DEGENERATE CONIC DECOMPOSITION

Marco Cecchetti*

Definition 1. We define a line as the set of points (x, y) in \mathbb{R}^{2} that satisfies the equation $a x+b y+c=0$ where at least one between a and b is not zero.

Definition 2. We define a conic as the set of points (x, y) in \mathbb{R}^{2} that satisfies the equation $a x^{2}+b x y+c y^{2}+d x+e y+f=0$ where at least one between a, b and c is not zero.

Definition 3. Given a conic C we define the symmetric matrix related to C as

$$
M_{C}=\left(\begin{array}{ccc}
a & b / 2 & d / 2 \\
b / 2 & c & e / 2 \\
d / 2 & e / 2 & f
\end{array}\right)
$$

Set $P=(x, y, 1)$ the conic equation can be written as $P^{T} M_{C} P=0$.
Definition 4. We say that a conic C is a degenerate conic when can be decomposed as the union of two lines.

Given a degenerate conic C let be r_{1} and r_{2} the pair of lines that C is made of. Let be r_{1} defined by the equation $a_{1} x+b_{1} y+c_{1}=0$ and r_{2} defined by the equation $a_{2} x+b_{2} y+c_{2}=0$. We can define the matrix

$$
L=\left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & b_{2} c_{2}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} a_{2} & a_{1} b_{2} & a_{1} c_{2} \\
b_{1} a_{2} & b_{1} b_{2} & b_{1} c_{2} \\
c_{1} a_{2} & c_{1} b_{2} & c_{1} c_{2}
\end{array}\right)
$$

Remark 1. Every non-null row of L still defines the line r_{2}; every non-null column of L still defines the line r_{1}.

Definition 5. Given a square matrix M we call $\mathcal{S}(M)=\left(M+M^{T}\right) / 2$ and $\mathcal{A}(M)=\left(M-M^{T}\right) / 2$ the symmetric and antisymmetric parts of M.

Lemma 1. Given a square matrix M we have $M=\mathcal{S}(M)+\mathcal{A}(M)$.
The symmetric matrix M_{C} related to a degenerate conic C is the symmetric part of L :

$$
M_{C}=\mathcal{S}(L)=\frac{1}{2}\left(\begin{array}{ccc}
2 a_{1} a_{2} & a_{1} b_{2}+b_{1} a_{2} & a_{1} c_{2}+c_{1} a_{2} \\
a_{1} b_{2}+b_{1} a_{2} & 2 b_{1} b_{2} & b_{1} c_{2}+c_{1} b_{2} \\
a_{1} c_{2}+c_{1} a_{2} & b_{1} c_{2}+c_{1} b_{2} & 2 c_{1} c_{2}
\end{array}\right)
$$

When r_{1} and r_{2} are the same line we have $a_{2}=\lambda a_{1}, b_{2}=\lambda b_{1}, c_{2}=\lambda c_{1}$ for some $\lambda \neq 0$. So the symmetric matrix M_{C} becomes:

$$
\lambda\left(\begin{array}{ccc}
a_{1}^{2} & a_{1} b_{1} & a_{1} c_{1} \\
a_{1} b_{1} & b_{1}^{2} & b_{1} c_{1} \\
a_{1} c_{1} & b_{1} c_{1} & c_{1}^{2}
\end{array}\right)
$$

Remark 2. When C is a double line any non-null row and any non-null column of M_{C} defines the line $r_{1} \equiv r_{2}$.

Definition 6. Given a square matrix A with order n we define $A_{i, j}$ as the square matrix with order $n-1$ obtained by deleting the i-th row and the j-th column of A.

Definition 7. Given a square matrix A we define the adjoint of A as the matrix $D=\operatorname{adj}(A)$ such that $d_{i, j}=(-1)^{i+j} \operatorname{det}\left(A_{j, i}\right)$.

