// SPDX-License-Identifier: GPL-2.0-or-later /* * Specific geometry functions for Inkscape, not provided my lib2geom. * * Author: * Johan Engelen * * Copyright (C) 2008 Johan Engelen * * Released under GNU GPL v2+, read the file 'COPYING' for more information. */ #include #include "helper/geom.h" #include "helper/geom-curves.h" #include <2geom/curves.h> #include <2geom/sbasis-to-bezier.h> using Geom::X; using Geom::Y; //################################################################################# // BOUNDING BOX CALCULATIONS /* Fast bbox calculation */ /* Thanks to Nathan Hurst for suggesting it */ static void cubic_bbox (Geom::Coord x000, Geom::Coord y000, Geom::Coord x001, Geom::Coord y001, Geom::Coord x011, Geom::Coord y011, Geom::Coord x111, Geom::Coord y111, Geom::Rect &bbox) { Geom::Coord a, b, c, D; bbox[0].expandTo(x111); bbox[1].expandTo(y111); // It already contains (x000,y000) and (x111,y111) // All points of the Bezier lie in the convex hull of (x000,y000), (x001,y001), (x011,y011) and (x111,y111) // So, if it also contains (x001,y001) and (x011,y011) we don't have to compute anything else! // Note that we compute it for the X and Y range separately to make it easier to use them below bool containsXrange = bbox[0].contains(x001) && bbox[0].contains(x011); bool containsYrange = bbox[1].contains(y001) && bbox[1].contains(y011); /* * xttt = s * (s * (s * x000 + t * x001) + t * (s * x001 + t * x011)) + t * (s * (s * x001 + t * x011) + t * (s * x011 + t * x111)) * xttt = s * (s2 * x000 + s * t * x001 + t * s * x001 + t2 * x011) + t * (s2 * x001 + s * t * x011 + t * s * x011 + t2 * x111) * xttt = s * (s2 * x000 + 2 * st * x001 + t2 * x011) + t * (s2 * x001 + 2 * st * x011 + t2 * x111) * xttt = s3 * x000 + 2 * s2t * x001 + st2 * x011 + s2t * x001 + 2st2 * x011 + t3 * x111 * xttt = s3 * x000 + 3s2t * x001 + 3st2 * x011 + t3 * x111 * xttt = s3 * x000 + (1 - s) 3s2 * x001 + (1 - s) * (1 - s) * 3s * x011 + (1 - s) * (1 - s) * (1 - s) * x111 * xttt = s3 * x000 + (3s2 - 3s3) * x001 + (3s - 6s2 + 3s3) * x011 + (1 - 2s + s2 - s + 2s2 - s3) * x111 * xttt = (x000 - 3 * x001 + 3 * x011 - x111) * s3 + * ( 3 * x001 - 6 * x011 + 3 * x111) * s2 + * ( 3 * x011 - 3 * x111) * s + * ( x111) * xttt' = (3 * x000 - 9 * x001 + 9 * x011 - 3 * x111) * s2 + * ( 6 * x001 - 12 * x011 + 6 * x111) * s + * ( 3 * x011 - 3 * x111) */ if (!containsXrange) { a = 3 * x000 - 9 * x001 + 9 * x011 - 3 * x111; b = 6 * x001 - 12 * x011 + 6 * x111; c = 3 * x011 - 3 * x111; /* * s = (-b +/- sqrt (b * b - 4 * a * c)) / 2 * a; */ if (fabs (a) < Geom::EPSILON) { /* s = -c / b */ if (fabs (b) > Geom::EPSILON) { double s; s = -c / b; if ((s > 0.0) && (s < 1.0)) { double t = 1.0 - s; double xttt = s * s * s * x000 + 3 * s * s * t * x001 + 3 * s * t * t * x011 + t * t * t * x111; bbox[0].expandTo(xttt); } } } else { /* s = (-b +/- sqrt (b * b - 4 * a * c)) / 2 * a; */ D = b * b - 4 * a * c; if (D >= 0.0) { Geom::Coord d, s, t, xttt; /* Have solution */ d = sqrt (D); s = (-b + d) / (2 * a); if ((s > 0.0) && (s < 1.0)) { t = 1.0 - s; xttt = s * s * s * x000 + 3 * s * s * t * x001 + 3 * s * t * t * x011 + t * t * t * x111; bbox[0].expandTo(xttt); } s = (-b - d) / (2 * a); if ((s > 0.0) && (s < 1.0)) { t = 1.0 - s; xttt = s * s * s * x000 + 3 * s * s * t * x001 + 3 * s * t * t * x011 + t * t * t * x111; bbox[0].expandTo(xttt); } } } } if (!containsYrange) { a = 3 * y000 - 9 * y001 + 9 * y011 - 3 * y111; b = 6 * y001 - 12 * y011 + 6 * y111; c = 3 * y011 - 3 * y111; if (fabs (a) < Geom::EPSILON) { /* s = -c / b */ if (fabs (b) > Geom::EPSILON) { double s; s = -c / b; if ((s > 0.0) && (s < 1.0)) { double t = 1.0 - s; double yttt = s * s * s * y000 + 3 * s * s * t * y001 + 3 * s * t * t * y011 + t * t * t * y111; bbox[1].expandTo(yttt); } } } else { /* s = (-b +/- sqrt (b * b - 4 * a * c)) / 2 * a; */ D = b * b - 4 * a * c; if (D >= 0.0) { Geom::Coord d, s, t, yttt; /* Have solution */ d = sqrt (D); s = (-b + d) / (2 * a); if ((s > 0.0) && (s < 1.0)) { t = 1.0 - s; yttt = s * s * s * y000 + 3 * s * s * t * y001 + 3 * s * t * t * y011 + t * t * t * y111; bbox[1].expandTo(yttt); } s = (-b - d) / (2 * a); if ((s > 0.0) && (s < 1.0)) { t = 1.0 - s; yttt = s * s * s * y000 + 3 * s * s * t * y001 + 3 * s * t * t * y011 + t * t * t * y111; bbox[1].expandTo(yttt); } } } } } Geom::OptRect bounds_fast_transformed(Geom::PathVector const & pv, Geom::Affine const & t) { return bounds_exact_transformed(pv, t); //use this as it is faster for now! :) // return Geom::bounds_fast(pv * t); } Geom::OptRect bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t) { if (pv.empty()) return Geom::OptRect(); Geom::Point initial = pv.front().initialPoint() * t; Geom::Rect bbox(initial, initial); // obtain well defined bbox as starting point to unionWith for (const auto & it : pv) { bbox.expandTo(it.initialPoint() * t); // don't loop including closing segment, since that segment can never increase the bbox for (Geom::Path::const_iterator cit = it.begin(); cit != it.end_open(); ++cit) { Geom::Curve const &c = *cit; unsigned order = 0; if (Geom::BezierCurve const* b = dynamic_cast(&c)) { order = b->order(); } if (order == 1) { // line segment bbox.expandTo(c.finalPoint() * t); // TODO: we can make the case for quadratics faster by degree elevating them to // cubic and then taking the bbox of that. } else if (order == 3) { // cubic bezier Geom::CubicBezier const &cubic_bezier = static_cast(c); Geom::Point c0 = cubic_bezier[0] * t; Geom::Point c1 = cubic_bezier[1] * t; Geom::Point c2 = cubic_bezier[2] * t; Geom::Point c3 = cubic_bezier[3] * t; cubic_bbox(c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox); } else { // should handle all not-so-easy curves: Geom::Curve *ctemp = cit->transformed(t); bbox.unionWith( ctemp->boundsExact()); delete ctemp; } } } //return Geom::bounds_exact(pv * t); return bbox; } bool pathv_similar(Geom::PathVector const &apv, Geom::PathVector const &bpv, double precission) { if (apv == bpv) { return true; } size_t totala = apv.curveCount(); if (totala != bpv.curveCount()) { return false; } std::vector pos; for (size_t i = 0; i < totala; i++) { Geom::Point pointa = apv.pointAt(float(i)+0.2); Geom::Point pointb = bpv.pointAt(float(i)+0.2); Geom::Point pointc = apv.pointAt(float(i)+0.4); Geom::Point pointd = bpv.pointAt(float(i)+0.4); Geom::Point pointe = apv.pointAt(float(i)); Geom::Point pointf = bpv.pointAt(float(i)); if (!Geom::are_near(pointa[Geom::X], pointb[Geom::X], precission) || !Geom::are_near(pointa[Geom::Y], pointb[Geom::Y], precission) || !Geom::are_near(pointc[Geom::X], pointd[Geom::X], precission) || !Geom::are_near(pointc[Geom::Y], pointd[Geom::Y], precission) || !Geom::are_near(pointe[Geom::X], pointf[Geom::X], precission) || !Geom::are_near(pointe[Geom::Y], pointf[Geom::Y], precission)) { return false; } } return true; } static void geom_line_wind_distance (Geom::Coord x0, Geom::Coord y0, Geom::Coord x1, Geom::Coord y1, Geom::Point