From cca66b9ec4e494c1d919bff0f71a820d8afab1fa Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:24:48 +0200 Subject: Adding upstream version 1.2.2. Signed-off-by: Daniel Baumann --- src/extension/internal/odf.cpp | 2126 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2126 insertions(+) create mode 100644 src/extension/internal/odf.cpp (limited to 'src/extension/internal/odf.cpp') diff --git a/src/extension/internal/odf.cpp b/src/extension/internal/odf.cpp new file mode 100644 index 0000000..4b10711 --- /dev/null +++ b/src/extension/internal/odf.cpp @@ -0,0 +1,2126 @@ +// SPDX-License-Identifier: LGPL-2.1-or-later +/** @file + * OpenDocument (drawing) input and output + *//* + * Authors: + * Bob Jamison + * Abhishek Sharma + * Kris De Gussem + * + * Copyright (C) 2018 Authors + * Released under GNU LGPL v2.1+, read the file 'COPYING' for more information. + */ +/* + * This is an an entry in the extensions mechanism to begin to enable + * the inputting and outputting of OpenDocument Format (ODF) files from + * within Inkscape. Although the initial implementations will be very lossy + * due to the differences in the models of SVG and ODF, they will hopefully + * improve greatly with time. People should consider this to be a framework + * that can be continuously upgraded for ever improving fidelity. Potential + * developers should especially look in preprocess() and writeTree() to see how + * the SVG tree is scanned, read, translated, and then written to ODF. + * + * http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/idl-definitions.html + * + */ + +#include "odf.h" + +//# System includes +#include +#include +#include +#include + +//# Inkscape includes +#include "clear-n_.h" +#include "inkscape.h" +#include "display/curve.h" +#include <2geom/pathvector.h> +#include <2geom/curves.h> +#include <2geom/transforms.h> +#include +#include "helper/geom-curves.h" +#include "extension/system.h" + +#include "xml/repr.h" +#include "xml/attribute-record.h" +#include "object/sp-image.h" +#include "object/sp-gradient.h" +#include "object/sp-stop.h" +#include "object/sp-linear-gradient.h" +#include "object/sp-radial-gradient.h" +#include "object/sp-root.h" +#include "object/sp-path.h" +#include "object/sp-text.h" +#include "object/sp-flowtext.h" +#include "object/uri.h" +#include "style.h" + +#include "svg/svg.h" +#include "text-editing.h" +#include "util/units.h" + + +#include "inkscape-version.h" +#include "document.h" +#include "extension/extension.h" + +#include "io/stream/bufferstream.h" +#include "io/stream/stringstream.h" +#include "io/sys.h" +#include +#include +namespace Inkscape +{ +namespace Extension +{ +namespace Internal +{ +//# Shorthand notation +typedef Inkscape::IO::BufferOutputStream BufferOutputStream; +typedef Inkscape::IO::OutputStreamWriter OutputStreamWriter; +typedef Inkscape::IO::StringOutputStream StringOutputStream; + + +//######################################################################## +//# C L A S S SingularValueDecomposition +//######################################################################## +#include + +class SVDMatrix +{ +public: + + SVDMatrix() + { + init(); + } + + SVDMatrix(unsigned int rowSize, unsigned int colSize) + { + init(); + rows = rowSize; + cols = colSize; + size = rows * cols; + d = new double[size]; + for (unsigned int i=0 ; i= rows || col >= cols) + return badval; + return d[cols*row + col]; + } + + double operator() (unsigned int row, unsigned int col) const + { + if (row >= rows || col >= cols) + return badval; + return d[cols*row + col]; + } + + unsigned int getRows() + { + return rows; + } + + unsigned int getCols() + { + return cols; + } + + SVDMatrix multiply(const SVDMatrix &other) + { + if (cols != other.rows) + { + SVDMatrix dummy; + return dummy; + } + SVDMatrix result(rows, other.cols); + for (unsigned int i=0 ; i + * For an m-by-n matrix A with m >= n, the singular value decomposition is + * an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and + * an n-by-n orthogonal matrix V so that A = U*S*V'. + *

+ * The singular values, sigma[k] = S[k][k], are ordered so that + * sigma[0] >= sigma[1] >= ... >= sigma[n-1]. + *

