // If this point *i is horizontally or vertically aligned with
+ // the origin of the scaling, then it will scale purely in X or Y
+ // We can therefore only calculate the scaling in this direction
+ // and the scaling factor for the other direction should remain
+ // untouched (unless scaling is uniform of course)
+ Geom::Point const a = snapped_point.getPoint() - _origin; // vector to snapped point
+ Geom::Point const b = original_point.getPoint() - _origin; // vector to original point (not the transformed point!)
+ for (int index = 0; index < 2; index++) {
+ if (fabs(b[index]) > 1e-4) { // if SCALING CAN occur in this direction
+ if (fabs(fabs(a[index]/b[index]) - fabs(_scale[index])) > 1e-7) { // if SNAPPING DID occur in this direction
+ _scale_snapped[index] = a[index] / b[index]; // then calculate it!
+ // _scale_snapped will be (1,1) if we haven't snapped, because the snapped point equals the original point
+ }
+ // we might have left result[1-index] = Geom::infinity() if scaling didn't occur in the other direction
+ }
+ }
+
+ if (_scale_snapped == Geom::Scale(Geom::infinity(), Geom::infinity())) {
+ // This point must have been at the origin, so we cannot possibly snap; it won't scale (i.e. won't move while dragging)
+ snapped_point.setSnapDistance(Geom::infinity());
+ snapped_point.setSecondSnapDistance(Geom::infinity());
+ return;
+ }
+
+ if (_uniform) {
+ // Lock the scaling the be uniform, but keep the sign such that we don't change which quadrant we have dragged into
+ if (fabs(_scale_snapped[0]) < fabs(_scale_snapped[1])) {
+ _scale_snapped[1] = fabs(_scale_snapped[0]) * Geom::sgn(_scale[1]);
+ } else {
+ _scale_snapped[0] = fabs(_scale_snapped[1]) * Geom::sgn(_scale[0]);
+ }
+ }
+
+ // Don't ever exit with one of scaling components uninitialized
+ for (int index = 0; index < 2; index++) {
+ if (_scale_snapped[index] == Geom::infinity()) {
+ _scale_snapped[index] = _scale[index];
+ }
+ }
+
+ // Compare the resulting scaling with the desired scaling
+ Geom::Point scale_metric = _scale_snapped.vector() - _scale.vector();
+ snapped_point.setSnapDistance(Geom::L2(scale_metric));
+ snapped_point.setSecondSnapDistance(Geom::infinity());
+}
+
+// When scaling, a point aligned either horizontally or vertically with the origin can only
+// move in that specific direction; therefore it should only snap in that direction, so this
+// then becomes a constrained snap; otherwise we can use a free snap;
+SnappedPoint PureScale::snap(::SnapManager *sm, SnapCandidatePoint const &p, Geom::Point pt_orig, Geom::OptRect const &bbox_to_snap) const {
+ Geom::Point const b = (pt_orig - _origin); // vector to original point (not the transformed point!)
+ bool const c1 = fabs(b[Geom::X]) < 1e-6;
+ bool const c2 = fabs(b[Geom::Y]) < 1e-6;
+ if ((c1 || c2) && !(c1 && c2)) {
+ Geom::Point cvec; cvec[c1] = 1.;
+ Snapper::SnapConstraint dedicated_constraint = Inkscape::Snapper::SnapConstraint(_origin, cvec);
+ return sm->constrainedSnap(p, dedicated_constraint, bbox_to_snap);
+ } else {
+ return sm->freeSnap(p, bbox_to_snap);
+ }
+}
+
+SnappedPoint PureScaleConstrained::snap(::SnapManager *sm, SnapCandidatePoint const &p, Geom::Point pt_orig, Geom::OptRect const &bbox_to_snap) const {
+ // When constrained scaling, only uniform scaling is supported.
