From cca66b9ec4e494c1d919bff0f71a820d8afab1fa Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:24:48 +0200 Subject: Adding upstream version 1.2.2. Signed-off-by: Daniel Baumann --- src/display/nr-filter-turbulence.cpp | 446 +++++++++++++++++++++++++++++++++++ 1 file changed, 446 insertions(+) create mode 100644 src/display/nr-filter-turbulence.cpp (limited to 'src/display/nr-filter-turbulence.cpp') diff --git a/src/display/nr-filter-turbulence.cpp b/src/display/nr-filter-turbulence.cpp new file mode 100644 index 0000000..91a71ab --- /dev/null +++ b/src/display/nr-filter-turbulence.cpp @@ -0,0 +1,446 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * feTurbulence filter primitive renderer + * + * Authors: + * World Wide Web Consortium + * Felipe Corrêa da Silva Sanches + * + * This file has a considerable amount of code adapted from + * the W3C SVG filter specs, available at: + * http://www.w3.org/TR/SVG11/filters.html#feTurbulence + * + * W3C original code is licensed under the terms of + * the (GPL compatible) W3C® SOFTWARE NOTICE AND LICENSE: + * http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231 + * + * Copyright (C) 2007 authors + * Released under GNU GPL v2+, read the file 'COPYING' for more information. + */ + +#include "display/cairo-templates.h" +#include "display/cairo-utils.h" +#include "display/nr-filter.h" +#include "display/nr-filter-turbulence.h" +#include "display/nr-filter-units.h" +#include "display/nr-filter-utils.h" +#include + +namespace Inkscape { +namespace Filters{ + +class TurbulenceGenerator { +public: + TurbulenceGenerator() : + _tile(), + _baseFreq(), + _latticeSelector(), + _gradient(), + _seed(0), + _octaves(0), + _stitchTiles(false), + _wrapx(0), + _wrapy(0), + _wrapw(0), + _wraph(0), + _inited(false), + _fractalnoise(false) + {} + + void init(long seed, Geom::Rect const &tile, Geom::Point const &freq, bool stitch, + bool fractalnoise, int octaves) + { + // setup random number generator + _setupSeed(seed); + + // set values + _tile = tile; + _baseFreq = freq; + _stitchTiles = stitch; + _fractalnoise = fractalnoise; + _octaves = octaves; + + int i; + for (int k = 0; k < 4; ++k) { + for (i = 0; i < BSize; ++i) { + _latticeSelector[i] = i; + + do { + _gradient[i][k][0] = static_cast(_random() % (BSize*2) - BSize) / BSize; + _gradient[i][k][1] = static_cast(_random() % (BSize*2) - BSize) / BSize; + } while(_gradient[i][k][0] == 0 && _gradient[i][k][1] == 0); + + // normalize gradient + double s = hypot(_gradient[i][k][0], _gradient[i][k][1]); + _gradient[i][k][0] /= s; + _gradient[i][k][1] /= s; + } + } + while (--i) { + // shuffle lattice selectors + int j = _random() % BSize; + std::swap(_latticeSelector[i], _latticeSelector[j]); + } + + // fill out the remaining part of the gradient + for (i = 0; i < BSize + 2; ++i) + { + _latticeSelector[BSize + i] = _latticeSelector[i]; + + for(int k = 0; k < 4; ++k) { + _gradient[BSize + i][k][0] = _gradient[i][k][0]; + _gradient[BSize + i][k][1] = _gradient[i][k][1]; + } + } + + // When stitching tiled turbulence, the frequencies must be adjusted + // so that the tile borders will be continuous. + if (_stitchTiles) { + if (_baseFreq[Geom::X] != 