#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (C) 2009 John Beard john.j.beard@gmail.com # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # """ This extension renders a DataMatrix 2D barcode, as specified in BS ISO/IEC 16022:2006. Only ECC200 codes are considered, as these are the only ones recommended for an "open" system. The size of the DataMatrix is variable between 10x10 to 144x144 The absolute size of the DataMatrix modules (the little squares) is also variable. If more data is given than can be contained in one DataMatrix, more than one DataMatrices will be produced. Text is encoded as ASCII (the standard provides for other options, but these are not implemented). Consecutive digits are encoded in a compressed form, halving the space required to store them. The basis processing flow is; * Convert input string to codewords (modified ASCII and compressed digits) * Split codewords into blocks of the right size for Reed-Solomon coding * Interleave the blocks if required * Apply Reed-Solomon coding * De-interleave the blocks if required * Place the codewords into the matrix bit by bit * Render the modules in the matrix as squares """ import inkex from inkex import Rectangle from inkex.localization import inkex_gettext as _ INVALID_BIT = 2 # return parameters for the selected datamatrix size # drow number of rows in each data region # dcol number of cols in each data region # reg_row number of rows of data regions # reg_col number of cols of data regions # nd number of data codewords per reed-solomon block # nc number of ECC codewords per reed-solomon block # inter number of interleaved Reed-Solomon blocks SYMBOLS = { # 'id': (nrow, ncol, drow, dcol, reg_row, reg_col, nd, nc, inter) "sq10": (10, 10, 8, 8, 1, 1, 3, 5, 1), "sq12": (12, 12, 10, 10, 1, 1, 5, 7, 1), "sq14": (14, 14, 12, 12, 1, 1, 8, 10, 1), "sq16": (16, 16, 14, 14, 1, 1, 12, 12, 1), "sq18": (18, 18, 16, 16, 1, 1, 18, 14, 1), "sq20": (20, 20, 18, 18, 1, 1, 22, 18, 1), "sq22": (22, 22, 20, 20, 1, 1, 30, 20, 1), "sq24": (24, 24, 22, 22, 1, 1, 36, 24, 1), "sq26": (26, 26, 24, 24, 1, 1, 44, 28, 1), "sq32": (32, 32, 14, 14, 2, 2, 62, 36, 1), "sq36": (36, 36, 16, 16, 2, 2, 86, 42, 1), "sq40": (40, 40, 18, 18, 2, 2, 114, 48, 1), "sq44": (44, 44, 20, 20, 2, 2, 144, 56, 1), "sq48": (48, 48, 22, 22, 2, 2, 174, 68, 1), "sq52": (52, 52, 24, 24, 2, 2, 102, 42, 2), "sq64": (64, 64, 14, 14, 4, 4, 140, 56, 2), "sq72": (72, 72, 16, 16, 4, 4, 92, 36, 4), "sq80": (80, 80, 18, 18, 4, 4, 114, 48, 4), "sq88": (88, 88, 20, 20, 4, 4, 144, 56, 4), "sq96": (96, 96, 22, 22, 4, 4, 174, 68, 4), "sq104": (104, 104, 24, 24, 4, 4, 136, 56, 6), "sq120": (120, 120, 18, 18, 6, 6, 175, 68, 6), "sq132": (132, 132, 20, 20, 6, 6, 163, 62, 8), # there are two separate sections of the data matrix with different interleaving # and reed-solomon parameters. this will be handled separately. "sq144": (144, 144, 22, 22, 6, 6, 0, 0, 0), "rect8x18": (8, 18, 6, 16, 1, 1, 5, 7, 1), "rect8x32": (8, 32, 6, 14, 1, 2, 10, 11, 1), "rect12x26": (12, 26, 10, 24, 1, 1, 16, 14, 1), "rect12x36": (12, 36, 10, 16, 1, 2, 22, 18, 1), "rect16x36": (16, 36, 14, 16, 1, 2, 32, 24, 1), "rect16x48": (16, 48, 14, 22, 1, 2, 49, 28, 1), } # CODEWORD STREAM GENERATION ========================================= # take the text input and return the codewords, # including the Reed-Solomon error-correcting codes. # ===================================================================== def get_codewords(text, nd, nc, inter, size144): # convert the data to the codewords data = list(encode_to_ascii(text)) if not size144: # render a "normal" datamatrix data_blocks = partition_data( data, nd * inter ) # partition into data blocks of length nd*inter -> inter Reed-Solomon block data_blocks = interleave( data_blocks, inter ) # interleave consecutive inter blocks if required data_blocks = reed_solomon( data_blocks, nd, nc ) # generate and append the Reed-Solomon codewords data_blocks = combine_interleaved( data_blocks, inter, nd, nc, False ) # concatenate Reed-Solomon blocks bound for the same datamatrix else: # we have a 144x144 datamatrix data_blocks = partition_data( data, 1558 ) # partition the data into datamtrix-sized chunks (1558 =156*8 + 155*2 ) for i in range(len(data_blocks)): # for each datamtrix inter = 8 nd = 156 nc = 62 block1 = data_blocks[i][0 : 156 * 8] block1 = interleave([block1], inter) # interleave into 8 blocks block1 = reed_solomon( block1, nd, nc ) # generate and append the Reed-Solomon codewords inter = 2 nd = 155 nc = 62 block2 = data_blocks[i][156 * 8 :] block2 = interleave([block2], inter) # interleave into 2 blocks block2 = reed_solomon( block2, nd, nc ) # generate and append the Reed-Solomon codewords blocks = block1 blocks.extend(block2) blocks = combine_interleaved(blocks, 10, nd, nc, True) data_blocks[i] = blocks[0] return data_blocks # Takes a codeword stream and splits up into "inter" blocks. # eg interleave( [1,2,3,4,5,6], 2 ) -> [1,3,5], [2,4,6] def interleave(blocks, inter): if inter == 1: # if we don't have to interleave, just return the blocks return blocks else: result = [] for block in blocks: # for each codeword block in the stream block_length = int(len(block) / inter) # length of each interleaved block inter_blocks = [ [0] * block_length for i in range(inter) ] # the interleaved blocks for i in range(block_length): # for each element in the interleaved blocks for j in range(inter): # for each interleaved block inter_blocks[j][i] = block[i * inter + j] result.extend(inter_blocks) # add the interleaved blocks to the output return result # Combine interleaved blocks into the groups for the same datamatrix # # e.g combine_interleaved( [[d1, d3, d5, e1, e3, e5], [d2, d4, d6, e2, e4, e6]], 2, 3, 3 ) # --> [[d1, d2, d3, d4, d5, d6, e1, e2, e3, e4, e5, e6]] def combine_interleaved(blocks, inter, nd, nc, size144): if inter == 1: # the blocks aren't interleaved return blocks else: result = [] for i in range( len(blocks) // inter ): # for each group of "inter" blocks -> one full datamatrix data_codewords = [] # interleaved data blocks if size144: nd_range = 1558 # 1558 = 156*8 + 155*2 nc_range = 620 # 620 = 62*8 + 62*2 else: nd_range = nd * inter nc_range = nc * inter for j in range(nd_range): # for each codeword in the final list data_codewords.append(blocks[i * inter + j % inter][j // inter]) for j in range(nc_range): # for each block, add the ecc codewords data_codewords.append(blocks[i * inter + j % inter][nd + j // inter]) result.append(data_codewords) return result def encode_to_ascii(text): """Encode this text into chunks, ascii or digits""" i = 0 while i < len(text): # check for double digits, if the next char is also a digit if text[i].isdigit() and (i < len(text) - 1) and text[i + 1].isdigit(): yield int(text[i] + text[i + 1]) + 130 i += 2 # move on 2 characters else: # encode as a normal ascii, yield ord(text[i]) + 1 # codeword is ASCII value + 1 (ISO 16022:2006 5.2.3) i += 1 # next character # partition data into blocks of the appropriate size to suit the # Reed-Solomon block being used. # e.g. partition_data([1,2,3,4,5], 3) -> [[1,2,3],[4,5,PAD]] def partition_data(data, rs_data): PAD_VAL = 129 # PAD codeword (ISO 16022:2006 5.2.3) data_blocks = [] i = 0 while i < len(data): if len(data) >= i + rs_data: # we have a whole block in our data data_blocks.append(data[i : i + rs_data]) i = i + rs_data else: # pad out with the pad codeword data_block = data[i : len(data)] # add any remaining data pad_pos = len(data) padded = False while ( len(data_block) < rs_data ): # and then pad with randomised pad codewords if not padded: data_block.append(PAD_VAL) # add a normal pad codeword padded = True else: data_block.append(randomise_pad_253(PAD_VAL, pad_pos)) pad_pos += 1 data_blocks.append(data_block) break return data_blocks # Pad character randomisation, to prevent regular patterns appearing # in the data matrix def randomise_pad_253(pad_value, pad_position): pseudo_random_number = ((149 * pad_position) % 253) + 1 randomised = pad_value + pseudo_random_number if randomised <= 254: return randomised else: return randomised - 254 # REED-SOLOMON ENCODING ROUTINES ===================================== # "prod(x,y,log,alog,gf)" returns the product "x" times "y" def prod(x, y, log, alog, gf): if x == 0 or y == 0: return 0 else: result = alog[(log[x] + log[y]) % (gf - 1)] return result # generate the log & antilog lists: def gen_log_alog(gf, pp): log = [0] * gf alog = [0] * gf log[0] = 1 - gf alog[0] = 1 for i in range(1, gf): alog[i] = alog[i - 1] * 2 if alog[i] >= gf: alog[i] = alog[i] ^ pp log[alog[i]] = i return log, alog # generate the generator polynomial coefficients: def gen_poly_coeffs(nc, log, alog, gf): c = [0] * (nc + 1) c[0] = 1 for i in range(1, nc + 1): c[i] = c[i - 1] j = i - 1 while j >= 1: c[j] = c[j - 1] ^ prod(c[j], alog[i], log, alog, gf) j -= 1 c[0] = prod(c[0], alog[i], log, alog, gf) return c # "ReedSolomon(wd,nd,nc)" takes "nd" data codeword values in wd[] # and adds on "nc" check codewords, all within GF(gf) where "gf" is a # power of 2 and "pp" is the value of its prime modulus polynomial */ def reed_solomon(data, nd, nc): # parameters of the polynomial arithmetic gf = 256 # operating on 8-bit codewords -> Galois field = 2^8 = 256 pp = 301 # prime modulus polynomial for ECC-200 is 0b100101101 = 301 (ISO 16022:2006 5.7.1) log, alog = gen_log_alog(gf, pp) c = gen_poly_coeffs(nc, log, alog, gf) for block in data: # for each block of data codewords block.extend([0] * (nc + 1)) # extend to make space for the error codewords # generate "nc" checkwords in the list block for i in range(0, nd): k = block[nd] ^ block[i] for j in range(0, nc): block[nd + j] = block[nd + j + 1] ^ prod( k, c[nc - j - 1], log, alog, gf ) block.pop() return data # MODULE PLACEMENT ROUTINES=========================================== # These routines take a steam of codewords, and place them into the # DataMatrix in accordance with Annex F of BS ISO/IEC 16022:2006 def bit(byte, bit_ch): """bit() returns the bit'th bit of the byte""" # the MSB is bit 1, LSB is bit 8 return (byte >> (8 - bit_ch)) % 2 def module(array, nrow, ncol, row, col, bit_ch): """place a given bit with appropriate wrapping within array""" if row < 0: row = row + nrow col = col + 4 - ((nrow + 4) % 8) if col < 0: col = col + ncol row = row + 4 - ((ncol + 4) % 8) array[row][col] = bit_ch def place_square(case, array, nrow, ncol, row, col, char): """Populate corner cases (0-3) and utah case (-1)""" for i in range(8): x, y = [ [ (row - 1, 0), (row - 1, 1), (row - 1, 2), (0, col - 2), (0, col - 1), (1, col - 1), (2, col - 1), (3, col - 1), ], [ (row - 3, 0), (row - 2, 0), (row - 1, 0), (0, col - 4), (0, col - 3), (0, col - 2), (0, col - 1), (1, col - 1), ], [ (row - 3, 0), (row - 2, 0), (row - 1, 0), (0, col - 2), (0, col - 1), (1, col - 1), (2, col - 1), (3, col - 1), ], [ (row - 1, 0), (row - 1, col - 1), (0, col - 3), (0, col - 2), (0, col - 1), (1, col - 3), (1, col - 2), (1, col - 1), ], # "utah" places the 8 bits of a utah-shaped symbol character in ECC200 [ (row - 2, col - 2), (row - 2, col - 1), (row - 1, col - 2), (row - 1, col - 1), (row - 1, col), (row, col - 2), (row, col - 1), (row, col), ], ][case][i] module(array, nrow, ncol, x, y, bit(char, i + 1)) return 1 def place_bits(data, nrow, ncol): """fill an nrow x ncol array with the bits from the codewords in data.""" # initialise and fill with -1's (invalid value) array = [[INVALID_BIT] * ncol for i in range(nrow)] # Starting in the correct location for character #1, bit 8,... char = 0 row = 4 col = 0 while True: # first check for one of the special corner cases, then... if (row == nrow) and (col == 0): char += place_square(0, array, nrow, ncol, nrow, ncol, data[char]) elif (row == nrow - 2) and (col == 0) and (ncol % 4): char += place_square(1, array, nrow, ncol, nrow, ncol, data[char]) elif (row == nrow - 2) and (col == 0) and (ncol % 8 == 4): char += place_square(2, array, nrow, ncol, nrow, ncol, data[char]) elif (row == nrow + 4) and (col == 2) and ((ncol % 8) == 0): char += place_square(3, array, nrow, ncol, nrow, ncol, data[char]) # sweep upward diagonally, inserting successive characters,... while (row >= 0) and (col < ncol): if (row < nrow) and (col >= 0) and (array[row][col] == INVALID_BIT): char += place_square(-1, array, nrow, ncol, row, col, data[char]) row -= 2 col += 2 row += 1 col += 3 # & then sweep downward diagonally, inserting successive characters,... while (row < nrow) and (col >= 0): if (row >= 0) and (col < ncol) and (array[row][col] == INVALID_BIT): char += place_square(-1, array, nrow, ncol, row, col, data[char]) row += 2 col -= 2 row += 3 col += 1 # ... until the entire array is scanned if not ((row < nrow) or (col < ncol)): break # Lastly, if the lower righthand corner is untouched, fill in fixed pattern */ if array[nrow - 1][ncol - 1] == INVALID_BIT: array[nrow - 1][ncol - 2] = 0 array[nrow - 1][ncol - 1] = 1 array[nrow - 2][ncol - 1] = 0 array[nrow - 2][ncol - 2] = 1 return array # return the array of 1's and 0's def add_finder_pattern(array, data_nrow, data_ncol, reg_row, reg_col): # get the total size of the datamatrix nrow = (data_nrow + 2) * reg_row ncol = (data_ncol + 2) * reg_col datamatrix = [[0] * ncol for i in range(nrow)] # initialise and fill with 0's for i in range(reg_col): # for each column of data regions for j in range(nrow): datamatrix[j][i * (data_ncol + 2)] = 1 # vertical black bar on left datamatrix[j][i * (data_ncol + 2) + data_ncol + 1] = ( j % 2 ) # alternating blocks for i in range(reg_row): # for each row of data regions for j in range(ncol): datamatrix[i * (data_nrow + 2) + data_nrow + 1][ j ] = 1 # horizontal black bar at bottom datamatrix[i * (data_nrow + 2)][j] = (j + 1) % 2 # alternating blocks for i in range(data_nrow * reg_row): for j in range(data_ncol * reg_col): # offset by 1, plus two for every addition block dest_col = j + 1 + 2 * (j // data_ncol) dest_row = i + 1 + 2 * (i // data_nrow) datamatrix[dest_row][dest_col] = array[i][ j ] # transfer from the plain bit array return datamatrix class DataMatrix(inkex.GenerateExtension): container_label = "DataMatrix" def add_arguments(self, pars): pars.add_argument("--text", default="Inkscape") pars.add_argument("--symbol", type=self.arg_symbols, required=True) pars.add_argument("--size", type=int, default=4) @staticmethod def arg_symbols(value): """Turn a symbol key into matrix metrics""" try: return SYMBOLS[value] except KeyError: raise inkex.AbortExtension(_("Invalid symbol size.")) def generate(self): size = str(self.options.size) style = inkex.Style({"stroke": "none", "stroke-width": "1", "fill": "#000000"}) attribs = {"style": str(style), "height": size, "width": size} if not self.options.text: raise inkex.AbortExtension(_("Please enter an input string.")) # create a 2d list corresponding to the 1's and 0s of the DataMatrix encoded = self.encode(self.options.text, *self.options.symbol) for x, y in self.render_data_matrix(encoded): attribs.update({"x": str(x), "y": str(y)}) yield Rectangle(**attribs) def encode( self, text, nrow, ncol, data_nrow, data_ncol, reg_row, reg_col, nd, nc, inter ): """ Take an input string and convert it to a sequence (or sequences) of codewords as specified in ISO/IEC 16022:2006 (section 5.2.3) """ # generate the codewords including padding and ECC codewords = get_codewords(text, nd, nc, inter, nrow == 144) # break up into separate arrays if more than one DataMatrix is needed module_arrays = [] for codeword_stream in codewords: # for each datamatrix # place the codewords' bits across the array as modules bit_array = place_bits( codeword_stream, data_nrow * reg_row, data_ncol * reg_col ) # add finder patterns around the modules module_arrays.append( add_finder_pattern(bit_array, data_nrow, data_ncol, reg_row, reg_col) ) return module_arrays def render_data_matrix(self, module_arrays): """turn a 2D array of 1's and 0's into a set of black squares""" ncol = self.options.symbol[1] size = self.options.size spacing = ncol * size * 1.5 for i, line in enumerate(module_arrays): height = len(line) width = len(line[0]) for y in range(height): # loop over all the modules in the datamatrix for x in range(width): if line[y][x] == 1: # A binary 1 is a filled square yield (x * size + i * spacing, y * size) elif line[y][x] == INVALID_BIT: # we have an invalid bit value inkex.errormsg(_("Invalid bit value, {}!").format(line[y][x])) if __name__ == "__main__": DataMatrix().run()