+ // When uniformly scaling, each point will have its own unique constraint line,
+ // running from the scaling origin to the original untransformed point. We will
+ // calculate that line here as a dedicated constraint
+ Geom::Point b = pt_orig - _origin;
+ Snapper::SnapConstraint dedicated_constraint = Inkscape::Snapper::SnapConstraint(_origin, b);
+ return sm->constrainedSnap(p, dedicated_constraint, bbox_to_snap);
+}
+
+
+
+
+
+Geom::Point PureStretchConstrained::getTransformedPoint(SnapCandidatePoint const &p) const {
+ Geom::Scale s(1, 1);
+ if (_uniform)
+ s[Geom::X] = s[Geom::Y] = _magnitude;
+ else {
+ s[_direction] = _magnitude;
+ s[1 - _direction] = 1;
+ }
+ return ((p.getPoint() - _origin) * s) + _origin;
+}
+
+SnappedPoint PureStretchConstrained::snap(::SnapManager *sm, SnapCandidatePoint const &p, Geom::Point pt_orig, Geom::OptRect const &bbox_to_snap) const {
+ Snapper::SnapConstraint dedicated_constraint;
+ if (_uniform) {
+ // When uniformly stretching, each point will have its own unique constraint line,
+ // running from the scaling origin to the original untransformed point. We will
+ // calculate that line here
+ Geom::Point b = pt_orig - _origin;
+ dedicated_constraint = Inkscape::Snapper::SnapConstraint(_origin, b); // dedicated constraint
+ } else {
+ Geom::Point cvec; cvec[_direction] = 1.;
+ dedicated_constraint = Inkscape::Snapper::SnapConstraint(pt_orig, cvec);
+ }
+
+ return sm->constrainedSnap(p, dedicated_constraint, bbox_to_snap);
+}
+
+void PureStretchConstrained::storeTransform(SnapCandidatePoint const &original_point, SnappedPoint &snapped_point) {
+ Geom::Point const a = snapped_point.getPoint() - _origin; // vector to snapped point
+ Geom::Point const b = original_point.getPoint() - _origin; // vector to original point (not the transformed point!)
+
+ _stretch_snapped = Geom::Scale(Geom::infinity(), Geom::infinity());
+ if (fabs(b[_direction]) > 1e-4) { // if STRETCHING will occur for this point
+ _stretch_snapped[_direction] = a[_direction] / b[_direction];
+ _stretch_snapped[1-_direction] = _uniform ? _stretch_snapped[_direction] : 1;
+ } else { // STRETCHING might occur for this point, but only when the stretching is uniform
+ if (_uniform && fabs(b[1-_direction]) > 1e-4) {
+ _stretch_snapped[1-_direction] = a[1-_direction] / b[1-_direction];
+ _stretch_snapped[_direction] = _stretch_snapped[1-_direction];
+ }
+ }
+
+ // _stretch_snapped might have one or both components at infinity!
+
+ // Store the metric for this transformation as a virtual distance
+ snapped_point.setSnapDistance(std::abs(_stretch_snapped[_direction] - _magnitude));
+ snapped_point.setSecondSnapDistance(Geom::infinity());
+}
+
+
+
+
+
+Geom::Point PureSkewConstrained::getTransformedPoint(SnapCandidatePoint const &p) const {
+ Geom::Point transformed;
+ // Apply the skew factor
+ transformed[_direction] = (p.getPoint())[_direction] + _skew * ((p.getPoint())[1 - _direction] - _origin[1 - _direction]);
+ // While skewing, mirroring and scaling (by integer multiples) in the opposite direction is also allowed.
+ // Apply that scale factor here
+ transformed[1-_direction] = (p.getPoint() - _origin)[1 - _direction] * _scale + _origin[1 - _direction];
+ return transformed;
+}
+
+SnappedPoint PureSkewConstrained::snap(::SnapManager *sm, SnapCandidatePoint const &p, Geom::Point pt_orig, Geom::OptRect const &bbox_to_snap) const {
+ // Snapping the nodes of the bounding box of a selection that is being transformed, will only work if
+ // the transformation of the bounding box is equal to the transformation of the individual nodes. This is
+ // NOT the case for example when rotating or skewing. The bounding box itself cannot possibly rotate or skew,
+ // so it's corners have a different transformation. The snappers cannot handle this, therefore snapping
+ // of bounding boxes is not allowed here.