0.0) + { + double freq = _baseFreq[Geom::X]; + double lo = floor(_tile.width() * freq) / _tile.width(); + double hi = ceil(_tile.width() * freq) / _tile.width(); + _baseFreq[Geom::X] = freq / lo < hi / freq ? lo : hi; + } + if (_baseFreq[Geom::Y] != 0.0) + { + double freq = _baseFreq[Geom::Y]; + double lo = floor(_tile.height() * freq) / _tile.height(); + double hi = ceil(_tile.height() * freq) / _tile.height(); + _baseFreq[Geom::Y] = freq / lo < hi / freq ? lo : hi; + } + + _wrapw = _tile.width() * _baseFreq[Geom::X] + 0.5; + _wraph = _tile.height() * _baseFreq[Geom::Y] + 0.5; + _wrapx = _tile.left() * _baseFreq[Geom::X] + PerlinOffset + _wrapw; + _wrapy = _tile.top() * _baseFreq[Geom::Y] + PerlinOffset + _wraph; + } + _inited = true; + } + + G_GNUC_PURE + guint32 turbulencePixel(Geom::Point const &p) const { + int wrapx = _wrapx, wrapy = _wrapy, wrapw = _wrapw, wraph = _wraph; + + double pixel[4]; + double x = p[Geom::X] * _baseFreq[Geom::X]; + double y = p[Geom::Y] * _baseFreq[Geom::Y]; + double ratio = 1.0; + + for (double & k : pixel) + k = 0.0; + + for(int octave = 0; octave < _octaves; ++octave) + { + double tx = x + PerlinOffset; + double bx = floor(tx); + double rx0 = tx - bx, rx1 = rx0 - 1.0; + int bx0 = bx, bx1 = bx0 + 1; + + double ty = y + PerlinOffset; + double by = floor(ty); + double ry0 = ty - by, ry1 = ry0 - 1.0; + int by0 = by, by1 = by0 + 1; + + if (_stitchTiles) { + if (bx0 >= wrapx) bx0 -= wrapw; + if (bx1 >= wrapx) bx1 -= wrapw; + if (by0 >= wrapy) by0 -= wraph; + if (by1 >= wrapy) by1 -= wraph; + } + bx0 &= BMask; + bx1 &= BMask; + by0 &= BMask; + by1 &= BMask; + + int i = _latticeSelector[bx0]; + int j = _latticeSelector[bx1]; + int b00 = _latticeSelector[i + by0]; + int b01 = _latticeSelector[i + by1]; + int b10 = _latticeSelector[j + by0]; + int b11 = _latticeSelector[j + by1]; + + double sx = _scurve(rx0); + double sy = _scurve(ry0); + + double result[4]; + // channel numbering: R=0, G=1, B=2, A=3 + for (int k = 0; k < 4; ++k) { + double const *qxa = _gradient[b00][k]; + double const *qxb = _gradient[b10][k]; + double a = _lerp(sx, rx0 * qxa[0] + ry0 * qxa[1], + rx1 * qxb[0] + ry0 * qxb[1]); + double const *qya = _gradient[b01][k]; + double const *qyb = _gradient[b11][k]; + double b = _lerp(sx, rx0 * qya[0] + ry1 * qya[1], + rx1 * qyb[0] + ry1 * qyb[1]); + result[k] = _lerp(sy, a, b); + } + + if (_fractalnoise) { + for (int k = 0; k < 4; ++k) + pixel[k] += result[k] / ratio; + } else { + for (int k = 0; k < 4; ++k) + pixel[k] += fabs(result[k]) / ratio; + } + + x *= 2; + y *= 2; + ratio *= 2; + + if(_stitchTiles) + { + // Update stitch values. Subtracting PerlinOffset before the multiplication and + // adding it afterward simplifies to subtracting it once. + wrapw *= 2; + wraph *= 2; + wrapx = wrapx*2 - PerlinOffset; + wrapy = wrapy*2 - PerlinOffset; + } + } + + if (_fractalnoise) { + guint32 r = CLAMP_D_TO_U8((pixel[0]*255.0 + 255.0) / 2); + guint32 g = CLAMP_D_TO_U8((pixel[1]*255.0 + 255.0) / 2); + guint32 b = CLAMP_D_TO_U8((pixel[2]*255.0 + 255.0) / 2); + guint32 a = CLAMP_D_TO_U8((pixel[3]*255.0 + 255.0) / 2); + r = premul_alpha(r, a); + g = premul_alpha(g, a); + b = premul_alpha(b, a); + ASSEMBLE_ARGB32(pxout, a,r,g,b); + return pxout; + } else { + guint32 r = CLAMP_D_TO_U8(pixel[0]*255.0); + guint32 g = CLAMP_D_TO_U8(pixel[1]*255.0); + guint32 b = CLAMP_D_TO_U8(pixel[2]*255.0); + guint32 a = CLAMP_D_TO_U8(pixel[3]*255.0); + r = premul_alpha(r, a); + g = premul_alpha(g, a); + b = premul_alpha(b, a); + ASSEMBLE_ARGB32(pxout, a,r,g,b); + return pxout; + } + } + + //G_GNUC_PURE + /*guint32 turbulencePixel(Geom::Point const &p) const { + if (!