# coding=utf-8 """ Test Inkex path parsing functionality. """ import re from inkex.paths import ( InvalidPath, Path, PathCommand, CubicSuperPath, line, move, curve, smooth, quadratic, tepidQuadratic, arc, vert, horz, zoneClose, Line, Move, Horz, Vert, Curve, Smooth, Quadratic, TepidQuadratic, Arc, ZoneClose, ) from inkex.transforms import Transform, Vector2d from inkex.tester import TestCase # pylint: disable=too-many-public-methods class SegmentTest(TestCase): """ Test specific segment functionality. """ def get_random_cmd(self, Cmd): import random return Cmd(*[random.randint(0, 10) for i in range(Cmd.nargs)]) def test_equals(self): """Segments should be equalitive""" self.assertEqual(Move(10, 10), Move(10, 10)) self.assertEqual(Line(10, 10), Line(10, 10)) self.assertEqual(line(10, 10), line(10, 10)) self.assertNotEqual(line(10, 10), Line(10, 10)) self.assertEqual(Horz(10), Line(10, 0)) self.assertEqual(Vert(10), Line(0, 10)) self.assertNotEqual(Vert(10), Horz(10)) def test_to_curves(self): """Segments can become curves""" self.assertRaises(ValueError, Move(0, 0).to_curve, None) self.assertEqual( Line(10, 10).to_curve(Vector2d(10, 5)), (10, 5, 10, 10, 10, 10) ) self.assertEqual(Horz(10).to_curve(Vector2d(10, 5)), (10, 5, 10, 5, 10, 5)) self.assertEqual(Vert(10).to_curve(Vector2d(5, 10)), (5, 10, 5, 10, 5, 10)) self.assertEqual( Curve(5, 5, 10, 10, 4, 4).to_curve(Vector2d(0, 0)), (5, 5, 10, 10, 4, 4) ) self.assertEqual( Smooth(10, 10, 4, 4).to_curve(Vector2d(4, 4), Vector2d(10, 10)), (-2, -2, 10, 10, 4, 4), ) self.assertAlmostTuple( Quadratic(10, 10, 4, 4).to_curve(Vector2d(0, 0)).args, (6.666666666666666, 6.666666666666666, 8, 8, 4, 4), ) self.assertAlmostTuple( TepidQuadratic(4, 4).to_curve(Vector2d(14, 19), Vector2d(11, 12)).args, # (20.666666666666664, 30, 17.333333333333332, 25, 4, 4), ( 15.999999999999998, 23.666666666666664, 12.666666666666666, 18.666666666666664, 4, 4, ), ) curves = list(Arc(50, 50, 0, 0, 1, 85, 85).to_curves(Vector2d(0, 0))) self.assertEqual(len(curves), 3) self.assertAlmostTuple( curves[0].args, ( 19.77590700610636, -5.4865851247611115, 38.18634924829132, -10.4196482558544, 55.44095225512604, -5.796291314453416, ), ) self.assertAlmostTuple( curves[1].args, ( 72.69555526196076, -1.172934373052433, 86.17293437305243, 12.30444473803924, 90.79629131445341, 29.559047744873958, ), ) self.assertAlmostTuple( curves[2].args, ( 95.41964825585441, 46.81365075170867, 90.4865851247611, 65.22409299389365, 77.85533905932738, 77.85533905932738, ), ) def apply_to_curve(obj): obj.to_curve(Vector2d()) def apply_to_curves(obj): obj.to_curve(Vector2d()) self.assertRaises(ValueError, apply_to_curve, ZoneClose()) self.assertRaises(ValueError, apply_to_curves, zoneClose()) self.assertRaises(ValueError, apply_to_curve, Move(0, 0)) self.assertRaises(ValueError, apply_to_curves, move(0, 0)) def test_transformation(self): t = Transform(matrix=((1, 2, 3), (4, 5, 6))) first = Vector2d() prev = Vector2d(31, 97) prev_prev = Vector2d(5, 7) for Cmd in (Line, Move, Curve, Smooth, Quadratic, TepidQuadratic, Arc): random_seg = self.get_random_cmd(Cmd) self.assertTrue( random_seg.transform(t) is not random_seg ) # transform returns copy self.assertEqual( random_seg.transform(t).name, Cmd.name ) # transform does not change Command type T = Transform() T.add_translate(10, 20) A = [ T.apply_to_point(p) for p in random_seg.control_points(first, prev, prev_prev) ] first2, prev2, prev_prev2 = ( T.apply_to_point(p) for p in (first, prev, prev_prev) ) B = list( random_seg.translate(Vector2d(10, 20)).control_points( first2, prev2, prev_prev2 ) ) self.assertAlmostTuple(A, B) T = Transform() T.add_scale(10, 20) A = [ T.apply_to_point(p) for p in random_seg.control_points(first, prev, prev_prev) ] first2, prev2, prev_prev2 = ( T.apply_to_point(p) for p in (first, prev, prev_prev) ) B = list( random_seg.scale((10, 20)).control_points(first2, prev2, prev_prev2) ) self.assertAlmostTuple(A, B) T = Transform() T.add_rotate(35, 15, 28) A = [ T.apply_to_point(p) for p in random_seg.control_points(first, prev, prev_prev) ] first2, prev2, prev_prev2 = ( T.apply_to_point(p) for p in (first, prev, prev_prev) ) B = list( random_seg.rotate(35, Vector2d(15, 28)).control_points( first2, prev2, prev_prev2 ) ) self.assertAlmostTuple(A, B) def test_absolute_relative(self): absolutes = ( Line, Move, Curve, Smooth, Quadratic, TepidQuadratic, Arc, Vert, Horz, ZoneClose, ) relatives = ( line, move, curve, smooth, quadratic, tepidQuadratic, arc, vert, horz, zoneClose, ) zero = Vector2d() for R, A in zip(relatives, absolutes): rel = self.get_random_cmd(R) ab = self.get_random_cmd(A) self.assertTrue(rel.is_relative) self.assertTrue(ab.is_absolute) self.assertFalse(rel.is_absolute) self.assertFalse(ab.is_relative) self.assertEqual(type(rel.to_absolute(zero)), A) self.assertEqual(type(ab.to_relative(zero)), R) self.assertTrue(rel.to_relative(zero) is not rel) self.assertTrue(ab.to_absolute(zero) is not ab) def test_to_line(self): self.assertEqual(Vert(3).to_line(Vector2d(5, 11)), Line(5, 3)) self.assertEqual(Horz(3).to_line(Vector2d(5, 11)), Line(3, 11)) self.assertEqual(vert(3).to_line(Vector2d(5, 11)), Line(5, 14)) self.assertEqual(horz(3).to_line(Vector2d(5, 11)), Line(8, 11)) def test_args(self): commands = ( Line, Move, Curve, Smooth, Quadratic, TepidQuadratic, Arc, Vert, Horz, ZoneClose, line, move, curve, smooth, quadratic, tepidQuadratic, arc, vert, horz, zoneClose, ) for Cmd in commands: cmd = self.get_random_cmd(Cmd) self.assertEqual(len(cmd.args), cmd.nargs) self.assertEqual(Cmd(*cmd.args), cmd) class PathTest(TestCase): """Test path API and calculations""" def _assertPath(self, path, want_string): """Test a normalized path string against a good value""" return self.assertEqual(re.sub("\\s+", " ", str(path)), want_string) def test_new_empty(self): """Create a path from a path string""" self.assertEqual(str(Path()), "") def test_invalid(self): """Load an invalid path""" self._assertPath(Path("& 10 10 M 20 20"), "M 20 20") self.assertRaises( TypeError, Line, [ 40, ], ) def test_copy(self): """Make a copy of a path""" self.assertEqual(str(Path("M 10 10").copy()), "M 10 10") def test_repr(self): """Path representation""" self._assertPath(repr(Path("M 10 10 10 10")), "[Move(10, 10), Line(10, 10)]") def test_list(self): """Path of previous commands""" path = Path(Path("M 10 10 20 20 30 30 Z")[1:-1]) self._assertPath(path, "L 20 20 L 30 30") def test_passthrough(self): """Create a path and test the re-rendering