+ * The singular value decomposition always exists, so the constructor will + * never fail. The matrix condition number and the effective numerical + * rank can be computed from this decomposition. + */ +class SingularValueDecomposition +{ +public: + + /** Construct the singular value decomposition + @param A Rectangular matrix + @return Structure to access U, S and V. + */ + + SingularValueDecomposition (const SVDMatrix &mat) : + A (mat), + U (), + s (nullptr), + s_size (0), + V () + { + calculate(); + } + + virtual ~SingularValueDecomposition() + { + delete[] s; + } + + /** + * Return the left singular vectors + * @return U + */ + SVDMatrix &getU(); + + /** + * Return the right singular vectors + * @return V + */ + SVDMatrix &getV(); + + /** + * Return the s[index] value + */ double getS(unsigned int index); + + /** + * Two norm + * @return max(S) + */ + double norm2(); + + /** + * Two norm condition number + * @return max(S)/min(S) + */ + double cond(); + + /** + * Effective numerical matrix rank + * @return Number of nonnegligible singular values. + */ + int rank(); + +private: + + void calculate(); + + SVDMatrix A; + SVDMatrix U; + double *s; + unsigned int s_size; + SVDMatrix V; + +}; + + +static double svd_hypot(double a, double b) +{ + double r; + + if (fabs(a) > fabs(b)) + { + r = b/a; + r = fabs(a) * sqrt(1+r*r); + } + else if (b != 0) + { + r = a/b; + r = fabs(b) * sqrt(1+r*r); + } + else + { + r = 0.0; + } + return r; +} + + + +void SingularValueDecomposition::calculate() +{ + // Initialize. + int m = A.getRows(); + int n = A.getCols(); + + int nu = (m > n) ? m : n; + s_size = (m+1 < n) ? m+1 : n; + s = new double[s_size]; + U = SVDMatrix(m, nu); + V = SVDMatrix(n, n); + double *e = new double[n]; + double *work = new double[m]; + bool wantu = true; + bool wantv = true; + + // Reduce A to bidiagonal form, storing the diagonal elements + // in s and the super-diagonal elements in e. + + int nct = (m-10) ? nrtx : 0; + for (int k = 0; k < 2; k++) { + if (k < nct) { + + // Compute the transformation for the k-th column and + // place the k-th diagonal in s[k]. + // Compute 2-norm of k-th column without under/overflow. + s[k] = 0; + for (int i = k; i < m; i++) { + s[k] = svd_hypot(s[k],A(i, k)); + } + if (s[k] != 0.0) { + if (A(k, k) < 0.0) { + s[k] = -s[k]; + } + for (int i = k; i < m; i++) { + A(i, k) /= s[k]; + } + A(k, k) += 1.0; + } + s[k] = -s[k]; + } + for (int j = k+1; j < n; j++) { + if ((k < nct) & (s[k] != 0.0)) { + + // Apply the transformation. + + double t = 0; + for (int i = k; i < m; i++) { + t += A(i, k) * A(i, j); + } + t = -t/A(k, k); + for (int i = k; i < m; i++) { + A(i, j) += t*A(i, k); + } + } + + // Place the k-th row of A into e for the + // subsequent calculation of the row transformation. + + e[j] = A(k, j); + } + if (wantu & (k < nct)) { + + // Place the transformation in U for subsequent back + // multiplication. + + for (int i = k; i < m; i++) { + U(i, k) = A(i, k); + } + } + if (k < nrt) { + + // Compute the k-th row transformation and place the + // k-th super-diagonal in e[k]. + // Compute 2-norm without under/overflow. + e[k] = 0; + for (int i = k+1; i < n; i++) { + e[k] = svd_hypot(e[k],e[i]); + } + if (e[k] != 0.0) { + if (e[k+1] < 0.0) { + e[k] = -e[k]; + } + for (int i = k+1; i < n; i++) { + e[i] /= e[k]; + } + e[k+1] += 1.0; + } + e[k] = -e[k]; + if ((k+1 < m) & (e[k] != 0.0)) { + + // Apply the transformation. + + for (int i = k+1; i < m; i++) { + work[i] = 0.0; + } + for (int j = k+1; j < n; j++) { + for (int i = k+1; i < m; i++) { + work[i] += e[j]*A(i, j); + } + } + for (int j = k+1; j < n; j++) { + double t = -e[j]/e[k+1]; + for (int i = k+1; i < m; i++) { + A(i, j) += t*work[i]; + } + } + } + if (wantv) { + + // Place the transformation in V for subsequent + // back multiplication. + + for (int i = k+1; i < n; i++) { + V(i, k) = e[i]; + } + } + } + } + + // Set up the final bidiagonal matrix or order p. + + int p = (n < m+1) ? n : m+1; + if (nct < n) { + s[nct] = A(nct, nct); + } + if (m < p) { + s[p-1] = 0.0; + } + if (nrt+1 < p) { + e[nrt] = A(nrt, p-1); + } + e[p-1] = 0.0; + + // If required, generate U. + + if (wantu) { + for (int j = nct; j < nu; j++) { + for (int i = 0; i < m; i++) { + U(i, j) = 0.0; + } + U(j, j) = 1.0; + } + for (int k = nct-1; k >= 0; k--) { + if (s[k] != 0.0) { + for (int j = k+1; j < nu; j++) { + double t = 0; + for (int i = k; i < m; i++) { + t += U(i, k)*U(i, j); + } + t = -t/U(k, k); + for (int i = k; i < m; i++) { + U(i, j) += t*U(i, k); + } + } + for (int i = k; i < m; i++ ) { + U(i, k) = -U(i, k); + } + U(k, k) = 1.0 + U(k, k); + for (int i = 0; i < k-1; i++) { + U(i, k) = 0.0; + } + } else { + for (int i = 0; i < m; i++) { + U(i, k) = 0.0; + } + U(k, k) = 1.0; + } + } + } + + // If required, generate V. + + if (wantv) { + for (int k = n-1; k >= 0; k--) { + if ((k < nrt) & (e[k] != 0.0)) { + for (int j = k+1; j < nu; j++) { + double t = 0; + for (int i = k+1; i < n; i++) { + t += V(i, k)*V(i, j); + } + t = -t/V(k+1, k); + for (int i = k+1; i < n; i++) { + V(i, j) += t*V(i, k); + } + } + } + for (int i = 0; i < n; i++) { + V(i, k) = 0.0; + } + V(k, k) = 1.0; + } + } + + // Main iteration loop for the singular values. + + int pp = p-1; + //double eps = pow(2.0,-52.0); + //double tiny = pow(2.0,-966.0); + //let's just calculate these now + //a double can be e ± 308.25, so this is safe + double eps = 2.22e-16; + double tiny = 1.6e-291; + while (p > 0) { + int k,kase; + + // Here is where a test for too many iterations would go. + + // This section of the program inspects for + // negligible elements in the s and e arrays. On + // completion the variables kase and k are set as follows. + + // kase = 1 if s(p) and e[k-1] are negligible and k