_fractalnoise) { + guint32 r = CLAMP_D_TO_U8(turbulence(0, p)*255.0); + guint32 g = CLAMP_D_TO_U8(turbulence(1, p)*255.0); + guint32 b = CLAMP_D_TO_U8(turbulence(2, p)*255.0); + guint32 a = CLAMP_D_TO_U8(turbulence(3, p)*255.0); + r = premul_alpha(r, a); + g = premul_alpha(g, a); + b = premul_alpha(b, a); + ASSEMBLE_ARGB32(pxout, a,r,g,b); + return pxout; + } else { + guint32 r = CLAMP_D_TO_U8((turbulence(0, p)*255.0 + 255.0) / 2); + guint32 g = CLAMP_D_TO_U8((turbulence(1, p)*255.0 + 255.0) / 2); + guint32 b = CLAMP_D_TO_U8((turbulence(2, p)*255.0 + 255.0) / 2); + guint32 a = CLAMP_D_TO_U8((turbulence(3, p)*255.0 + 255.0) / 2); + r = premul_alpha(r, a); + g = premul_alpha(g, a); + b = premul_alpha(b, a); + ASSEMBLE_ARGB32(pxout, a,r,g,b); + return pxout; + } + }*/ + + bool ready() const { return _inited; } + void dirty() { _inited = false; } + +private: + void _setupSeed(long seed) { + _seed = seed; + if (_seed <= 0) _seed = -(_seed % (RAND_m - 1)) + 1; + if (_seed > RAND_m - 1) _seed = RAND_m - 1; + } + long _random() { + /* Produces results in the range [1, 2**31 - 2]. + * Algorithm is: r = (a * r) mod m + * where a = 16807 and m = 2**31 - 1 = 2147483647 + * See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988 + * To test: the algorithm should produce the result 1043618065 + * as the 10,000th generated number if the original seed is 1. */ + _seed = RAND_a * (_seed % RAND_q) - RAND_r * (_seed / RAND_q); + if (_seed <= 0) _seed += RAND_m; + return _seed; + } + static inline double _scurve(double t) { + return t * t * (3.0 - 2.0*t); + } + static inline double _lerp(double t, double a, double b) { + return a + t * (b-a); + } + + // random number generator constants + static long const + RAND_m = 2147483647, // 2**31 - 1 + RAND_a = 16807, // 7**5; primitive root of m + RAND_q = 127773, // m / a + RAND_r = 2836; // m % a + + // other constants + static int const BSize = 0x100; + static int const BMask = 0xff; + + static double constexpr PerlinOffset = 4096.0; + + Geom::Rect _tile; + Geom::Point _baseFreq; + int _latticeSelector[2*BSize + 2]; + double _gradient[2*BSize + 2][4][2]; + long _seed; + int _octaves; + bool _stitchTiles; + int _wrapx; + int _wrapy; + int _wrapw; + int _wraph; + bool _inited; + bool _fractalnoise; +}; + +FilterTurbulence::FilterTurbulence() + : gen(new TurbulenceGenerator()) + , XbaseFrequency(0) + , YbaseFrequency(0) + , numOctaves(1) + , seed(0) + , updated(false) + , fTileWidth(10) //guessed + , fTileHeight(10) //guessed + , fTileX(1) //guessed + , fTileY(1) //guessed +{ +} + +FilterPrimitive * FilterTurbulence::create() { + return new FilterTurbulence(); +} + +FilterTurbulence::~FilterTurbulence() +{ + delete gen; +} + +void FilterTurbulence::set_baseFrequency(int axis, double