of the commands""" for path in ( "M 50,50 L 10,10 m 10 10 l 2.1,2", "m 150 150 c 10 10 6 6 20 10 L 10 10", ): self._assertPath(Path(path), path.replace(",", " ")) def test_chained_conversion(self): """Paths always extrapolate chained commands""" for path, ret in ( ("M 100 100 20 20", "M 100 100 L 20 20"), ("M 100 100 Z 20 20", "M 100 100 Z M 20 20"), ("M 100 100 L 20 20 40 40 30 10 Z", "M 100 100 L 20 20 L 40 40 L 30 10 Z"), ("m 50 50 l 20 20 40 40", "m 50 50 l 20 20 l 40 40"), ("m 50 50 20 20", "m 50 50 l 20 20"), ((("m", (50, 50)), ("l", (20, 20))), "m 50 50 l 20 20"), ): self._assertPath(Path(path), ret) def test_create_from_points(self): """Paths can be made of simple list of tuples""" arg = ((10, 10), (4, 5), (16, -9), (20, 20)) self.assertEqual(str(Path(arg)), "L 10 10 L 4 5 L 16 -9 L 20 20") def test_control_points(self): """Test how x,y points are extracted""" for path, ret in ( ("M 100 100", ((100, 100),)), ("L 100 100", ((100, 100),)), ("H 133", ((133, 0),)), ("V 144", ((0, 144),)), ( "Q 40 20 12 99 T 100 100", ( (40, 20), (12, 99), (-16, 178), (100, 100), ), ), ("C 12 12 15 15 20 20", ((12, 12), (15, 15), (20, 20))), ( "S 50 90 30 10", ( (0, 0), (50, 90), (30, 10), ), ), ( "Q 40 20 12 99", ( (40, 20), (12, 99), ), ), ("A 1,2,3,0,0,10,20", ((10, 20),)), ("Z", ((0, 0),)), ): points = list(Path(path).control_points) self.assertEqual(len(points), len(ret), msg=path) self.assertTrue(all(p.is_close(r) for p, r in zip(points, ret)), msg=path) def test_bounding_box_lines(self): """ Test the bounding box calculations A diagonal line from 20,20 to 90,90 then to +10,+10 "\" """ self.assertEqual( (20, 100), (20, 100), Path("M 20,20 L 90,90 l 10,10 Z").bounding_box() ) self.assertEqual( (10, 90), (10, 90), Path("M 20,20 L 90,90 L 10,10 Z").bounding_box() ) def test_bounding_box_curves(self): """ Test the bounding box calculations of a curve """ path = Path( "M 85,14 C 104.63953,33.639531 104.71989,65.441157" " 85,85 65.441157,104.71989 33.558843,104.71989 14,85" " -5.7198883,65.441157 -5.6395306,33.639531 14,14" " 33.639531,-5.6395306 65.360469,-5.6395306 85,14 Z" ) bb_tuple = path.bounding_box() expected = (-0.760, -0.760 + 100.520), (-0.730, -0.730 + 100.520) precision = 3 self.assertDeepAlmostEqual(tuple(bb_tuple.x), expected[0], places=precision) self.assertDeepAlmostEqual(tuple(bb_tuple.y), expected[1], places=precision) def test_bounding_box_arcs(self): """ Test the bounding box calculations with arcs (currently is rough only) Bounding box around a circle with a radius of 50 it should be from 0,0 -> 100, 100 """ path = Path( "M 85.355333,14.644651 " "A 50,50 0 0 1 85.355333,85.355341" " 50,50 0 0 1 14.644657,85.355341" " 50,50 0 0 1 14.644676,14.644651" " 50,50 0 0 1 85.355333,14.644651 Z" ) bb_tuple = path.bounding_box() expected = (0, 100), (0, 100) precision = 4 self.assertDeepAlmostEqual(tuple(bb_tuple.x), expected[0], places=precision) self.assertDeepAlmostEqual(tuple(bb_tuple.y), expected[1], places=precision) # self.assertEqual(('ERROR'), Path('M 10 10 S 100 100 300 0').bounding_box()) # self.assertEqual(('ERRPR'), Path('M 10 10 Q 100 100 300 0').bounding_box()) def test_adding_to_path(self): """Paths can be translated using addition""" ret = Path("M 20,20 L 90,90 l 10,10 