= -1; k--) { + if (k == -1) { + break; + } + if (fabs(e[k]) <= + tiny + eps*(fabs(s[k]) + fabs(s[k+1]))) { + e[k] = 0.0; + break; + } + } + if (k == p-2) { + kase = 4; + } else { + int ks; + for (ks = p-1; ks >= k; ks--) { + if (ks == k) { + break; + } + double t = (ks != p ? fabs(e[ks]) : 0.) + + (ks != k+1 ? fabs(e[ks-1]) : 0.); + if (fabs(s[ks]) <= tiny + eps*t) { + s[ks] = 0.0; + break; + } + } + if (ks == k) { + kase = 3; + } else if (ks == p-1) { + kase = 1; + } else { + kase = 2; + k = ks; + } + } + k++; + + // Perform the task indicated by kase. + + switch (kase) { + + // Deflate negligible s(p). + + case 1: { + double f = e[p-2]; + e[p-2] = 0.0; + for (int j = p-2; j >= k; j--) { + double t = svd_hypot(s[j],f); + double cs = s[j]/t; + double sn = f/t; + s[j] = t; + if (j != k) { + f = -sn*e[j-1]; + e[j-1] = cs*e[j-1]; + } + if (wantv) { + for (int i = 0; i < n; i++) { + t = cs*V(i, j) + sn*V(i, p-1); + V(i, p-1) = -sn*V(i, j) + cs*V(i, p-1); + V(i, j) = t; + } + } + } + } + break; + + // Split at negligible s(k). + + case 2: { + double f = e[k-1]; + e[k-1] = 0.0; + for (int j = k; j < p; j++) { + double t = svd_hypot(s[j],f); + double cs = s[j]/t; + double sn = f/t; + s[j] = t; + f = -sn*e[j]; + e[j] = cs*e[j]; + if (wantu) { + for (int i = 0; i < m; i++) { + t = cs*U(i, j) + sn*U(i, k-1); + U(i, k-1) = -sn*U(i, j) + cs*U(i, k-1); + U(i, j) = t; + } + } + } + } + break; + + // Perform one qr step. + + case 3: { + + // Calculate the shift. + + double scale = fabs(s[p-1]); + double d = fabs(s[p-2]); + if (d>scale) scale=d; + d = fabs(e[p-2]); + if (d>scale) scale=d; + d = fabs(s[k]); + if (d>scale) scale=d; + d = fabs(e[k]); + if (d>scale) scale=d; + double sp = s[p-1]/scale; + double spm1 = s[p-2]/scale; + double epm1 = e[p-2]/scale; + double sk = s[k]/scale; + double ek = e[k]/scale; + double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; + double c = (sp*epm1)*(sp*epm1); + double shift = 0.0; + if ((b != 0.0) | (c != 0.0)) { + shift = sqrt(b*b + c); + if (b < 0.0) { + shift = -shift; + } + shift = c/(b + shift); + } + double f = (sk + sp)*(sk - sp) + shift; + double g = sk*ek; + + // Chase zeros. + + for (int j = k; j < p-1; j++) { + double t = svd_hypot(f,g); + double cs = f/t; + double sn = g/t; + if (j != k) { + e[j-1] = t; + } + f = cs*s[j] + sn*e[j]; + e[j] = cs*e[j] - sn*s[j]; + g = sn*s[j+1]; + s[j+1] = cs*s[j+1]; + if (wantv) { + for (int i = 0; i < n; i++) { + t = cs*V(i, j) + sn*V(i, j+1); + V(i, j+1) = -sn*V(i, j) + cs*V(i, j+1); + V(i, j) = t; + } + } + t = svd_hypot(f,g); + cs = f/t; + sn = g/t; + s[j] = t; + f = cs*e[j] + sn*s[j+1]; + s[j+1] = -sn*e[j] + cs*s[j+1]; + g = sn*e[j+1]; + e[j+1] = cs*e[j+1]; + if (wantu && (j < m-1)) { + for (int i = 0; i < m; i++) { + t = cs*U(i, j) + sn*U(i, j+1); + U(i, j+1) = -sn*U(i, j) + cs*U(i, j+1); + U(i, j) = t; + } + } + } + e[p-2] = f; + } + break; + + // Convergence. + + case 4: { + + // Make the singular values positive. + + if (s[k] <= 0.0) { + s[k] = (s[k] < 0.0 ? -s[k] : 0.0); + if (wantv) { + for (int i = 0; i <= pp; i++) { + V(i, k) = -V(i, k); + } + } + } + + // Order the singular values. + + while (k < pp) { + if (s[k] >= s[k+1]) { + break; + } + double t = s[k]; + s[k] = s[k+1]; + s[k+1] = t; + if (wantv && (k < n-1)) { + for (int i = 0; i < n; i++) { + t = V(i, k+1); V(i, k+1) = V(i, k); V(i, k) = t; + } + } + if (wantu && (k < m-1)) { + for (int i = 0; i < m; i++) { + t = U(i, k+1); U(i, k+1) = U(i, k); U(i, k) = t; + } + } + k++; + } + p--; + } + break; + } + } + + delete [] e; + delete [] work; + +} + + +/** + * Return the left singular vectors + * @return U + */ +SVDMatrix &SingularValueDecomposition::getU() +{ + return U; +} + +/** + * Return the right singular vectors + * @return V + */ + +SVDMatrix &SingularValueDecomposition::getV() +{ + return V; +} + +/** + * Return the s[0] value + */ +double SingularValueDecomposition::getS(unsigned int index) +{ + if (index >= s_size) + return 0.0; + return s[index]; +} + +/** + * Two norm + * @return max(S) + */ +double SingularValueDecomposition::norm2() +{ + return s[0]; +} + +/** + * Two norm condition number + * @return max(S)/min(S) + */ + +double SingularValueDecomposition::cond() +{ + return s[0]/s[2]; +} + +/** + * Effective numerical matrix rank + * @return Number of nonnegligible singular values. + */ +int