freq){ + if (axis==0) XbaseFrequency=freq; + if (axis==1) YbaseFrequency=freq; + gen->dirty(); +} + +void FilterTurbulence::set_numOctaves(int num){ + numOctaves = num; + gen->dirty(); +} + +void FilterTurbulence::set_seed(double s){ + seed = s; + gen->dirty(); +} + +void FilterTurbulence::set_stitchTiles(bool st){ + stitchTiles = st; + gen->dirty(); +} + +void FilterTurbulence::set_type(FilterTurbulenceType t){ + type = t; + gen->dirty(); +} + +void FilterTurbulence::set_updated(bool /*u*/) +{ +} + +struct Turbulence { + Turbulence(TurbulenceGenerator const &gen, Geom::Affine const &trans, int x0, int y0) + : _gen(gen) + , _trans(trans) + , _x0(x0), _y0(y0) + {} + guint32 operator()(int x, int y) { + Geom::Point point(x + _x0, y + _y0); + point *= _trans; + return _gen.turbulencePixel(point); + } +private: + TurbulenceGenerator const &_gen; + Geom::Affine _trans; + int _x0, _y0; +}; + +void FilterTurbulence::render_cairo(FilterSlot &slot) +{ + cairo_surface_t *input = slot.getcairo(_input); + cairo_surface_t *out = ink_cairo_surface_create_same_size(input, CAIRO_CONTENT_COLOR_ALPHA); + + // It is probably possible to render at a device scale greater than one + // but for the moment rendering at a device scale of one is the easiest. + // cairo_image_surface_get_width() returns width in pixels but + // cairo_surface_create_similar() requires width in device units so divide by device scale. + // We are rendering at a device scale of 1... so divide by device scale again! + double x_scale = 0; + double y_scale = 0; + cairo_surface_get_device_scale(input, &x_scale, &y_scale); + int width = ceil(cairo_image_surface_get_width( input)/x_scale/x_scale); + int height = ceil(cairo_image_surface_get_height(input)/y_scale/y_scale); + cairo_surface_t *temp = cairo_surface_create_similar (input, CAIRO_CONTENT_COLOR_ALPHA, width, height); + cairo_surface_set_device_scale( temp, 1, 1 ); + + // color_interpolation_filter is determined by CSS value (see spec. Turbulence). + if( _style ) { + set_cairo_surface_ci(out, (SPColorInterpolation)_style->color_interpolation_filters.computed ); + } + + if (!gen->ready()) { + Geom::Point ta(fTileX, fTileY); + Geom::Point tb(fTileX + fTileWidth, fTileY + fTileHeight); + gen->init(seed, Geom::Rect(ta, tb), + Geom::Point(XbaseFrequency, YbaseFrequency), stitchTiles, + type == TURBULENCE_FRACTALNOISE, numOctaves); + } + + Geom::Affine unit_trans = slot.get_units().get_matrix_primitiveunits2pb().inverse(); + Geom::Rect slot_area = slot.get_slot_area(); + double x0 = slot_area.min()[Geom::X]; + double y0 = slot_area.min()[Geom::Y]; + ink_cairo_surface_synthesize(temp, Turbulence(*gen, unit_trans, x0, y0)); + + // cairo_surface_write_to_png( temp, "turbulence0.png" ); + + cairo_t *ct = cairo_create(out); + cairo_set_source_surface(ct, temp, 0, 0); + cairo_paint(ct); + cairo_destroy(ct); + + cairo_surface_destroy(temp); + + cairo_surface_mark_dirty(out); + + slot.set(_output, out); + cairo_surface_destroy(out); +} + +double FilterTurbulence::complexity(Geom::Affine const &) +{ + return 5.0; +} + +} /* namespace Filters */ +} /* namespace Inkscape */ + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : -- cgit v1.2.3