Z").translate(50, 50) self._assertPath(ret, "M 70 70 L 140 140 l 10 10 Z") def test_extending(self): """Paths can be extended using addition""" ret = Path("M 20 20") + Path("L 40 40 9 10") self.assertEqual(type(ret), Path) self._assertPath(ret, "M 20 20 L 40 40 L 9 10") ret = Path("M 20 20") + "C 40 40 9 10 10 10" self.assertEqual(type(ret), Path) self._assertPath(ret, "M 20 20 C 40 40 9 10 10 10") def test_subtracting_from_path(self): """Paths can be translated using addition""" ret = Path("M 20,20 L 90,90 l 10,10 Z").translate(-10, -10) self._assertPath(ret, "M 10 10 L 80 80 l 10 10 Z") def test_scale(self): """Paths can be scaled using the times operator""" ret = Path("M 10,10 L 30,30 C 20 20 10 10 10 10 l 10 10").scale(2.5, 3) self._assertPath(ret, "M 25 30 L 75 90 C 50 60 25 30 25 30 l 25 30") ret = Path( "M 29.867708,101.68274 A 14.867708,14.867708 0 0 1 15,116.55045 14.867708," "14.867708 0 0 1 0.13229179,101.68274 14.867708,14.867708 0 0 1 15,86.815031 " "14.867708,14.867708 0 0 1 29.867708,101.68274 Z" ) ret = ret.scale(1.2, 0.8) self._assertPath( ret, "M 35.8412 81.3462 " "A 17.8412 11.8942 0 0 1 18 93.2404 " "A 17.8412 11.8942 0 0 1 0.15875 81.3462 " "A 17.8412 11.8942 0 0 1 18 69.452 " "A 17.8412 11.8942 0 0 1 35.8412 81.3462 Z", ) def test_scale_relative_after_close(self): """Zone close moves current position correctly after transform""" # expected positions: # - before scale: # M to (10,10), l by (+10,+10), Z back to (10,10), l by (+10,+10) # <=> M to (10,10), L to (20,20), Z back to (10,10), L to (20,20) # - after scale: # M to (20,20), L to (40,40), Z back to (20,20), L to (40,40) # <=> M to (20,20), l by (+20,+20), Z back to (20,20), l by (+20,+20) ret = Path("M 10,10 l 10,10 Z l 10,10").scale(2, 2) self._assertPath(ret, "M 20 20 l 20 20 Z l 20 20") def test_scale_multiple_zones(self): """Zone close returns current position to start of zone (not start of path)""" ret = Path("M 100 100 Z M 200 200 Z h 0").scale(1, 1) self._assertPath(ret.to_absolute(), "M 100 100 Z M 200 200 Z L 200 200") def test_absolute(self): """Paths can be converted to absolute""" ret = Path("M 100 100 l 10 10 10 10 10 10") self._assertPath(ret.to_absolute(), "M 100 100 L 110 110 L 120 120 L 130 130") ret = Path("M 100 100 h 10 10 10 v 10 10 10") self._assertPath( ret.to_absolute(), "M 100 100 H 110 H 120 H 130 V 110 V 120 V 130" ) ret = Path("M 150,150 a 76,55 0 1 1 283,128") self._assertPath(ret.to_absolute(), "M 150 150 A 76 55 0 1 1 433 278") ret = Path("m 5 5 h 5 v 5 h -5 z M 15 15 l 5 5 z m 10 10 h 5 v 5 h -5 z") self._assertPath( ret.to_absolute(), "M 5 5 H 10 V 10 H 5 Z M 15 15 L 20 20 Z M 25 25 H 30 V 30 H 25 Z", ) ret = Path("m 1 2 h 2 v 1 z m 4 0 h 2 v 1 z m 0 2 h 2 v 1 z") self._assertPath( ret.to_absolute(), "M 1 2 H 3 V 3 Z M 5 2 H 7 V 3 Z M 5 4 H 7 V 5 Z" ) def test_relative(self): """Paths can be converted to relative""" ret = Path("M 100 100 L 110 120 140 140 300 300") self._assertPath(ret.to_relative(), "m 100 100 l 10 20 l 30 20 l 160 160") ret = Path("M 150,150 A 76,55 0 1 1 433,278") self._assertPath(ret.to_relative(), "m 150 150 a 76 55 0 1 1 283 128") ret = Path("M 1 2 H 3 V 3 Z M 5 2 H 7 V 3 Z M 5 4 H 7 V 5 Z") self._assertPath( ret.to_relative(), "m 1 2 h 2 v 1 z m 4 0 h 2 v 1 z m 0 2 h 2 v 1 z" ) def test_rotate(self): """Paths can be rotated""" ret = Path("M 0.24999949,0.24999949 H 12.979167 V 12.979167 H 0.24999949 Z") ret = ret.rotate(35, (0, 0)) self._assertPath( ret, "M 0.0613938 0.348181 L 10.4885 7.64933 L 3.18737 18.0765 L -7.23976 10.7753 Z", ) ret = Path("M 0.24999949,0.24999949 H 12.979167 V 12.979167 H 0.24999949 Z") ret = ret.rotate(-35, (0, 0)) self._assertPath( ret, "M 0.348181 0.0613938 L 10.7753 -7.23976 L 18.0765 3.18737 L 7.64933 10.4885 Z", ) ret = Path("M 0.24999949,0.24999949 H 12.979167 V 12.979167 H 0.24999949 Z") ret = ret.rotate(90, (10, -10)) self._assertPath( ret, "M -0.249999 -19.75 L -0.249999 -7.02083 L -12.9792 -7.02083 L -12.9792 -19.75 Z", ) ret = Path("M 0.24999949,0.24999949 H 12.979167 V 12.979167 H 0.24999949 Z") ret = ret.rotate(90) self._assertPath( ret, "M 12.9792 0.249999 L 12.9792 12.9792 L 0.249999 12.9792 L 0.249999 0.249999 Z", ) def test_to_arrays(self): """Return the full path as a bunch of arrays""" ret = Path("M 100 100 L 110 120 H 20 C 120 0 6 10 10 2 Z").to_arrays() self.assertEqual(len(ret), 5) self.assertEqual(ret[0][0], "M") self.assertEqual(ret[1][0], "L") self.assertEqual(ret[2][0], "L") self.assertEqual(ret[3][0], "C") def test_transform(self): """Transform by a whole matrix""" ret = Path("M 100 100 L 110 120 L 140 140 L 300 300") ret = ret.transform(Transform(translate=(10, 10))) self.assertEqual(str(ret), "M 110 110 L 120 130 L 150 150 L 310 310") ret = ret.transform(Transform(translate=(-10, -10))) self.assertEqual(str(ret), "M 100 100 L 110 120 L 140 140 L 300 300") ret = Path("M 5 5 H 10 V 15") ret = ret.transform(Transform(rotate=-10)) self.assertEqual( "M 5.79228 4.0558 " "L 10.7163 3.18756 " "L 12.4528 13.0356", str(ret) ) ret = Path("M 10 10 A 50,50 0 0 1 85.355333,85.355341 L 100 0") ret = ret.transform(Transform(scale=10)) self.assertEqual(str(ret), "M 100 100 A 500 500 0 0 1 853.553 853.553 L 1000 0") self.assertRaises(ValueError, Horz([10]).transform, Transform()) def test_inline_transformations(self): path = Path() self.assertTrue(path is not path.translate(10, 20)) self.assertTrue(path is not path.transform(Transform(scale=10))) self.assertTrue(path is not path.rotate(10)) self.assertTrue(path is not path.scale(10, 20)) self.assertTrue(path is path.translate(10, 20, inplace=True)) self.assertTrue(path is path.transform(Transform(scale=10), inplace=True)) self.assertTrue(path is path.rotate(10, inplace=True)) self.assertTrue(path is path.scale(10, 20, inplace=True)) def test_transformation_preserve_type(self): import re paths = [ "M 10 10 A 100 100 0 1 0 100 100 C 10 15 20 20 5 5 Z", "m 10 10 a 100 100 0 1 0 100 100 c 10 15 20 20 5 5 z", "m 10 10 l 100 200 L 20 30 C 10 20 30 40 11 12", "M 10 10 Q 12 13 14 15 T 11 32 T 32 11", "m 10 10 q 12 13 14 15 t 11 32 t 32 11", ] t = Transform(matrix=((1, 2, 3), (4, 5, 6))) for path_str in paths: path = Path(path_str) new_path = path.transform(t) cmds = "".join([cmd.letter for cmd in new_path]) expected = re.sub(r"\d|\s|,", "", path_str) self.assertEqual(expected, cmds) self.assertAlmostTuple( [t.apply_to_point(p) for p in path.control_points], list(new_path.control_points), ) def test_arc_transformation(self): cases = [ ( "M 10 10 A 100 100 0 