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Definition 1. We define a line as the set of points (x, y) in R2 that satisfies the equation

a x + b y + c = 0 where at least one between a and b is not zero.

Definition 2. We define a conic as the set of points (x, y) in R2 that satisfies the equation

a x2 + b x y + c y2 + d x+ e y + f = 0 where at least one between a, b and c is not zero.

Definition 3. Given a conic C we define the symmetric matrix related to C as

MC =





a b/2 d/2
b/2 c e/2
d/2 e/2 f



.

Set P =(x, y, 1) the conic equation can be written as PTMC P = 0.

Definition 4. We say that a conic C is a degenerate conic when can be decomposed as the

union of two lines.

Given a degenerate conic C let be r1 and r2 the pair of lines that C is made of. Let be r1

defined by the equation a1x + b1y + c1 = 0 and r2 defined by the equation a2x + b2y + c2 = 0. We

can define the matrix

L=





a1

b1

c1





(

a2 b2 c2

)

=





a1a2 a1b2 a1c2

b1a2 b1b2 b1c2

c1a2 c1b2 c1c2



.

Remark 1. Every non-null row of L still defines the line r2; every non-null column of L still

defines the line r1.

Definition 5. Given a square matrix M we call S(M)= (M + MT)/2 and A(M)= (M −MT )/2
the symmetric and antisymmetric parts of M.

Lemma 1. Given a square matrix M we have M =S(M)+A(M).

The symmetric matrix MC related to a degenerate conic C is the symmetric part of L:

MC =S(L)=
1

2





2a1a2 a1b2 + b1a2 a1c2 + c1a2

a1b2 + b1a2 2b1b2 b1c2 + c1b2

a1c2 + c1a2 b1c2 + c1b2 2c1c2



.

When r1 and r2 are the same line we have a2 = λ a1, b2 = λ b1, c2 = λ c1 for some λ � 0. So the

symmetric matrix MC becomes:

λ







a1
2 a1b1 a1c1

a1b1 b1
2 b1c1

a1c1 b1c1 c1
2






.

Remark 2. When C is a double line any non-null row and any non-null column of MC defines

the line r1≡ r2.

Definition 6. Given a square matrix A with order n we define Ai,j as the square matrix with

order n− 1 obtained by deleting the i-th row and the j-th column of A.

Definition 7. Given a square matrix A we define the adjoint of A as the matrix D = adj(A)
such that di,j = (− 1)i+j det(Aj,i).
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When C is degenerate the adjoint of MC is

adj(MC)=







− (b1c2− c1b2)
2 (a1c2− c1a2) (b1c2− c1b2) − (a1b2− b1a2)(b1c2− c1b2)

(a1c2− c1a2) (b1c2− c1b2) − (a1c2− c1a2)
2 (a1b2− b1a2) (a1c2− c1a2)

− (a1b2− b1a2)(b1c2− c1b2) (a1b2− b1a2) (a1c2− c1a2) − (a1b2− b1a2)
2







Proposition 1. If C is a degenerate conic then C is made up by two different lines r1, r2 iff

rank(MC)= 2; C is a double line iff rank(MC) =1.

Proof. When rank(MC)< 2 then adj(MC) is the null matrix, so we have

a1c2− c1a2 = 0,
a1b2− b1a2 =0

Since we suppose that r1 and r2 are really two lines we can think that at least one between a1

and b1 is not zero, so let be a1� 0. In the same way we can suppose that a2 or b2 is not zero.

If a2� 0 we can divide a1c2− c1a2 =0 and a1b2− b1a2 =0 by a1 a2 and we get:

c1

a1

=
c2

a2

,
b1

a1

=
b2

a2

.

From this follows that r1 and r2 are the same line.

In case a2 = 0 and b2� 0 we have a1b2− b1a2 = 0 ⇒ a1b2 = 0 but this is impossible because we

have supposed that a1 and b2 are not zero.