+ g_assert(!(p.getSourceType() & Inkscape::SNAPSOURCE_BBOX_CATEGORY));
+
+ Geom::Point constraint_vector;
+ constraint_vector[1-_direction] = 0.0;
+ constraint_vector[_direction] = 1.0;
+
+ return sm->constrainedSnap(p, Inkscape::Snapper::SnapConstraint(constraint_vector), bbox_to_snap);
+}
+
+void PureSkewConstrained::storeTransform(SnapCandidatePoint const &original_point, SnappedPoint &snapped_point) {
+ Geom::Point const b = original_point.getPoint() - _origin; // vector to original point (not the transformed point!)
+ _skew_snapped = (snapped_point.getPoint()[_direction] - (original_point.getPoint())[_direction]) / b[1 - _direction]; // skew factor
+
+ // Store the metric for this transformation as a virtual distance
+ snapped_point.setSnapDistance(std::abs(_skew_snapped - _skew));
+ snapped_point.setSecondSnapDistance(Geom::infinity());
+}
+
+
+
+
+Geom::Point PureRotateConstrained::getTransformedPoint(SnapCandidatePoint const &p) const {
+ return (p.getPoint() - _origin) * Geom::Rotate(_angle) + _origin;
+}
+
+SnappedPoint PureRotateConstrained::snap(::SnapManager *sm, SnapCandidatePoint const &p, Geom::Point pt_orig, Geom::OptRect const &bbox_to_snap) const {
+ // Snapping the nodes of the bounding box of a selection that is being transformed, will only work if
+ // the transformation of the bounding box is equal to the transformation of the individual nodes. This is
+ // NOT the case for example when rotating or skewing. The bounding box itself cannot possibly rotate or skew,
+ // so it's corners have a different transformation. The snappers cannot handle this, therefore snapping
+ // of bounding boxes is not allowed here.
+ g_assert(!(p.getSourceType() & Inkscape::SNAPSOURCE_BBOX_CATEGORY));
+
+ // Calculate a constraint dedicated for this specific point
+ Geom::Point b = pt_orig - _origin;
+ Geom::Coord r = Geom::L2(b); // the radius of the circular constraint
+ Snapper::SnapConstraint dedicated_constraint = Inkscape::Snapper::SnapConstraint(_origin, b, r);
+ return sm->constrainedSnap(p, dedicated_constraint, bbox_to_snap);
+}
+
+void PureRotateConstrained::storeTransform(SnapCandidatePoint const &original_point, SnappedPoint &snapped_point) {
+ Geom::Point const a = snapped_point.getPoint() - _origin; // vector to snapped point
+ Geom::Point const b = (original_point.getPoint() - _origin); // vector to original point (not the transformed point!)
+ // a is vector to snapped point; b is vector to original point; now lets calculate angle between a and b
+ _angle_snapped = atan2(Geom::dot(Geom::rot90(b), a), Geom::dot(b, a));
+ if (Geom::L2(b) < 1e-9) { // points too close to the rotation center will not move. Don't try to snap these
+ // as they will always yield a perfect snap result if they're already snapped beforehand (e.g.
+ // when the transformation center has been snapped to a grid intersection in the selector tool)
+ snapped_point.setSnapDistance(Geom::infinity());
+ // PS1: Apparently we don't have to do this for skewing, but why?
+ // PS2: We cannot easily filter these points upstream, e.g. in the grab() method (seltrans.cpp)
+ // because the rotation center will change when pressing shift, and grab() won't be recalled.
+ // Filtering could be done in handleRequest() (again in seltrans.cpp), by iterating through
+ // the snap candidates. But hey, we're iterating here anyway.
+ } else {
+ snapped_point.setSnapDistance(fabs(_angle_snapped - _angle));
+ }
+ snapped_point.setSecondSnapDistance(Geom::infinity());
+
+}
+
+}