1 0 100 100 Z", ((1, 0, 1), (0, 1, 0)), "M 11 10 A 100 100 0 1 0 101 100 Z", ), ( "M 10 10 A 100 100 0 1 0 100 100 Z", ((1, 0, 0), (0, 1, 1)), "M 10 11 A 100 100 0 1 0 100 101 Z", ), ( "M 10 10 A 100 100 0 1 0 100 100 Z", ((1, 0, 1), (0, 1, 1)), "M 11 11 A 100 100 0 1 0 101 101 Z", ), ( "M 10 10 A 100 100 0 1 0 100 100 Z", ((2, 0, 0), (0, 1, 0)), "M 20 10 A 200 100 0 1 0 200 100 Z", ), ( "M 10 10 A 100 100 0 1 0 100 100 Z", ((1, 0, 0), (0, 2, 0)), "M 10 20 A 200 100 90 1 0 100 200 Z", ), ( "M 10 10 A 100 100 0 1 0 100 100 Z", ((1, 0, 0), (0, -1, 0)), "M 10 -10 A 100 100 0 1 1 100 -100 Z", ), ( "M 10 10 A 100 100 0 1 0 100 100 Z", ((1, 2, 0), (0, 2, 0)), "M 30 20 " "A 292.081 68.4742 41.4375 1 0 300 200 Z", ), ( "M 10 10 " "A 100 100 0 1 0 100 100 " "A 300 200 0 1 0 50 20 Z", ((1, 2, 0), (5, 6, 0)), "M 30,110 " "A 810.90492,49.327608 74.368134 1 1 " "300,1100 1981.2436,121.13604 75.800007 1 1 90,370 Z", ), ] for path, transform, expected in cases: expected = Path(expected) result = Path(path).transform(Transform(matrix=transform)) self.assertDeepAlmostEqual( expected.to_arrays(), result.to_arrays(), places=4 ) def test_single_point_transform(self): from math import sqrt, sin, cos self.assertAlmostTuple( list(Path("M 10 10 30 20").control_points), ((10, 10), (30, 20)) ) self.assertAlmostTuple( list( Path("M 10 10 30 20") .transform(Transform(translate=(10, 7))) .control_points ), ((20, 17), (40, 27)), ) self.assertAlmostTuple( list( Path("M 20 20 5 0 0 7 ").transform(Transform(scale=10)).control_points ), ((200, 200), (50, 0), (0, 70)), ) self.assertAlmostTuple( list(Path("M 20 20 1 0").transform(Transform(rotate=90)).control_points), ((-20, 20), (0, 1)), ) self.assertAlmostTuple( list(Path("M 20 20 1 0").transform(Transform(rotate=45)).control_points), ((0, sqrt(20**2 + 20**2)), (sqrt(2) / 2, sqrt(2) / 2)), ) self.assertAlmostTuple( list(Path("M 1 0 0 1").transform(Transform(rotate=30)).control_points), ((sqrt(3) / 2, 0.5), (-0.5, sqrt(3) / 2)), ) def test_reverse(self): """Paths can be reversed""" # Testing reverse() with relative coordinates, closed path ret = Path( "m 10 50 h 40 v -40 l 50 39.9998 c -22 2 -35 12 -50 25 l -40 -15 l 0 -10 z" ) ret = ret.reverse() self._assertPath( ret, "m 10 50 l 0 -0.0002 l -0 10 l 40 15 c 15 -13 28 -23 50 -25 l -50 -39.9998 v 40 z", ) # Testing reverse() with relative coordinates, open path ret = Path( "m 10 50 h 40 v -40 l 50 39.9998 c -22 2 -35 12 -50 25 l -40 -15 l 0 -10" ) ret = ret.reverse() self._assertPath( ret, "m 10 49.9998 l -0 10 l 40 15 c 15 -13 28 -23 50 -25 l -50 -39.9998 v 40 h -40", ) # Testing reverse() with absolute coordinates, closed path ret = Path("M 100 35 L 100 25 L 60 10 C 45 23 32 33 10 35 L 60 75 L 60 35 Z") ret = ret.reverse() self._assertPath( ret, "M 100 35 L 60 35 L 60 75 L 10 35 C 32 33 45 23 60 10 L 100 25 Z", ) # Testing reverse() with absolute coordinates, open path ret = Path( "M 100 35 L 100 25 L 60 10 C 45 23 32 33 10 35 L 60 75 L 60 35 L 100 35" ) ret = ret.reverse() self._assertPath( ret, "M 100 35 L 60 35 L 60 75 L 10 35 C 32 33 45 23 60 10 L 100 25 L 100 35", ) ret = Path("M 100,250 q 250,100 400,250") ret = ret.reverse() self._assertPath(ret, "M 500 500 q -150 -150 -400 -250") def test_reverse_multiple_subpaths(self): """Test