[^0]When C is degenerate the adjoint of M_{C} is

$$
\operatorname{adj}\left(M_{C}\right)=\left(\begin{array}{ccc}
-\left(b_{1} c_{2}-c_{1} b_{2}\right)^{2} & \left(a_{1} c_{2}-c_{1} a_{2}\right)\left(b_{1} c_{2}-c_{1} b_{2}\right) & -\left(a_{1} b_{2}-b_{1} a_{2}\right)\left(b_{1} c_{2}-c_{1} b_{2}\right) \\
\left(a_{1} c_{2}-c_{1} a_{2}\right)\left(b_{1} c_{2}-c_{1} b_{2}\right) & -\left(a_{1} c_{2}-c_{1} a_{2}\right)^{2} & \left(a_{1} b_{2}-b_{1} a_{2}\right)\left(a_{1} c_{2}-c_{1} a_{2}\right) \\
-\left(a_{1} b_{2}-b_{1} a_{2}\right)\left(b_{1} c_{2}-c_{1} b_{2}\right) & \left(a_{1} b_{2}-b_{1} a_{2}\right)\left(a_{1} c_{2}-c_{1} a_{2}\right) & -\left(a_{1} b_{2}-b_{1} a_{2}\right)^{2}
\end{array}\right)
$$

Proposition 1. If C is a degenerate conic then C is made up by two different lines r_{1}, r_{2} iff $\operatorname{rank}\left(M_{C}\right)=2 ; C$ is a double line iff $\operatorname{rank}\left(M_{C}\right)=1$.

Proof. When $\operatorname{rank}\left(M_{C}\right)<2$ then $\operatorname{adj}\left(M_{C}\right)$ is the null matrix, so we have

$$
\begin{aligned}
& a_{1} c_{2}-c_{1} a_{2}=0, \\
& a_{1} b_{2}-b_{1} a_{2}=0
\end{aligned}
$$

Since we suppose that r_{1} and r_{2} are really two lines we can think that at least one between a_{1} and b_{1} is not zero, so let be $a_{1} \neq 0$. In the same way we can suppose that a_{2} or b_{2} is not zero.

If $a_{2} \neq 0$ we can divide $a_{1} c_{2}-c_{1} a_{2}=0$ and $a_{1} b_{2}-b_{1} a_{2}=0$ by $a_{1} a_{2}$ and we get:

$$
\frac{c_{1}}{a_{1}}=\frac{c_{2}}{a_{2}}, \quad \frac{b_{1}}{a_{1}}=\frac{b_{2}}{a_{2}}
$$

From this follows that r_{1} and r_{2} are the same line.
In case $a_{2}=0$ and $b_{2} \neq 0$ we have $a_{1} b_{2}-b_{1} a_{2}=0 \Rightarrow a_{1} b_{2}=0$ but this is impossible because we have supposed that a_{1} and b_{2} are not zero.

Now let be r_{1} and r_{2} the same line so we can suppose that exists $\lambda \neq 0$ such that

$$
a_{2}=\lambda a_{1}, b_{2}=\lambda b_{1}, c_{2}=\lambda c_{1} .
$$

By substituting these values for a_{2}, b_{2}, c_{2} in the above expression for $\operatorname{adj}\left(M_{C}\right)$ we can see immediately that we get the null matrix.

To end the demonstration is needed only to prove that when r_{1} and r_{2} are the same line then $\operatorname{rank}\left(M_{C}\right)>0$. This follows immediately looking at the diagonal elements in the expression for M_{C}, they are: $\lambda a_{1}^{2}, \lambda b_{1}^{2}, \lambda c_{1}^{2}$ as one between a_{1} and b_{1} is not zero the rank of the matrix is not zero too.

Proposition 2. If C is a degenerate conic made up by two lines r_{1}, r_{2}, with $r_{1} \neq r_{2}$ then $\operatorname{adj}\left(M_{C}\right)$ is the matrix related to a degenerate conic too and exactly to a double line. When $r_{1} \equiv r_{2}$, i.e. C is a double line, we have that $\operatorname{adj}\left(M_{C}\right)$ is the null matrix.

Proof. The last assertion follows from the previous proposition.
Now set $\alpha=\frac{1}{\sqrt{2}}\left(b_{1} c_{2}-c_{1} b_{2}\right), \beta=\frac{1}{\sqrt{2}}\left(a_{1} c_{2}-c_{1} a_{2}\right), \gamma=\frac{1}{\sqrt{2}}\left(a_{1} b_{2}-b_{1} a_{2}\right)$ we have:

$$
\operatorname{adj}\left(M_{C}\right)=2\left(\begin{array}{ccc}
-\alpha^{2} & \alpha \beta & -\alpha \gamma \\
\alpha \beta & -\beta^{2} & \beta \gamma \\
-\alpha \gamma & \beta \gamma & -\gamma^{2}
\end{array}\right)=\mathcal{S}\left(\left(\begin{array}{c}
\alpha \\
-\beta \\
\gamma
\end{array}\right)\left(\begin{array}{lll}
-\alpha & \beta & \gamma
\end{array}\right)\right)
$$

Clearly, $\alpha x-\beta y+\gamma=0$ and $-\alpha x+\beta y-\gamma=0$ define the same line.