const &pt, int *wind, Geom::Coord *best) { Geom::Coord Ax, Ay, Bx, By, Dx, Dy, s; Geom::Coord dist2; /* Find distance */ Ax = x0; Ay = y0; Bx = x1; By = y1; Dx = x1 - x0; Dy = y1 - y0; const Geom::Coord Px = pt[X]; const Geom::Coord Py = pt[Y]; if (best) { s = ((Px - Ax) * Dx + (Py - Ay) * Dy) / (Dx * Dx + Dy * Dy); if (s <= 0.0) { dist2 = (Px - Ax) * (Px - Ax) + (Py - Ay) * (Py - Ay); } else if (s >= 1.0) { dist2 = (Px - Bx) * (Px - Bx) + (Py - By) * (Py - By); } else { Geom::Coord Qx, Qy; Qx = Ax + s * Dx; Qy = Ay + s * Dy; dist2 = (Px - Qx) * (Px - Qx) + (Py - Qy) * (Py - Qy); } if (dist2 < (*best * *best)) *best = sqrt (dist2); } if (wind) { /* Find wind */ if ((Ax >= Px) && (Bx >= Px)) return; if ((Ay >= Py) && (By >= Py)) return; if ((Ay < Py) && (By < Py)) return; if (Ay == By) return; /* Ctach upper y bound */ if (Ay == Py) { if (Ax < Px) *wind -= 1; return; } else if (By == Py) { if (Bx < Px) *wind += 1; return; } else { Geom::Coord Qx; /* Have to calculate intersection */ Qx = Ax + Dx * (Py - Ay) / Dy; if (Qx < Px) { *wind += (Dy > 0.0) ? 1 : -1; } } } } static void geom_cubic_bbox_wind_distance (Geom::Coord x000, Geom::Coord y000, Geom::Coord x001, Geom::Coord y001, Geom::Coord x011, Geom::Coord y011, Geom::Coord x111, Geom::Coord y111, Geom::Point const &pt, Geom::Rect *bbox, int *wind, Geom::Coord *best, Geom::Coord tolerance) { Geom::Coord x0, y0, x1, y1, len2; int needdist, needwind; const Geom::Coord Px = pt[X]; const Geom::Coord Py = pt[Y]; needdist = 0; needwind = 0; if (bbox) cubic_bbox (x000, y000, x001, y001, x011, y011, x111, y111, *bbox); x0 = std::min (x000, x001); x0 = std::min (x0, x011); x0 = std::min (x0, x111); y0 = std::min (y000, y001); y0 = std::min (y0, y011); y0 = std::min (y0, y111); x1 = std::max (x000, x001); x1 = std::max (x1, x011); x1 = std::max (x1, x111); y1 = std::max (y000, y001); y1 = std::max (y1, y011); y1 = std::max (y1, y111); if (best) { /* Quickly adjust to endpoints */ len2 = (x000 - Px) * (x000 - Px) + (y000 - Py) * (y000 - Py); if (len2 < (*best * *best)) *best = (Geom::Coord) sqrt (len2); len2 = (x111 - Px) * (x111 - Px) + (y111 - Py) * (y111 - Py); if (len2 < (*best * *best)) *best = (Geom::Coord) sqrt (len2); if (((x0 - Px) < *best) && ((y0 - Py) < *best) && ((Px - x1) < *best) && ((Py - y1) < *best)) { /* Point is inside sloppy bbox */ /* Now we have to decide, whether subdivide */ /* fixme: (Lauris) */ if (((y1 - y0) > 5.0) || ((x1 - x0) > 5.0)) { needdist = 1; } } } if (!needdist && wind) { if ((y1 >= Py) && (y0 < Py) && (x0 < Px)) { /* Possible intersection at the left */ /* Now we have to decide, whether subdivide */ /* fixme: (Lauris) */ if (((y1 - y0) > 5.0) || ((x1 - x0) > 5.0)) { needwind = 1; } } } if (needdist || needwind) { Geom::Coord x00t, x0tt, xttt, x1tt, x11t, x01t; Geom::Coord y00t, y0tt, yttt, y1tt, y11t, y01t; Geom::Coord s, t; t = 0.5; s = 1 - t; x00t = s * x000 + t * x001; x01t = s * x001 + t * x011; x11t = s * x011 + t * x111; x0tt = s * x00t + t * x01t; x1tt = s * x01t + t * x11t; xttt = s * x0tt + t * x1tt; y00t = s * y000 + t * y001; y01t = s * y001 + t * y011; y11t = s * y011 + t * y111; y0tt = s * y00t + t * y01t; y1tt = s * y01t + t * y11t; yttt = s * y0tt + t * y1tt; geom_cubic_bbox_wind_distance (x000, y000, x00t, y00t, x0tt, y0tt, xttt, yttt, pt, nullptr, wind, best, tolerance); geom_cubic_bbox_wind_distance (xttt, yttt, x1tt, y1tt, x11t, y11t, x111, y111, pt, nullptr, wind, best, tolerance); } else { geom_line_wind_distance (x000, y000, x111, y111, pt, wind, best); } } static void geom_curve_bbox_wind_distance(Geom::Curve const & c, Geom::Affine const &m, Geom::Point const &pt, Geom::Rect *bbox, int *wind, Geom::Coord *dist, Geom::Coord tolerance, Geom::Rect const *viewbox, Geom::Point &p0) // pass p0 through as it represents the last endpoint added (the finalPoint of last curve) { unsigned order = 0; if (Geom::BezierCurve const* b = dynamic_cast(&c)) { order = b->order(); } if (order == 1) { Geom::Point pe = c.finalPoint() * m; if (bbox) { bbox->expandTo(pe); } if (dist || wind) { if (wind) { // we need to pick fill, so do what we're told geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist); } else { // only stroke is being picked; skip this segment if it's totally outside the viewbox Geom::Rect swept(p0, pe); if (!viewbox || swept.intersects(*viewbox)) geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist); } } p0 = pe; } else if (order == 3) { Geom::CubicBezier const& cubic_bezier = static_cast(c); Geom::Point p1 = cubic_bezier[1] * m; Geom::Point p2 = cubic_bezier[2] * m; Geom::Point p3 = cubic_bezier[3] * m; // get approximate bbox from handles (convex hull property of beziers): Geom::Rect swept(p0, p3); swept.expandTo(p1); swept.expandTo(p2); if (!viewbox || swept.intersects(*viewbox)) { // we see this segment, so do full processing geom_cubic_bbox_wind_distance ( p0[X], p0[Y], p1[X], p1[Y], p2[X], p2[Y], p3[X], p3[Y], pt, bbox, wind, dist, tolerance); } else { if (wind) { // if we need fill, we can just pretend it's a straight line geom_line_wind_distance (p0[X], p0[Y], p3[X], p3[Y], pt, wind, dist); } else { // otherwise, skip it completely } } p0 = p3; } else { //this case handles sbasis as well as all other curve types Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1); //recurse to convert the new path resulting from the sbasis to svgd for (const auto & iter : sbasis_path) { geom_curve_bbox_wind_distance(iter, m, pt, bbox, wind, dist, tolerance, viewbox, p0); } } } bool pointInTriangle(Geom::Point const &p, Geom::Point const &p1, Geom::Point const &p2, Geom::Point const &p3) { //http://totologic.blogspot.com.es/2014/01/accurate-point-in-triangle-test.html using Geom::X; using Geom::Y; double denominator = (p1[X]*(p2[Y] - p3[Y]) + p1[Y]*(p3[X] - p2[X]) + p2[X]*p3[Y] - p2[Y]*p3[X]); double t1 = (p[X]*(p3[Y] - p1[Y]) + p[Y]*(p1[X] - p3[X]) - p1[X]*p3[Y] + p1[Y]*p3[X]) / denominator; double t2 = (p[X]*(p2[Y] - p1[Y]) + p[Y]*(p1[X] - p2[X]) - p1[X]*p2[Y] + p1[Y]*p2[X]) / -denominator; double s = t1 + t2; return 0 <= t1 && t1 <= 1 && 0 <= t2 && t2 <= 1 && s <= 1; } /* Calculates... and returns ... in *wind and the distance to ... in *dist. Returns bounding box in *bbox if bbox!=NULL. */ void pathv_matrix_point_bbox_wind_distance (Geom::PathVector const & pathv, Geom::Affine const &m, Geom::Point const &pt, Geom::Rect *bbox, int *wind, Geom::Coord *dist, Geom::Coord tolerance, Geom::Rect const *viewbox) { if (pathv.empty()) { if (wind) *wind = 0; if (dist) *dist = Geom::infinity(); return; } // remember last point of last curve Geom::Point p0(0,0); // remembering the start of subpath Geom::Point p_start(0,0); bool start_set = false; for (const auto & it : pathv) { if (start_set) { // this is a new subpath if (wind && (p0 != p_start)) // for correct fill picking, each subpath must be closed geom_line_wind_distance (p0[X], p0[Y], p_start[X], p_start[Y], pt, wind, dist); } p0 = it.initialPoint() * m; p_start = p0; start_set = true; if (bbox) { bbox->expandTo(p0); } // loop including closing segment if path is closed for (Geom::Path::const_iterator cit = it.begin(); cit != it.end_default(); ++cit) { geom_curve_bbox_wind_distance(*cit, m, pt, bbox, wind, dist, tolerance, viewbox, p0); } } if (start_set) { if (wind && (p0 != p_start)) // for correct picking, each subpath must be closed geom_line_wind_distance (p0[X], p0[Y], p_start[X], p_start[Y], pt, wind, dist); } } //################################################################################# /** * Basic check on intersecting path vectors */ bool is_intersecting(Geom::PathVector const&a, Geom::PathVector const&b) { for (auto &node : b.nodes()) { if (a.winding(node)) { return true; } } for (auto &node : a.nodes()) { if (b.winding(node)) { return true; } } return false; } /* * Converts all segments in all paths to Geom::LineSegment or Geom::HLineSegment or * Geom::VLineSegment or Geom::CubicBezier. */ Geom::PathVector pathv_to_linear_and_cubic_beziers( Geom::PathVector const &pathv ) { Geom::PathVector output; for (const auto & pit : pathv) { output.push_back( Geom::Path() ); output.back().setStitching(true); output.back().start( pit.initialPoint() ); for (Geom::Path::const_iterator cit = pit.begin(); cit != pit.end_open(); ++cit) { if (is_straight_curve(*cit)) { Geom::LineSegment l(cit->initialPoint(), cit->finalPoint()); output.back().append(l); } else { Geom::BezierCurve const *curve = dynamic_cast(&*cit); if (curve && curve->order() == 3) { Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]); output.back().append(b); } else { // convert all other curve types to cubicbeziers Geom::Path cubicbezier_path = Geom::cubicbezierpath_from_sbasis(cit->toSBasis(), 0.1); cubicbezier_path.close(false); output.back().append(cubicbezier_path); } } } output.back().close( pit.closed() ); } return output; } /* * Converts all segments in all paths to Geom::LineSegment. There is an intermediate * stage where some may be converted to beziers. maxdisp is the maximum displacement from * the line segment to the bezier curve; ** maxdisp is not used at this moment **. * * This is NOT a terribly fast method, but it should give a solution close to the one with the * fewest points. */ Geom::PathVector pathv_to_linear( Geom::PathVector const &pathv, double /*maxdisp*/) { Geom::PathVector output; Geom::PathVector tmppath = pathv_to_linear_and_cubic_beziers(pathv); // Now all path segments are either already lines, or they are beziers. for (const auto & pit : tmppath) { output.push_back( Geom::Path() ); output.back().start( pit.initialPoint() ); output.back().close( pit.closed() ); for (Geom::Path::const_iterator cit = pit.begin(); cit != pit.end_open(); ++cit) { if (is_straight_curve(*cit)) { Geom::LineSegment ls(cit->initialPoint(), cit->finalPoint()); output.back().append(ls); } else { /* all others must be Bezier curves */ Geom::BezierCurve const *curve = dynamic_cast(&*cit); std::vector bzrpoints = curve->controlPoints(); Geom::Point A = bzrpoints[0]; Geom::Point B = bzrpoints[1]; Geom::Point C = bzrpoints[2]; Geom::Point D = bzrpoints[3]; std::vector pointlist; pointlist.push_back(A); recursive_bezier4( A[X], A[Y], B[X], B[Y], C[X], C[Y], D[X], D[Y], pointlist, 0); pointlist.push_back(D); Geom::Point r1 = pointlist[0]; for (unsigned int i=1; i( pitCubic.initialPoint() ); pitCubic.close(true); } for (Geom::Path::iterator cit = pitCubic.begin(); cit != pitCubic.end_open(); ++cit) { if (is_straight_curve(*cit)) { Geom::CubicBezier b(cit->initialPoint(), cit->pointAt(0.3334) + Geom::Point(cubicGap,cubicGap), cit->finalPoint(), cit->finalPoint()); output.back().append(b); } else { Geom::BezierCurve const *curve = dynamic_cast(&*cit); if (curve && curve->order() == 3) { Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]); output.back().append(b); } else { // convert all other curve types to cubicbeziers Geom::Path cubicbezier_path = Geom::cubicbezierpath_from_sbasis(cit->toSBasis(), 0.1); output.back().append(cubicbezier_path); } } } } return output; } //Study move to 2Geom size_t count_pathvector_nodes(Geom::PathVector const &pathv) { size_t tot = 0; for (auto subpath : pathv) { tot += count_path_nodes(subpath); } return tot; } size_t count_path_nodes(Geom::Path const &path) { size_t tot = path.size_closed(); if (path.closed()) { const Geom::Curve &closingline = path.back_closed(); // the closing line segment is always of type // Geom::LineSegment. if (are_near(closingline.initialPoint(), closingline.finalPoint())) { // closingline.isDegenerate() did not work, because it only checks for // *exact* zero length, which goes wrong for relative coordinates and // rounding errors... // the closing line segment has zero-length. So stop before that one! tot -= 1; } } return tot; } // The next routine is modified from curv4_div::recursive_bezier from file agg_curves.cpp //---------------------------------------------------------------------------- // Anti-Grain Geometry (AGG) - Version 2.5 // A high quality rendering engine for C++ // Copyright (C) 2002-2006 Maxim Shemanarev // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://antigrain.com // // AGG is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // AGG is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with AGG; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, // MA 02110-1301, USA. //---------------------------------------------------------------------------- void recursive_bezier4(const double x1, const double y1, const double x2, const double y2, const double x3, const double y3, const double x4, const double y4, std::vector &m_points, int level) { // some of these should be parameters, but do it this way for now. const double curve_collinearity_epsilon = 1e-30; const double curve_angle_tolerance_epsilon = 0.01; double m_cusp_limit = 0.0; double m_angle_tolerance = 0.0; double m_approximation_scale = 1.0; double m_distance_tolerance_square = 0.5 / m_approximation_scale; m_distance_tolerance_square *= m_distance_tolerance_square; enum curve_recursion_limit_e { curve_recursion_limit = 32 }; #define calc_sq_distance(A,B,C,D) ((A-C)*(A-C) + (B-D)*(B-D)) if(level > curve_recursion_limit) { return; } // Calculate all the mid-points of the line segments //---------------------- double x12 = (x1 + x2) / 2; double y12 = (y1 + y2) / 2; double x23 = (x2 + x3) / 2; double y23 = (y2 + y3) / 2; double x34 = (x3 + x4) / 2; double y34 = (y3 + y4) / 2; double x123 = (x12 + x23) / 2; double y123 = (y12 + y23) / 2; double x234 = (x23 + x34) / 2; double y234 = (y23 + y34) / 2; double x1234 = (x123 + x234) / 2; double y1234 = (y123 + y234) / 2; // Try to approximate the full cubic curve by a single straight line //------------------ double dx = x4-x1; double dy = y4-y1; double d2 = fabs(((x2 - x4) * dy - (y2 - y4) * dx)); double d3 = fabs(((x3 - x4) * dy - (y3 - y4) * dx)); double da1, da2, k; switch((int(d2 > curve_collinearity_epsilon) << 1) + int(d3 > curve_collinearity_epsilon)) { case 0: // All collinear OR p1==p4 //---------------------- k = dx*dx + dy*dy; if(k == 0) { d2 = calc_sq_distance(x1, y1, x2, y2); d3 = calc_sq_distance(x4, y4, x3, y3); } else { k = 1 / k; da1 = x2 - x1; da2 = y2 - y1; d2 = k * (da1*dx + da2*dy); da1 = x3 - x1; da2 = y3 - y1; d3 = k * (da1*dx + da2*dy); if(d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1) { // Simple collinear case, 1---2---3---4 // We can leave just two endpoints return; } if(d2 <= 0) d2 = calc_sq_distance(x2, y2, x1, y1); else if(d2 >= 1) d2 = calc_sq_distance(x2, y2, x4, y4); else d2 = calc_sq_distance(x2, y2, x1 + d2*dx, y1 + d2*dy); if(d3 <= 0) d3 = calc_sq_distance(x3, y3, x1, y1); else if(d3 >= 1) d3 = calc_sq_distance(x3, y3, x4, y4); else d3 = calc_sq_distance(x3, y3, x1 + d3*dx, y1 + d3*dy); } if(d2 > d3) { if(d2 < m_distance_tolerance_square) { m_points.emplace_back(x2, y2); return; } } else { if(d3 < m_distance_tolerance_square) { m_points.emplace_back(x3, y3); return; } } break; case 1: // p1,p2,p4 are collinear, p3 is significant //---------------------- if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy)) { if(m_angle_tolerance < curve_angle_tolerance_epsilon) { m_points.emplace_back(x23, y23); return; } // Angle Condition //---------------------- da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2)); if(da1 >= M_PI) da1 = 2*M_PI - da1; if(da1 < m_angle_tolerance) { m_points.emplace_back(x2, y2); m_points.emplace_back(x3, y3); return; } if(m_cusp_limit != 0.0) { if(da1 > m_cusp_limit) { m_points.emplace_back(x3, y3); return; } } } break; case 2: // p1,p3,p4 are collinear, p2 is significant //---------------------- if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy)) { if(m_angle_tolerance < curve_angle_tolerance_epsilon) { m_points.emplace_back(x23, y23); return; } // Angle Condition //---------------------- da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1)); if(da1 >= M_PI) da1 = 2*M_PI - da1; if(da1 < m_angle_tolerance) { m_points.emplace_back(x2, y2); m_points.emplace_back(x3, y3); return; } if(m_cusp_limit != 0.0) { if(da1 > m_cusp_limit) { m_points.emplace_back(x2, y2); return; } } } break; case 3: // Regular case //----------------- if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy)) { // If the curvature doesn't exceed the distance_tolerance value // we tend to finish subdivisions. //---------------------- if(m_angle_tolerance < curve_angle_tolerance_epsilon) { m_points.emplace_back(x23, y23); return; } // Angle & Cusp Condition //---------------------- k = atan2(y3 - y2, x3 - x2); da1 = fabs(k - atan2(y2 - y1, x2 - x1)); da2 = fabs(atan2(y4 - y3, x4 - x3) - k); if(da1 >= M_PI) da1 = 2*M_PI - da1; if(da2 >= M_PI) da2 = 2*M_PI - da2; if(da1 + da2 < m_angle_tolerance) { // Finally we can stop the recursion //---------------------- m_points.emplace_back(x23, y23); return; } if(m_cusp_limit != 0.0) { if(da1 > m_cusp_limit) { m_points.emplace_back(x2, y2); return; } if(da2 > m_cusp_limit) { m_points.emplace_back(x3, y3); return; } } } break; } // Continue subdivision //---------------------- recursive_bezier4(x1, y1, x12, y12, x123, y123, x1234, y1234, m_points, level + 1); recursive_bezier4(x1234, y1234, x234, y234, x34, y34, x4, y4, m_points, level + 1); } void swap(Geom::Point &A, Geom::Point &B){ Geom::Point tmp = A; A = B; B = tmp; } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :