// SPDX-License-Identifier: GPL-2.0-or-later /* * HSLuv-C: Human-friendly HSL * * Authors: * 2015 Alexei Boronine (original idea, JavaScript implementation) * 2015 Roger Tallada (Obj-C implementation) * 2017 Martin Mitas (C implementation, based on Obj-C implementation) * 2021 Massinissa Derriche (C++ implementation for Inkscape, based on C implementation) * * Copyright (C) 2021 Authors * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "hsluv.h" #include #include #include namespace Hsluv { /* for RGB */ static const Triplet m[3] = { { 3.24096994190452134377, -1.53738317757009345794, -0.49861076029300328366 }, { -0.96924363628087982613, 1.87596750150772066772, 0.04155505740717561247 }, { 0.05563007969699360846, -0.20397695888897656435, 1.05697151424287856072 } }; /* for XYZ */ static const Triplet m_inv[3] = { { 0.41239079926595948129, 0.35758433938387796373, 0.18048078840183428751 }, { 0.21263900587151035754, 0.71516867876775592746, 0.07219231536073371500 }, { 0.01933081871559185069, 0.11919477979462598791, 0.95053215224966058086 } }; static const double REF_U = 0.19783000664283680764; static const double REF_V = 0.46831999493879100370; // CIE LUV constants static const double KAPPA = 903.29629629629629629630; static const double EPSILON = 0.00885645167903563082; // Types Line::Line() : slope(0), intercept(0) {} Line::Line(double slope, double intercept) : slope(slope), intercept(intercept) {} Line::Line (const Line& other) : slope(other.slope), intercept(other.intercept) {} void Line::operator=(const Line& other) { slope = other.slope; intercept = other.intercept; } /** * Calculate the bounds of the Luv colors in RGB gamut. * * @param l Lightness. Between 0.0 and 100.0. * @return Bounds of Luv colors in RGB gamut. */ std::array getBounds(double l) { std::array bounds; double tl = l + 16.0; double sub1 = (tl * tl * tl) / 1560896.0; double sub2 = (sub1 > EPSILON ? sub1 : (l / KAPPA)); int channel; int t; for(channel = 0; channel < 3; channel++) { double m1 = m[channel][0]; double m2 = m[channel][1]; double m3 = m[channel][2]; for (t = 0; t < 2; t++) { double top1 = (284517.0 * m1 - 94839.0 * m3) * sub2; double top2 = (838422.0 * m3 + 769860.0 * m2 + 731718.0 * m1) * l * sub2 - 769860.0 * t * l; double bottom = (632260.0 * m3 - 126452.0 * m2) * sub2 + 126452.0 * t; bounds[channel * 2 + t].slope = top1 / bottom; bounds[channel * 2 + t].intercept = top2 / bottom; } } return bounds; } /** * Calculate X coordinate of the intersection point of the two passed in lines. * * @param line1 The first line. * @param line2 The second line. * @return X coordinate of the intersection point. */ static double intersectLineLine(const Line &line1, const Line &line2) { return (line1.intercept - line2.intercept) / (line2.slope - line1.slope); } /** * Calculate the squared distance of the passed in point to the pole/origin. * * @param x X coordinate. * @param y Y coordinate. * @return Squared distance of point to pole. */ static double distFromPoleSquared(double x, double y) { return x * x + y * y; } /** * Calculate the length of a ray at a given angle until it intersects with the * passed in line. * * @param theta The angle of the ray. * @param line The line to test. * @return The length of the ray. */ static double rayLengthUntilIntersect(double theta, const Line &line) { return line.intercept / (std::sin(theta) - line.slope * std::cos(theta)); } /** * Calculate the largest safe chromaticity for the given luminance l. * Safe here means that it guarantees to not go out of gamut for every hue. * * @param l Lightness. * @return The maximum safe chromaticity for l. */ static double maxSafeChromaForL(double l) { double min_len_squared = std::numeric_limits::max(); std::array bounds = getBounds(l); int i; for (i = 0; i < 6; i++) { double m1 = bounds[i].slope; double b1 = bounds[i].intercept; /* x where line intersects with perpendicular running though (0, 0) */ Line line2 = { -1.0 / m1, 0.0 }; double x = intersectLineLine(bounds[i], line2); double distance = distFromPoleSquared(x, b1 + x * m1); if (distance < min_len_squared) min_len_squared = distance; } return std::sqrt(min_len_squared); } /** * Calculate the maximum in gamut chromaticity for the given luminance and hue. * * @param l Luminance. * @param h Hue. * @return The maximum chromaticity. */ static double maxChromaForLh(double l, double h) { double min_len = std::numeric_limits::max(); double hrad = h * 0.01745329251994329577; /* (2 * pi / 360) */ std::array bounds = getBounds(l); int i; for (i = 0; i < 6; i++) { double len = rayLengthUntilIntersect(hrad, bounds[i]); if (len >= 0 && len < min_len) min_len = len; } return min_len; } /** * Calculate the dot product of the given arrays. * * @param t1 The first array. * @param t2 The second array. * @return The resulting dot product. */ static double dotProduct(const Triplet &t1, const Triplet &t2) { return (t1[0] * t2[0] + t1[1] * t2[1] + t1[2] * t2[2]); } /** * Convenience function used for RGB conversions. * * @param c Value. * @return RGB color component. */ static double fromLinear(double c) { if (c <= 0.0031308) return 12.92 * c; else return 1.055 * std::pow(c, 1.0 / 2.4) - 0.055; } /** * Convenience function used for RGB conversions. * * @param c Value. * @return XYZ color component. */ static double toLinear(double c) { if (c > 0.04045) return std::pow((c + 0.055) / 1.055, 2.4); else return c / 12.92; } /** * @overload * @param t RGB color components. * @return XYZ color components. */ static Triplet toLinear(const Triplet &t) { return { toLinear(t[0]), toLinear(t[1]), toLinear(t[2]) }; } /** * Convert a color from the the XYZ colorspace to the RGB colorspace. * * @param in_out[in,out] The XYZ color converted to a RGB color. */ static void xyz2rgb(Triplet *in_out) { double r = fromLinear(dotProduct(m[0], *in_out)); double g = fromLinear(dotProduct(m[1], *in_out)); double b = fromLinear(dotProduct(m[2], *in_out)); (*in_out)[0] = r; (*in_out)[1] = g; (*in_out)[2] = b; } /** * Convert a color from the the RGB colorspace to the XYZ colorspace. * * @param in_out[in,out] The RGB color converted to a XYZ color. */ static void rgb2xyz(Triplet *in_out) { Triplet rgbl = toLinear(*in_out); double x = dotProduct(m_inv[0], rgbl); double y = dotProduct(m_inv[1], rgbl); double z = dotProduct(m_inv[2], rgbl); (*in_out)[0] = x; (*in_out)[1] = y; (*in_out)[2] = z; } /** * Utility function used to convert from the XYZ colorspace to CIELuv. * https://en.wikipedia.org/wiki/CIELUV * * @param y Y component of the XYZ color. * @return Luminance component of Luv color. */ static double y2l(double y) { if (y <= EPSILON) return y * KAPPA; else return 116.0 * std::cbrt(y) - 16.0; } /** * Utility function used to convert from CIELuv colorspace to XYZ. * * @param l Luminance component of Luv color. * @return Y component of the XYZ color. */ static double l2y(double l) { if (l <= 8.0) { return l / KAPPA; } else { double x = (l + 16.0) / 116.0; return (x * x * x); } } /** * Convert a color from the the XYZ colorspace to the Luv colorspace. * * @param in_out[in,out] The XYZ color converted to a Luv color. */ static void xyz2luv(Triplet* in_out) { double var_u = (4.0 * (*in_out)[0]) / ((*in_out)[0] + (15.0 * (*in_out)[1]) + (3.0 * (*in_out)[2])); double var_v = (9.0 * (*in_out)[1]) / ((*in_out)[0] + (15.0 * (*in_out)[1]) + (3.0 * (*in_out)[2])); double l = y2l((*in_out)[1]); double u = 13.0 * l * (var_u - REF_U); double v = 13.0 * l * (var_v - REF_V); (*in_out)[0] = l; if (l < 0.00000001) { (*in_out)[1] = 0.0; (*in_out)[2] = 0.0; } else { (*in_out)[1] = u; (*in_out)[2] = v; } } /** * Convert a color from the the Luv colorspace to the XYZ colorspace. * * @param in_out[in,out] The Luv color converted to a XYZ color. */ static void luv2xyz(Triplet* in_out) { if((*in_out)[0] <= 0.00000001) { /* Black will create a divide-by-zero error. */ (*in_out)[0] = 0.0; (*in_out)[1] = 0.0; (*in_out)[2] = 0.0; return; } double var_u = (*in_out)[1] / (13.0 * (*in_out)[0]) + REF_U; double var_v = (*in_out)[2] / (13.0 * (*in_out)[0]) + REF_V; double y = l2y((*in_out)[0]); double x = -(9.0 * y * var_u) / ((var_u - 4.0) * var_v - var_u * var_v); double z = (9.0 * y - (15.0 * var_v * y) - (var_v * x)) / (3.0 * var_v); (*in_out)[0] = x; (*in_out)[1] = y; (*in_out)[2] = z; } /** * Convert a color from the the Luv colorspace to the LCH colorspace. * * @param in_out[in,out] The Luv color converted to a LCH color. */ static void luv2lch(Triplet* in_out) { double l = (*in_out)[0]; double u = (*in_out)[1]; double v = (*in_out)[2]; double h; double c = std::sqrt(u * u + v * v); /* Grays: disambiguate hue */ if(c < 0.00000001) { h = 0; } else { h = std::atan2(v, u) * 57.29577951308232087680; /* (180 / pi) */ if(h < 0.0) h += 360.0; } (*in_out)[0] = l; (*in_out)[1] = c; (*in_out)[2] = h; } /** * Convert a color from the the LCH colorspace to the Luv colorspace. * * @param in_out[in,out] The LCH color converted to a Luv color. */ static void lch2luv(Triplet* in_out) { double hrad = (*in_out)[2] * 0.01745329251994329577; /* (pi / 180.0) */ double u = std::cos(hrad) * (*in_out)[1]; double v = std::sin(hrad) * (*in_out)[1]; (*in_out)[1] = u; (*in_out)[2] = v; } /** * Convert a color from the the HSLuv colorspace to the LCH colorspace. * * @param in_out[in,out] The HSLuv color converted to a LCH color. */ static void hsluv2lch(Triplet* in_out) { double h = (*in_out)[0]; double s = (*in_out)[1]; double l = (*in_out)[2]; double c; /* White and black: disambiguate chroma */ if(l > 99.9999999 || l < 0.00000001) c = 0.0; else c = maxChromaForLh(l, h) / 100.0 * s; /* Grays: disambiguate hue */ if (s < 0.00000001) h = 0.0; (*in_out)[0] = l; (*in_out)[1] = c; (*in_out)[2] = h; } /** * Convert a color from the the LCH colorspace to the HSLuv colorspace. * * @param in_out[in,out] The LCH color converted to a HSLuv color. */ static void lch2hsluv(Triplet* in_out) { double l = (*in_out)[0]; double c = (*in_out)[1]; double h = (*in_out)[2]; double s; /* White and black: disambiguate saturation */ if(l > 99.9999999 || l < 0.00000001) s = 0.0; else s = c / maxChromaForLh(l, h) * 100.0; /* Grays: disambiguate hue */ if (c < 0.00000001) h = 0.0; (*in_out)[0] = h; (*in_out)[1] = s; (*in_out)[2] = l; } /** * Convert a color from the the HPLuv colorspace to the LCH colorspace. * * @param in_out[in,out] The HPLuv color converted to a LCH color. */ static void hpluv2lch(Triplet* in_out) { double h = (*in_out)[0]; double s = (*in_out)[1]; double l = (*in_out)[2]; double c; /* White and black: disambiguate chroma */ if(l > 99.9999999 || l < 0.00000001) c = 0.0; else c = maxSafeChromaForL(l) / 100.0 * s; /* Grays: disambiguate hue */ if (s < 0.00000001) h = 0.0; (*in_out)[0] = l; (*in_out)[1] = c; (*in_out)[2] = h; } /** * Convert a color from the the LCH colorspace to the HPLuv colorspace. * * @param in_out[in,out] The LCH color converted to a HPLuv color. */ static void lch2hpluv(Triplet* in_out) { double l = (*in_out)[0]; double c = (*in_out)[1]; double h = (*in_out)[2]; double s; /* White and black: disambiguate saturation */ if (l > 99.9999999 || l < 0.00000001) s = 0.0; else s = c / maxSafeChromaForL(l) * 100.0; /* Grays: disambiguate hue */ if (c < 0.00000001) h = 0.0; (*in_out)[0] = h; (*in_out)[1] = s; (*in_out)[2] = l; } // Interface functions void luv_to_rgb(double l, double u, double v, double *pr, double *pg, double *pb) { Triplet tmp {l, u, v}; luv2xyz(&tmp); xyz2rgb(&tmp); *pr = std::clamp(tmp[0], 0.0, 1.0); *pg = std::clamp(tmp[1], 0.0, 1.0); *pb = std::clamp(tmp[2], 0.0, 1.0); } void hsluv_to_luv(double h, double s, double l, double *pl, double *pu, double *pv) { Triplet tmp {h, s, l}; hsluv2lch(&tmp); lch2luv(&tmp); *pl = tmp[0]; *pu = tmp[1]; *pv = tmp[2]; } void luv_to_hsluv(double l, double u, double v, double *ph, double *ps, double *pl) { Triplet tmp {l, u, v}; luv2lch(&tmp); lch2hsluv(&tmp); *ph = tmp[0]; *ps = tmp[1]; *pl = tmp[2]; } void rgb_to_hsluv(double r, double g, double b, double *ph, double *ps, double *pl) { Triplet tmp {r, g, b}; rgb2xyz(&tmp); xyz2luv(&tmp); luv2lch(&tmp); lch2hsluv(&tmp); *ph = tmp[0]; *ps = tmp[1]; *pl = tmp[2]; } void hsluv_to_rgb(double h, double s, double l, double *pr, double *pg, double *pb) { Triplet tmp {h, s, l}; hsluv2lch(&tmp); lch2luv(&tmp); luv2xyz(&tmp); xyz2rgb(&tmp); *pr = std::clamp(tmp[0], 0.0, 1.0); *pg = std::clamp(tmp[1], 0.0, 1.0); *pb = std::clamp(tmp[2], 0.0, 1.0); } } // namespace Hsluv