Corollary 1. If C is a degenerate conic then $\operatorname{rank}\left(\operatorname{adj}\left(M_{C}\right)\right)=\operatorname{rank}\left(M_{C}\right)-1$.
Lemma 2. Given a vector $v \in \mathbb{R}^{3}$, there is a linear application $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $A(u)=v \times u \forall u \in \mathbb{R}^{3}$.

Remark 3. If $v=(x, y, z)$ the matrix related to the linear application A is the following:

$$
M_{A}=\left(\begin{array}{ccc}
0 & z & -y \\
-z & 0 & x \\
y & -x & 0
\end{array}\right)
$$

Note that this is an antisymmetric matrix. We call M_{A} the cross product matrix related to the vector v and we denote it by $\mathcal{C P}(v)$.

Proposition 3. Let be C a degenerate conic made up by two lines r_{1}, r_{2}, with $r_{1} \neq r_{2}$, let be p the vector $(\alpha,-\beta, \gamma)$ where $\alpha=b_{1} c_{2}-c_{1} b_{2}, \beta=a_{1} c_{2}-c_{1} a_{2}, \gamma=a_{1} b_{2}-b_{1} a_{2}$. Then the cross product matrix related to the vector p is, up to a multiplicative factor, the antisymmetric part of $L=\left(a_{1}, b_{1}, c_{1}\right)^{T}\left(a_{2}, b_{2}, c_{2}\right)$. Moreover we can recover α, β, γ from $\operatorname{adj}\left(M_{C}\right)$.

Proof. The first statement is trivial:

$$
\mathcal{A}(L)=\frac{L-L^{T}}{2}=\frac{1}{2}\left(\begin{array}{ccc}
0 & a_{1} b_{2}-b_{1} a_{2} & a_{1} c_{2}-c_{1} a_{2} \\
-a_{1} b_{2}+b_{1} a_{2} & 0 & b_{1} c_{2}-c_{1} b_{2} \\
-a_{1} c_{2}+c_{1} a_{2} & -b_{1} c_{2}+c_{1} b_{2} & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
0 & \gamma & \beta \\
-\gamma & 0 & \alpha \\
-\beta & -\alpha & 0
\end{array}\right)=\frac{1}{2} \mathcal{C P}(p)
$$

Now, we start by noting that $r_{1} \neq r_{2}$ implies $\operatorname{rank}\left(M_{C}\right)=2$, hence at least one between α, β, γ is not zero, on the contrary $D=\operatorname{adj}\left(M_{C}\right)$ would be the null matrix. So without loss of genericity we can suppose $\alpha \neq 0$. This means that set $\lambda=\sqrt{-d_{1,1}}$ we have $\alpha=\lambda, \beta=\frac{d_{1,2}}{\lambda}, \gamma=-\frac{d_{1,3}}{\lambda}$.

Proposition 4. Let be M_{C} the symmetric matrix related to a degenerate conic C made up by two lines r_{1}, r_{2}. We can recover the equation for r_{1} and r_{2} from the matrix M_{C}.

Proof. First we prove the case $r_{1} \equiv r_{2}$, i.e. C is a double line. Since $\operatorname{rank}\left(M_{C}\right)=1$ there is a non-null element of M_{C}, say $m_{i, j}$ for some pair of indices (i, j). By remark 2 we can recover the equation of the line by choosing as coefficients the elements of the i-th row of M_{C} or the elements of the j-th column of M_{C}.

Now we prove the case $r_{1} \neq r_{2}$. If $L=\left(a_{1}, b_{1}, c_{1}\right)^{T}\left(a_{2}, b_{2}, c_{2}\right)$ we have $M_{C}=\mathcal{S}(L)$ and we can recover the antisymmetric part $\mathcal{A}(L)$ from M_{C} by the previous proposition. So from M_{C} we can recover $L=\mathcal{S}(L)+\mathcal{A}(L)$. Found a non-null element $l_{i, j}$ of L, by remark 1 we have that the j-th column provides the equation of the line r_{1} and the i-th row provides the equation of the line r_{2}. The existence of a non-null element of L is assured because of supposing r_{1} and r_{2} two actual lines.

[^0]: *. University of Pisa, Italy.