for https://gitlab.com/inkscape/extensions/-/issues/445. First two examples are from the issue""" ret = Path("M 128,64 L 128,128 M 128,196 L 128,256").reverse() self._assertPath(ret, "M 128 256 L 128 196 M 128 128 L 128 64") ret = Path("M 128,64 L 128,128 m 128,196 L 128,256").reverse() self._assertPath(ret, "M 128 256 L 256 324 m -128 -196 L 128 64") # More complex example with absolute and relative move commands ret = Path( "m 58,88 c -10,2 3,13 10,4 z M 32,67 c 14,-5 23,-3 35,7 m 2,-21 c" "10,11 20,19 34,11 M 24,43 c 23,-14 18,-5 39,4" ).reverse() self._assertPath( ret, "m 63 47 c -21 -9 -16 -18 -39 -4 M 103 64 c -14 8 -24 0 -34 -11 " "m -2 21 c -12 -10 -21 -12 -35 -7 M 58 88 l 10 4 c -7 9 -20 -2 -10 -4 z", ) class SuperPathTest(TestCase): """Super path tests for testing the super path class""" def test_closing(self): """Closing paths create two arrays""" path = Path( "M 0,0 C 1.505,0 2.727,-0.823 2.727,-1.841 V -4.348 C 2.727,-5.363" " 1.505,-6.189 0,-6.189 H -8.3 V 0 Z m -10.713,1.991 h -0.211 V -8.178" " H 0 c 2.954,0 5.345,1.716 5.345,3.83 v 2.507 C 5.345,0.271 2.954,1.991" " 0,1.991 Z" ) csp = path.to_superpath() self.assertEqual(len(csp), 2) def test_closing_without_z(self): """Closing paths without z create two arrays""" path = Path( "m 51.553104,253.58572 c -11.644086,-0.14509 -4.683516,-19.48876" " 2.096523,-8.48973 1.722993,2.92995 0.781608,6.73867 -2.096523,8.48973" " m -3.100522,-13.02176 c -18.971587,17.33811 15.454875,20.05577" " 6.51412,3.75474 -1.362416,-2.30812 -3.856221,-3.74395 -6.51412,-3.75474" ) csp = path.to_superpath() self.assertEqual(len(csp), 2) def test_from_arrays(self): """SuperPath from arrays""" csp = CubicSuperPath( [ [ [[14, 173], [14, 173], (14, 173)], [(15, 171), (17, 168), (18, 168)], ], [ [(18, 167), (18, 167), [20, 165]], ((21, 164), [22, 162], (23, 162)), ], ] ) self.assertEqual( str(csp.to_path()), "M 14 173 C 14 173 15 171 17 168 M 18 167 C 20 165 21 164 22 162", ) def test_is_line(self): """Test is super path segments can detect lines""" path = Path( "m 49,88 70,-1 c 18,17 1,59 1.7,59 " "0,0 -48.7,18 -70.5,-1 18,-15 25,-32.4 -1.5,-57.2 z" ) csp = path.to_superpath() self.assertTrue(csp.is_line(csp[0][0], csp[0][1]), "Should be a line") self.assertFalse( csp.is_line(csp[0][3], csp[0][4]), "Both controls not detected" ) self.assertFalse( csp.is_line(csp[0][1], csp[0][2]), "Start control not detected" ) self.assertFalse(csp.is_line(csp[0][2], csp[0][3]), "End control not detected") # Also tests if zone close is applied correctly. self.assertEqual( str(csp.to_path()), "M 49 88 L 119 87 C 137 104 120 146 120.7 146 " "C 120.7 146 72 164 50.2 145 C 68.2 130 75.2 112.6 48.7 87.8 Z", ) def test_is_line_simplify(self): """Test if super path segments can detect if a segment can be simplified to a line""" path = Path("M 10 10 C 20,20 30,30 40,40 C 100, 100 50, 50 60, 60") csp = path.to_superpath() self.assertTrue(csp.is_line(csp[0][0], csp[0][1])) # line can be retracted self.assertFalse( csp.is_line(csp[0][1], csp[0][2]) ) # is line, but shoots over endpoint self.assertEqual(str(csp.to_path()), "M 10 10 L 40 40 C 100 100 50 50 60 60") def test_is_line_collinear(self): self.assertFalse(CubicSuperPath.collinear([1, 2], [2, 2.00001], [3, 