SingularValueDecomposition::rank() +{ + double eps = pow(2.0,-52.0); + double tol = 3.0*s[0]*eps; + int r = 0; + for (int i = 0; i < 3; i++) + { + if (s[i] > tol) + r++; + } + return r; +} + +//######################################################################## +//# E N D C L A S S SingularValueDecomposition +//######################################################################## + + + + + +//#define pxToCm 0.0275 +#define pxToCm 0.03 + + +//######################################################################## +//# O U T P U T +//######################################################################## + +/** + * Get the value of a node/attribute pair + */ +static Glib::ustring getAttribute( Inkscape::XML::Node *node, char const *attrName) +{ + Glib::ustring val; + char const *valstr = node->attribute(attrName); + if (valstr) + val = valstr; + return val; +} + + +static Glib::ustring formatTransform(Geom::Affine &tf) +{ + Glib::ustring str; + if (!tf.isIdentity()) + { + StringOutputStream outs; + OutputStreamWriter out(outs); + out.printf("matrix(%.3f %.3f %.3f %.3f %.3f %.3f)", + tf[0], tf[1], tf[2], tf[3], tf[4], tf[5]); + str = outs.getString(); + } + return str; +} + + +/** + * Get the general transform from SVG pixels to + * ODF cm + */ +static Geom::Affine getODFTransform(const SPItem *item) +{ + //### Get SVG-to-ODF transform + Geom::Affine tf (item->i2doc_affine()); + tf = tf * Geom::Affine(Geom::Scale(pxToCm)); + return tf; +} + + +/** + * Get the bounding box of an item, as mapped onto + * an ODF document, in cm. + */ +static Geom::OptRect getODFBoundingBox(const SPItem *item) +{ + // TODO: geometric or visual? + Geom::OptRect bbox = item->documentVisualBounds(); + if (bbox) { + *bbox *= Geom::Affine(Geom::Scale(pxToCm)); + } + return bbox; +} + + +/** + * Get the transform for an item, including parents, but without + * root viewBox transformation. + */ +static Geom::Affine getODFItemTransform(const SPItem *item) +{ + Geom::Affine itemTransform (item->i2doc_affine() * + item->document->getRoot()->c2p.inverse()); + return itemTransform; +} + + +/** + * Get some fun facts from the transform + */ +static void analyzeTransform(Geom::Affine &tf, + double &rotate, double &/*xskew*/, double &/*yskew*/, + double &xscale, double &yscale) +{ + SVDMatrix mat(2, 2); + mat(0, 0) = tf[0]; + mat(0, 1) = tf[1]; + mat(1, 0) = tf[2]; + mat(1, 1) = tf[3]; + + SingularValueDecomposition svd(mat); + + SVDMatrix U = svd.getU(); + SVDMatrix V = svd.getV(); + SVDMatrix Vt = V.transpose(); + SVDMatrix UVt = U.multiply(Vt); + double s0 = svd.getS(0); + double s1 = svd.getS(1); + xscale = s0; + yscale = s1; + rotate = UVt(0,0); +} + +static void gatherText(Inkscape::XML::Node *node, Glib::ustring &buf) +{ + if (node->type() == Inkscape::XML::NodeType::TEXT_NODE) + { + char *s = (char *)node->content(); + if (s) + buf.append(s); + } + + for (Inkscape::XML::Node *child = node->firstChild() ; + child != nullptr; child = child->next()) + { + gatherText(child, buf); + } + +} + + +/** + * FIRST PASS. + * Method descends into the repr tree, converting image, style, and gradient info + * into forms compatible in ODF. + */ +void OdfOutput::preprocess(ZipFile &zf, SPDocument *doc, Inkscape::XML::Node *node) +{ + Glib::ustring nodeName = node->name(); + Glib::ustring id = getAttribute(node, "id"); + + //### First, check for metadata + if (nodeName == "metadata" || nodeName == "svg:metadata") + { + Inkscape::XML::Node *mchild = node->firstChild() ; + if (!mchild || strcmp(mchild->name(), "rdf:RDF")) + return; + Inkscape::XML::Node *rchild = mchild->firstChild() ; + if (!rchild || strcmp(rchild->name(), "cc:Work")) + return; + for (Inkscape::XML::Node *cchild = rchild->firstChild() ; + cchild ; cchild = cchild->next()) + { + Glib::ustring ccName = cchild->name(); + Glib::ustring ccVal; + gatherText(cchild, ccVal); + //g_message("ccName: %s ccVal:%s", ccName.c_str(), ccVal.c_str()); + metadata[ccName] = ccVal; + } + return; + } + + //Now consider items. + SPObject *reprobj = doc->getObjectByRepr(node); + if (!reprobj) + { + return; + } + if (!SP_IS_ITEM(reprobj)) + { + return; + } + + if (nodeName == "image" || nodeName == "svg:image") { + Glib::ustring href = getAttribute(node, "xlink:href"); + if (href.size() > 0 && imageTable.count(href) == 0) { + try { + auto uri = Inkscape::URI(href.c_str(), docBaseUri.c_str()); + auto mimetype = uri.getMimeType(); + + if (mimetype.substr(0, 6) != "image/") { + return; + } + + auto ext = mimetype.substr(6); + auto newName = Glib::ustring("Pictures/image") + std::to_string(imageTable.size()) + "." + ext; + + imageTable[href] = newName; + + auto ze = zf.newEntry(newName.raw(), ""); + ze->setUncompressedData(uri.getContents()); + ze->finish(); + } catch (...) { + g_warning("Could not handle URI '%.100s'", href.c_str()); + } + } + } + + for (Inkscape::XML::Node *child = node->firstChild() ; + child ; child = child->next()) + preprocess(zf, doc, child); +} + + +/** + * Writes the manifest. Currently it only changes according to the + * file names of images packed into the zip file. + */ +bool OdfOutput::writeManifest(ZipFile &zf) +{ + BufferOutputStream bouts; + OutputStreamWriter outs(bouts); + + time_t tim; + time(&tim); + + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString(" \n"); + outs.writeString(" \n"); + outs.writeString(" \n"); + outs.writeString(" \n"); + outs.writeString(" \n"); + std::map::iterator iter; + for (iter = imageTable.begin() ; iter!=imageTable.end() ; ++iter) + { + Glib::ustring newName = iter->second; + + // note: mime subtype was added as file extension in OdfOutput::preprocess + Glib::ustring mimesubtype = Inkscape::IO::get_file_extension(newName); + + outs.printf(" \n"); + } + outs.printf("\n"); + + outs.close(); + + //Make our entry + ZipEntry *ze = zf.newEntry("META-INF/manifest.xml", "ODF file manifest"); + ze->setUncompressedData(bouts.getBuffer()); + ze->finish(); + + return true; +} + + +/** + * This writes the document meta information to meta.xml + */ +bool OdfOutput::writeMeta(ZipFile &zf) +{ + BufferOutputStream bouts; + OutputStreamWriter outs(bouts); + + time_t tim; + time(&tim); + + std::map::iterator iter; + Glib::ustring InkscapeVersion = Glib::ustring("Inkscape.org - ") + Inkscape::version_string; + Glib::ustring creator = InkscapeVersion; + iter = metadata.find("dc:creator"); + if (iter != metadata.end()) + { + creator = iter->second; + } + + Glib::ustring date; + Glib::ustring moddate; + char buf [80]; + time_t rawtime; + struct tm * timeinfo; + time (&rawtime); + timeinfo = localtime (&rawtime); + strftime (buf,80,"%Y-%m-%d %H:%M:%S",timeinfo); + moddate = Glib::ustring(buf); + + iter = metadata.find("dc:date"); + if (iter != metadata.end()) + { + date = iter->second; + } + else + { + date = moddate; + } + + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + Glib::ustring tmp = Glib::ustring::compose(" %1\n", InkscapeVersion); + tmp += Glib::ustring::compose(" %1\n", creator); + tmp += Glib::ustring::compose(" %1\n", date); + tmp += Glib::ustring::compose(" %1\n", moddate); + outs.writeUString(tmp); + for (iter = metadata.begin() ; iter != metadata.end() ; ++iter) + { + Glib::ustring name = iter->first; + Glib::ustring value = iter->second; + if (!name.empty() && !value.empty()) + { + tmp = Glib::ustring::compose(" <%1>%2\n", name, value, name); + outs.writeUString(tmp); + } + } + // outs.writeString(" 2\n"); + // outs.writeString(" PT56S\n"); + // outs.writeString(" \n"); + // outs.writeString(" \n"); + // outs.writeString(" \n"); + // outs.writeString(" \n"); + // outs.writeString(" \n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.close(); + + //Make our entry + ZipEntry *ze = zf.newEntry("meta.xml", "ODF info file"); + ze->setUncompressedData(bouts.getBuffer()); + ze->finish(); + + return true; +} + + +/** + * Writes an SVG path as an ODF and returns the number of points written + */ +static int +writePath(Writer &outs, Geom::PathVector const &pathv, + Geom::Affine const &tf, double xoff, double yoff) +{ + using Geom::X; + using Geom::Y; + + int nrPoints = 0; + + // convert the path to only lineto's and cubic curveto's: + Geom::PathVector pv = pathv_to_linear_and_cubic_beziers(pathv * tf * Geom::Translate(xoff, yoff) * Geom::Scale(1000.)); + + for (const auto & pit : pv) { + + double destx = pit.initialPoint()[X]; + double desty = pit.initialPoint()[Y]; + if (fabs(destx)<1.0) destx = 0.0; // Why is this needed? Shouldn't we just round all numbers then? + if (fabs(desty)<1.0) desty = 0.0; + outs.printf("M %.3f %.3f ", destx, desty); + nrPoints++; + + for (Geom::Path::const_iterator cit = pit.begin(); cit != pit.end_closed(); ++cit) { + + if( is_straight_curve(*cit) ) + { + double destx = cit->finalPoint()[X]; + double desty = cit->finalPoint()[Y]; + if (fabs(destx)<1.0) destx = 0.0; // Why is this needed? Shouldn't we just round all numbers then? + if (fabs(desty)<1.0) desty = 0.0; + outs.printf("L %.3f %.3f ", destx, desty); + } + else if(Geom::CubicBezier const *cubic = dynamic_cast(&*cit)) { + std::vector points = cubic->controlPoints(); + for (unsigned i = 1; i <= 3; i++) { + if (fabs(points[i][X])<1.0) points[i][X] = 0.0; // Why is this needed? Shouldn't we just round all numbers then? + if (fabs(points[i][Y])<1.0) points[i][Y] = 0.0; + } + outs.printf("C %.3f %.3f %.3f %.3f %.3f %.3f ", points[1][X],points[1][Y], points[2][X],points[2][Y], points[3][X],points[3][Y]); + } + else { + g_error ("logical error, because pathv_to_linear_and_cubic_beziers