/* spline.c: spline and spline list (represented as arrays) manipulation. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif /* Def: HAVE_CONFIG_H */ #include "logreport.h" #include "types.h" #include "spline.h" #include "vector.h" #include "xstd.h" #include /* Print a spline in human-readable form. */ void print_spline(spline_type s) { assert(SPLINE_DEGREE(s) == LINEARTYPE || SPLINE_DEGREE(s) == CUBICTYPE); if (SPLINE_DEGREE(s) == LINEARTYPE) fprintf(stdout, "(%.3f,%.3f)--(%.3f,%.3f).\n", START_POINT(s).x, START_POINT(s).y, END_POINT(s).x, END_POINT(s).y); else if (SPLINE_DEGREE(s) == CUBICTYPE) fprintf(stdout, "(%.3f,%.3f)..ctrls(%.3f,%.3f)&(%.3f,%.3f)..(%.3f,%.3f).\n", START_POINT(s).x, START_POINT(s).y, CONTROL1(s).x, CONTROL1(s).y, CONTROL2(s).x, CONTROL2(s).y, END_POINT(s).x, END_POINT(s).y); } /* Evaluate the spline S at a given T value. This is an implementation of de Casteljau's algorithm. See Schneider's thesis, p.37. The variable names are taken from there. */ at_real_coord evaluate_spline(spline_type s, gfloat t) { spline_type V[4]; /* We need degree+1 splines, but assert degree <= 3. */ signed i, j; gfloat one_minus_t = (gfloat) 1.0 - t; polynomial_degree degree = SPLINE_DEGREE(s); for (i = 0; i <= degree; i++) { V[0].v[i].x = s.v[i].x; V[0].v[i].y = s.v[i].y; V[0].v[i].z = s.v[i].z; } for (j = 1; j <= degree; j++) for (i = 0; i <= degree - j; i++) { at_real_coord t1 = Pmult_scalar(V[j - 1].v[i], one_minus_t); at_real_coord t2 = Pmult_scalar(V[j - 1].v[i + 1], t); at_real_coord temp = Padd(t1, t2); V[j].v[i].x = temp.x; V[j].v[i].y = temp.y; V[j].v[i].z = temp.z; } return V[degree].v[0]; } /* Return a new, empty, spline list. */ spline_list_type *new_spline_list(void) { spline_list_type *answer; XMALLOC(answer, sizeof(spline_list_type)); *answer = empty_spline_list(); return answer; } spline_list_type empty_spline_list(void) { spline_list_type answer; SPLINE_LIST_DATA(answer) = NULL; SPLINE_LIST_LENGTH(answer) = 0; return answer; } /* Return a new spline list with SPLINE as the first element. */ spline_list_type *new_spline_list_with_spline(spline_type spline) { spline_list_type *answer; answer = new_spline_list(); XMALLOC(SPLINE_LIST_DATA(*answer), sizeof(spline_type)); SPLINE_LIST_ELT(*answer, 0) = spline; SPLINE_LIST_LENGTH(*answer) = 1; return answer; } /* Free the storage in a spline list. We don't have to free the elements, since they are arrays in automatic storage. And we don't want to free the list if it was empty. */ void free_spline_list(spline_list_type spline_list) { free(SPLINE_LIST_DATA(spline_list)); } /* Append the spline S to the list SPLINE_LIST. */ void append_spline(spline_list_type * l, spline_type s) { assert(l != NULL); SPLINE_LIST_LENGTH(*l)++; XREALLOC(SPLINE_LIST_DATA(*l), SPLINE_LIST_LENGTH(*l) * sizeof(spline_type)); LAST_SPLINE_LIST_ELT(*l) = s; } /* Tack the elements in the list S2 onto the end of S1. S2 is not changed. */ void concat_spline_lists(spline_list_type * s1, spline_list_type s2) { unsigned this_spline; unsigned new_length; assert(s1 != NULL); new_length = SPLINE_LIST_LENGTH(*s1) + SPLINE_LIST_LENGTH(s2); XREALLOC(SPLINE_LIST_DATA(*s1), new_length * sizeof(spline_type)); for (this_spline = 0; this_spline < SPLINE_LIST_LENGTH(s2); this_spline++) SPLINE_LIST_ELT(*s1, SPLINE_LIST_LENGTH(*s1)++) = SPLINE_LIST_ELT(s2, this_spline); } /* Return a new, empty, spline list array. */ spline_list_array_type new_spline_list_array(void) { spline_list_array_type answer; SPLINE_LIST_ARRAY_DATA(answer) = NULL; SPLINE_LIST_ARRAY_LENGTH(answer) = 0; return answer; } /* Free the storage in a spline list array. We don't want to free the list if it is empty. */ void free_spline_list_array(spline_list_array_type * spline_list_array) { unsigned this_list; for (this_list = 0; this_list < SPLINE_LIST_ARRAY_LENGTH(*spline_list_array); this_list++) free_spline_list(SPLINE_LIST_ARRAY_ELT(*spline_list_array, this_list)); free(SPLINE_LIST_ARRAY_DATA(*spline_list_array)); } /* Append the spline S to the list SPLINE_LIST_ARRAY. */ void append_spline_list(spline_list_array_type * l, spline_list_type s) { SPLINE_LIST_ARRAY_LENGTH(*l)++; XREALLOC(SPLINE_LIST_ARRAY_DATA(*l), SPLINE_LIST_ARRAY_LENGTH(*l) * sizeof(spline_list_type)); LAST_SPLINE_LIST_ARRAY_ELT(*l) = s; }