Now let be r1 and r2 the same line so we can suppose that exists λ� 0 such that

a2 = λa1, b2 =λ b1, c2 = λ c1.

By substituting these values for a2, b2, c2 in the above expression for adj(MC) we can see imme-

diately that we get the null matrix.

To end the demonstration is needed only to prove that when r1 and r2 are the same line then

rank(MC) > 0. This follows immediately looking at the diagonal elements in the expression for

MC, they are: λ a1
2, λ b1

2, λ c1
2 as one between a1 and b1 is not zero the rank of the matrix is not

zero too.

�

Proposition 2. If C is a degenerate conic made up by two lines r1, r2, with r1 � r2 then

adj(MC) is the matrix related to a degenerate conic too and exactly to a double line. When

r1≡ r2, i.e. C is a double line, we have that adj(MC) is the null matrix.

Proof. The last assertion follows from the previous proposition.

Now set α =
1

2
√ (b1c2− c1b2), β =

1

2
√ (a1c2− c1a2), γ =

1

2
√ (a1b2− b1a2) we have:

adj(MC)= 2







−α2 αβ −αγ

αβ − β2 βγ

−αγ βγ − γ2






=S









α

− β

γ





(

−α β γ
)



.

Clearly, α x− β y + γ = 0 and −α x + β y − γ = 0 define the same line.

�

Corollary 1. If C is a degenerate conic then rank(adj(MC)) = rank(MC)− 1.

Lemma 2. Given a vector v ∈ R3, there is a linear application A: R3 → R3 such that

A(u)= v ×u ∀u∈R3.

Remark 3. If v = (x, y, z) the matrix related to the linear application A is the following:

MA =





0 z − y

− z 0 x

y −x 0



.
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Note that this is an antisymmetric matrix. We call MA the cross product matrix related to the

vector v and we denote it by CP(v).

Proposition 3. Let be C a degenerate conic made up by two lines r1, r2, with r1 � r2, let be p

the vector (α,− β, γ) where α = b1c2− c1b2, β = a1c2− c1a2, γ = a1b2− b1a2. Then the cross pro-

duct matrix related to the vector p is, up to a multiplicative factor, the antisymmetric part of

L =(a1, b1, c1)
T (a2, b2, c2). Moreover we can recover α, β, γ from adj(MC).

Proof. The first statement is trivial:

A(L)=
L−LT

2
=

1

2





0 a1b2− b1a2 a1c2− c1a2

− a1b2 + b1a2 0 b1c2− c1b2

− a1c2 + c1a2 − b1c2 + c1b2 0



=
1

2





0 γ β

− γ 0 α

− β −α 0



=
1

2
CP(p).

Now, we start by noting that r1� r2 implies rank(MC) = 2, hence at least one between α, β, γ is

not zero, on the contrary D = adj(MC) would be the null matrix. So without loss of genericity

we can suppose α� 0. This means that set λ= − d1,1

√

we have α = λ, β =
d1,2

λ
, γ =−

d1,3

λ
.
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Proposition 4. Let be MC the symmetric matrix related to a degenerate conic C made up by

two lines r1, r2. We can recover the equation for r1 and r2 from the matrix MC.

Proof. First we prove the case r1 ≡ r2, i.e. C is a double line. Since rank(MC) = 1 there is a

non-null element of MC, say mi,j for some pair of indices (i, j). By remark 2 we can recover the

equation of the line by choosing as coefficients the elements of the i-th row of MC or the ele-

ments of the j-th column of MC.

Now we prove the case r1 � r2. If L = (a1, b1, c1)
T (a2, b2, c2) we have MC = S(L) and we can

recover the antisymmetric part A(L) from MC by the previous proposition. So from MC we can

recover L = S(L) +A(L). Found a non-null element li,j of L, by remark 1 we have that the j-th

column provides the equation of the line r1 and the i-th row provides the equation of the line r2.

The existence of a non-null element of L is assured because of supposing r1 and r2 two actual

lines.
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