was used"); + } + + nrPoints++; + } + + if (pit.closed()) { + outs.printf("Z"); + } + } + + return nrPoints; +} + +bool OdfOutput::processStyle(SPItem *item, const Glib::ustring &id, const Glib::ustring &gradientNameFill, const Glib::ustring &gradientNameStroke, Glib::ustring& output) +{ + output.clear(); + if (!item) + { + return false; + } + + SPStyle *style = item->style; + if (!style) + { + return false; + } + + StyleInfo si; + + // FILL + if (style->fill.isColor()) + { + guint32 fillCol = style->fill.value.color.toRGBA32( 0 ); + char buf[16]; + int r = (fillCol >> 24) & 0xff; + int g = (fillCol >> 16) & 0xff; + int b = (fillCol >> 8) & 0xff; + snprintf(buf, 15, "#%02x%02x%02x", r, g, b); + si.fillColor = buf; + si.fill = "solid"; + double opacityPercent = 100.0 * + (SP_SCALE24_TO_FLOAT(style->fill_opacity.value)); + snprintf(buf, 15, "%.3f%%", opacityPercent); + si.fillOpacity = buf; + } + else if (style->fill.isPaintserver()) + { + SPGradient *gradient = SP_GRADIENT(SP_STYLE_FILL_SERVER(style)); + if (gradient) + { + si.fill = "gradient"; + } + } + + // STROKE + if (style->stroke.isColor()) + { + guint32 strokeCol = style->stroke.value.color.toRGBA32( 0 ); + char buf[16]; + int r = (strokeCol >> 24) & 0xff; + int g = (strokeCol >> 16) & 0xff; + int b = (strokeCol >> 8) & 0xff; + snprintf(buf, 15, "#%02x%02x%02x", r, g, b); + si.strokeColor = buf; + snprintf(buf, 15, "%.3fpt", style->stroke_width.value); + si.strokeWidth = buf; + si.stroke = "solid"; + double opacityPercent = 100.0 * + (SP_SCALE24_TO_FLOAT(style->stroke_opacity.value)); + snprintf(buf, 15, "%.3f%%", opacityPercent); + si.strokeOpacity = buf; + } + else if (style->stroke.isPaintserver()) + { + SPGradient *gradient = SP_GRADIENT(SP_STYLE_STROKE_SERVER(style)); + if (gradient) + { + si.stroke = "gradient"; + } + } + + //Look for existing identical style; + bool styleMatch = false; + std::vector::iterator iter; + for (iter=styleTable.begin() ; iter!=styleTable.end() ; ++iter) + { + if (si.equals(*iter)) + { + //map to existing styleTable entry + Glib::ustring styleName = iter->name; + styleLookupTable[id] = styleName; + styleMatch = true; + break; + } + } + + // Don't need a new style + if (styleMatch) + { + return false; + } + + Glib::ustring styleName = Glib::ustring::compose("style%1", styleTable.size()); + si.name = styleName; + styleTable.push_back(si); + styleLookupTable[id] = styleName; + + output = Glib::ustring::compose ("\n", si.name); + output += "style; + if (!style) + { + return false; + } + + if ((checkFillGradient? (!style->fill.isPaintserver()) : (!style->stroke.isPaintserver()))) + { + return false; + } + + //## Gradient + SPGradient *gradient = SP_GRADIENT((checkFillGradient?(SP_STYLE_FILL_SERVER(style)) :(SP_STYLE_STROKE_SERVER(style)))); + + if (gradient == nullptr) + { + return false; + } + GradientInfo gi; + SPGradient *grvec = gradient->getVector(FALSE); + for (SPStop *stop = grvec->getFirstStop(); + stop ; stop = stop->getNextStop()) + { + unsigned long rgba = stop->get_rgba32(); + unsigned long rgb = (rgba >> 8) & 0xffffff; + double opacity = (static_cast(rgba & 0xff)) / 256.0; + GradientStop gs(rgb, opacity); + gi.stops.push_back(gs); + } + + Glib::ustring gradientName2; + if (SP_IS_LINEARGRADIENT(gradient)) + { + gi.style = "linear"; + SPLinearGradient *linGrad = SP_LINEARGRADIENT(gradient); + gi.x1 = linGrad->x1.value; + gi.y1 = linGrad->y1.value; + gi.x2 = linGrad->x2.value; + gi.y2 = linGrad->y2.value; + gradientName2 = Glib::ustring::compose("ImportedLinearGradient%1", gradientTable.size()); + } + else if (SP_IS_RADIALGRADIENT(gradient)) + { + gi.style = "radial"; + SPRadialGradient *radGrad = SP_RADIALGRADIENT(gradient); + Geom::OptRect bbox = item->documentVisualBounds(); + gi.cx = (radGrad->cx.value-bbox->left())/bbox->width(); + gi.cy = (radGrad->cy.value-bbox->top())/bbox->height(); + gradientName2 = Glib::ustring::compose("ImportedRadialGradient%1", gradientTable.size()); + } + else + { + g_warning("not a supported gradient type"); + return false; + } + + //Look for existing identical style; + bool gradientMatch = false; + std::vector::iterator iter; + for (iter=gradientTable.begin() ; iter!