2])) self.assertTrue(CubicSuperPath.collinear([1, 2], [2, 2], [3, 2])) self.assertTrue(CubicSuperPath.collinear([3, 2], [2, 2], [1, 2])) def test_is_within(self): self.assertTrue(CubicSuperPath.within(2, 1, 3)) self.assertTrue(CubicSuperPath.within(2, 3, 1)) self.assertTrue(CubicSuperPath.within(2, 2, 2)) self.assertTrue(CubicSuperPath.within(2, 3, 2)) self.assertFalse(CubicSuperPath.within(3, 2.9999, 2)) def test_is_stable(self): """Test for https://gitlab.com/inkscape/extensions/-/issues/374""" path = Path("M 10 10 h 10 v 10 h -10 Z") tempsub = path.to_superpath() comparison = str(tempsub) for _ in range(15): tempsub = CubicSuperPath(tempsub[0]) self.assertEqual(comparison, str(tempsub)) def test_multiple_relative(self): """Test for https://gitlab.com/inkscape/extensions/-/issues/450""" def compare_complex(current, epts): for point, comp in zip(current.end_points, epts): self.assertAlmostTuple(point, comp, msg=f"got {point}, expected {comp}") for point, comp in zip(current.control_points, epts): self.assertAlmostTuple(point, comp, msg=f"got {point}, expected {comp}") # now reverse the path p_rev = current.reverse() for point, comp in zip(p_rev.end_points, epts[::-1]): self.assertAlmostTuple(point, comp, msg=f"got {point}, expected {comp}") # We expect to have the same amount of closed subpaths after the operation self.assertEqual( len(re.findall(r"[Zz]", str(p_rev))), len(re.findall(r"[Zz]", str(current))), ) # now check that transform works correctly p_trans = current.transform(Transform("translate(10, 20)")) for point, comp in zip(p_trans.end_points, epts): comp = comp + Vector2d(10, 20) self.assertAlmostTuple(point, comp, msg=f"got {point}, expected {comp}") path = Path("m 50,20 v -10 h -10 z m 30,-20 v 20 h 20 z m -50,20 v -15 h -15 z") path2 = Path( "m 50,20 v -10 h -10 l 10, 10 m 30,-20 v 20 h 20 l -20,-20 m -50,20 v -15 h -15 z" ) path3 = Path( "m 50,20 v -10 h -10 z m 30,-20 v 20 h 20 l -20,-20 m -50,20 v -15 h -15 l 15 15" ) pts = [ (50, 20), (50, 10), (40, 10), (50, 20), (80, 0), (80, 20), (100, 20), (80, 0), (30, 20), (30, 5), (15, 5), (30, 20), ] compare_complex(path, pts) compare_complex(path2, pts) compare_complex(path3, pts) path4 = Path("m 50,20 v -10 h -10 z z z") pts4 = [(50, 20), (50, 10), (40, 10), (50, 20), (50, 20), (50, 20)] compare_complex(path4, pts4) path5 = Path("m 50,20 z m 10, 10 m 20, 20 v -10 h -10 z") pts5 = [(50, 20), (50, 20), (60, 30), (80, 50), (80, 40), (70, 40), (80, 50)] compare_complex(path5, pts5) class ProxyTest(TestCase): def test_simple_path(self): """Check coordinate computation""" path = Path("M 10 10 h 10 v 10 h -10 Z") proxycommands = list(path.proxy_iterator()) self.assertAlmostTuple(list(proxycommands[1].previous_end_point), (10, 10)) self.assertAlmostTuple(list(proxycommands[1].end_point), (20, 10)) self.assertAlmostTuple(list(proxycommands[2].previous_end_point), (20, 10)) class TestPathErrorHandling(TestCase): """Path data error handling""" def test_incorrect_parameter_amount(self): """Check that extra args (or rather, missing args of the next path) is handled correctly, i.e. according to https://www.w3.org/TR/SVG/paths.html#PathDataErrorHandling""" path = Path("M 10,10 L 20,20,30") self.assertEqual(str(path), "M 10 10 L 20 20")