=gradientTable.end() ; ++iter) + { + if (gi.equals(*iter)) + { + //map to existing gradientTable entry + gradientName = iter->name; + gradientLookupTable[id] = gradientName; + gradientMatch = true; + break; + } + } + + if (gradientMatch) + { + return true; + } + + // No match, let us write a new entry + gradientName = gradientName2; + gi.name = gradientName; + gradientTable.push_back(gi); + gradientLookupTable[id] = gradientName; + + // int gradientCount = gradientTable.size(); + char buf[128]; + if (gi.style == "linear") + { + /* + =================================================================== + LINEAR gradient. We need something that looks like this: + + =================================================================== + */ + if (gi.stops.size() < 2) + { + g_warning("Need at least 2 stops for a linear gradient"); + return false; + } + output += Glib::ustring::compose("\n", + gi.stops[0].opacity * 100.0, gi.stops[1].opacity * 100.0, angle);// draw:border=\"0%%\" + } + else if (gi.style == "radial") + { + /* + =================================================================== + RADIAL gradient. We need something that looks like this: + + + =================================================================== + */ + if (gi.stops.size() < 2) + { + g_warning("Need at least 2 stops for a radial gradient"); + return false; + } + output += Glib::ustring::compose("getObjectByRepr(node); + if (!reprobj) + { + return true; + } + if (!SP_IS_ITEM(reprobj)) + { + return true; + } + SPItem *item = SP_ITEM(reprobj); + + Glib::ustring nodeName = node->name(); + Glib::ustring id = getAttribute(node, "id"); + Geom::Affine tf = getODFTransform(item);//Get SVG-to-ODF transform + Geom::OptRect bbox = getODFBoundingBox(item);//Get ODF bounding box params for item + if (!bbox) { + return true; + } + + double bbox_x = bbox->min()[Geom::X]; + double bbox_y = bbox->min()[Geom::Y]; + double bbox_width = (*bbox)[Geom::X].extent(); + double bbox_height = (*bbox)[Geom::Y].extent(); + + double rotate; + double xskew; + double yskew; + double xscale; + double yscale; + analyzeTransform(tf, rotate, xskew, yskew, xscale, yscale); + + //# Do our stuff + + if (nodeName == "svg" || nodeName == "svg:svg") + { + //# Iterate through the children + for (Inkscape::XML::Node *child = node->firstChild() ; + child ; child = child->next()) + { + if (!writeTree(couts, souts, doc, child)) + { + return false; + } + } + return true; + } + else if (nodeName == "g" || nodeName == "svg:g") + { + if (!id.empty()) + { + couts.printf("\n", id.c_str()); + } + else + { + couts.printf("\n"); + } + //# Iterate through the children + for (Inkscape::XML::Node *child = node->firstChild() ; + child ; child = child->next()) + { + if (!writeTree(couts, souts, doc, child)) + { + return false; + } + } + if (!id.empty()) + { + couts.printf(" \n", id.c_str()); + } + else + { + couts.printf("\n"); + } + return true; + } + + //# GRADIENT + Glib::ustring gradientNameFill; + Glib::ustring gradientNameStroke; + Glib::ustring outputFill; + Glib::ustring outputStroke; + Glib::ustring outputStyle; + + processGradient(item, id, tf, gradientNameFill, outputFill, true); + processGradient(item, id, tf, gradientNameStroke, outputStroke, false); + souts.writeUString(outputFill); + souts.writeUString(outputStroke); + + //# STYLE + processStyle(item, id, gradientNameFill, gradientNameStroke, outputStyle); + souts.writeUString(outputStyle); + + //# ITEM DATA + if (nodeName == "image" || nodeName == "svg:image") + { + if (!SP_IS_IMAGE(item)) + { + g_warning(" is not an SPImage."); + return false; + } + + SPImage *img = SP_IMAGE(item); + double ix = img->x.value; + double iy = img->y.value; + double iwidth = img->width.value; + double iheight = img->height.value; + + Geom::Point ibbox_min = Geom::Point(ix, iy) * tf; + ix = ibbox_min.x(); + iy = ibbox_min.y(); + iwidth = xscale * iwidth; + iheight = yscale * iheight; + + Geom::Affine itemTransform = getODFItemTransform(item); + + Glib::ustring itemTransformString = formatTransform(itemTransform); + + Glib::ustring href = getAttribute(node, "xlink:href"); + std::map::iterator iter = imageTable.find(href); + if (iter == imageTable.end()) + { + g_warning("image '%s' not in table", href.c_str()); + return false; + } + Glib::ustring newName = iter->second; + + couts.printf("\n"); + couts.printf(" \n"); + couts.writeString(" \n"); + couts.writeString(" \n"); + couts.writeString("\n"); + return true; + } + + std::unique_ptr curve; + + if (auto shape = dynamic_cast(item)) { + curve = SPCurve::copy(shape->curve()); + } else if (SP_IS_TEXT(item) || SP_IS_FLOWTEXT(item)) { + curve = te_get_layout(item)->convertToCurves(); + } + + if (curve) + { + //### Default output + couts.writeString("::iterator siter; + siter = styleLookupTable.find(id); + if (siter != styleLookupTable.end()) + { + Glib::ustring styleName = siter->second; + couts.printf("draw:style-name=\"%s\" ", styleName.c_str()); + } + + couts.printf("draw:layer=\"layout\" svg:x=\"%.3fcm\" svg:y=\"%.3fcm\" ", + bbox_x, bbox_y); + couts.printf("svg:width=\"%.3fcm\" svg:height=\"%.3fcm\" ", + bbox_width, bbox_height); + couts.printf("svg:viewBox=\"0.0 0.0 %.3f %.3f\"", + bbox_width * 1000.0, bbox_height * 1000.0); + + couts.printf(" svg:d=\""); + int nrPoints = writePath(couts, curve->get_pathvector(), + tf, bbox_x, bbox_y); + couts.writeString("\""); + + couts.writeString(">\n"); + couts.printf(" \n", nrPoints); + couts.writeString("\n\n"); + } + + return true; +} + + +/** + * Write the header for the content.xml file + */ +bool OdfOutput::writeStyleHeader(Writer &outs) +{ + time_t tim; + time(&tim); + + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + + return true; +} + + +/** + * Write the footer for the style.xml file + */ +bool OdfOutput::writeStyleFooter(Writer &outs) +{ + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + +///TODO: add default document style here + + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString(" \n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString(" \n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString(" \n"); + outs.writeString(" \n"); + outs.writeString(" \n"); + outs.writeString(" \n"); + outs.writeString(" \n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + + return true; +} + + +/** + * Write the header for the content.xml file + */ +bool OdfOutput::writeContentHeader(Writer &outs) +{ + time_t tim; + time(&tim); + + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + return true; +} + + +/** + * Write the footer for the content.xml file + */ +bool OdfOutput::writeContentFooter(Writer &outs) +{ + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + outs.writeString("\n"); + return true; +} + + +/** + * Write the content.xml file. Writes the namespace headers, then + * calls writeTree(). + */ +bool OdfOutput::writeContent(ZipFile &zf, SPDocument *doc) +{ + //Content.xml stream + BufferOutputStream cbouts; + OutputStreamWriter couts(cbouts); + + if (!writeContentHeader(couts)) + { + return false; + } + + //Style.xml stream + BufferOutputStream sbouts; + OutputStreamWriter souts(sbouts); + + if (!writeStyleHeader(souts)) + { + return false; + } + + //# Descend into the tree, doing all of our conversions + //# to both files at the same time + char *oldlocale = g_strdup (setlocale (LC_NUMERIC, nullptr)); + setlocale (LC_NUMERIC, "C"); + if (!writeTree(couts, souts, doc, doc->getReprRoot())) + { + g_warning("Failed to convert SVG tree"); + setlocale (LC_NUMERIC, oldlocale); + g_free (oldlocale); + return false; + } + setlocale (LC_NUMERIC, oldlocale); + g_free (oldlocale); + + //# Finish content file + if (!writeContentFooter(couts)) + { + return false; + } + + ZipEntry *ze = zf.newEntry("content.xml", "ODF master content file"); + ze->setUncompressedData(cbouts.getBuffer()); + ze->finish(); + + //# Finish style file + if (!writeStyleFooter(souts)) + { + return false; + } + + ze = zf.newEntry("styles.xml", "ODF style file"); + ze->setUncompressedData(sbouts.getBuffer()); + ze->finish(); + + return true; +} + + +/** + * Resets class to its pristine condition, ready to use again + */ +void OdfOutput::reset() +{ + metadata.clear(); + styleTable.clear(); + styleLookupTable.clear(); + gradientTable.clear(); + gradientLookupTable.clear(); + imageTable.clear(); +} + + +/** + * Descends into the SVG tree, mapping things to ODF when appropriate + */ +void OdfOutput::save(Inkscape::Extension::Output */*mod*/, SPDocument *doc, gchar const *filename) +{ + reset(); + + docBaseUri = Inkscape::URI::from_dirname(doc->getDocumentBase()).str(); + + ZipFile zf; + preprocess(zf, doc, doc->getReprRoot()); + + if (!writeManifest(zf)) + { + g_warning("Failed to write manifest"); + return; + } + + if (!writeContent(zf, doc)) + { + g_warning("Failed to write content"); + return; + } + + if (!writeMeta(zf)) + { + g_warning("Failed to write metafile"); + return; + } + + if (!zf.writeFile(filename)) + { + return; + } +} + + +/** + * This is the definition of PovRay output. This function just + * calls the extension system with the memory allocated XML that + * describes the data. +*/ +void OdfOutput::init() +{ + // clang-format off + Inkscape::Extension::build_from_mem( + "\n" + "" N_("OpenDocument Drawing Output") "\n" + "org.inkscape.output.odf\n" + "\n" + ".odg\n" + "text/x-povray-script\n" + "" N_("OpenDocument drawing (*.odg)") "\n" + "" N_("OpenDocument drawing file") "\n" + "\n" + "", + new OdfOutput()); + // clang-format on +} + +/** + * Make sure that we are in the database + */ +bool OdfOutput::check (Inkscape::Extension::Extension */*module*/) +{ + /* We don't need a Key + if (NULL == Inkscape::Extension::db.get(SP_MODULE_KEY_OUTPUT_POV)) + return FALSE; + */ + + return TRUE; +} + +} //namespace Internal +} //namespace Extension +} //namespace Inkscape + + +//######################################################################## +//# E N D O F F I L E +//######################################################################## + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : -- cgit v1.2.3