// SPDX-License-Identifier: GPL-2.0-or-later /** \file * LPE "Points to Ellipse" implementation */ /* * Authors: * Markus Schwienbacher * * Copyright (C) Markus Schwienbacher 2013 * * Released under GNU GPL v2+, read the file 'COPYING' for more information. */ #include "lpe-pts2ellipse.h" #include #include #include #include #include #include <2geom/circle.h> #include <2geom/ellipse.h> #include <2geom/elliptical-arc.h> #include <2geom/path.h> #include <2geom/pathvector.h> #include namespace Inkscape { namespace LivePathEffect { static const Util::EnumData EllipseMethodData[] = { { EM_AUTO, N_("Auto ellipse"), "auto" }, //!< (2..4 points: circle, from 5 points: ellipse) { EM_CIRCLE, N_("Force circle"), "circle" }, //!< always fit a circle { EM_ISOMETRIC_CIRCLE, N_("Isometric circle"), "iso_circle" }, //!< use first two edges to generate a sheared //!< ellipse { EM_PERSPECTIVE_CIRCLE, N_("Perspective circle"), "perspective_circle" }, //!< use first three edges to generate an //!< ellipse representing a distorted //!< circle in perspective { EM_STEINER_ELLIPSE, N_("Steiner ellipse"), "steiner_ellipse" }, //!< generate a steiner ellipse from the first //!< three points { EM_STEINER_INELLIPSE, N_("Steiner inellipse"), "steiner_inellipse" } //!< generate a steiner inellipse from the //!< first three points }; static const Util::EnumDataConverter EMConverter(EllipseMethodData, EM_END); LPEPts2Ellipse::LPEPts2Ellipse(LivePathEffectObject *lpeobject) : Effect(lpeobject) , method( _("Method:"), _("Methods to generate the ellipse\n- Auto ellipse: fits a circle (2, 3 or 4 nodes in the path) or an ellipse (at least 5 " "nodes)\n- Force circle: (at least 2 nodes) always create a circle\n- Isometric circle: (3 nodes) use " "first two segments as edges\n- Perspective circle: (4 nodes) circle in a square in perspective view\n- Steiner " "ellipse: (3 nodes) ellipse on a triangle\n- Steiner inellipse: (3 nodes) ellipse inside a triangle"), "method", EMConverter, &wr, this, EM_AUTO) , gen_isometric_frame(_("_Frame (isometric rectangle)"), _("Draw parallelogram around the ellipse"), "gen_isometric_frame", &wr, this, false) , gen_perspective_frame( _("_Perspective square"), _("Draw square surrounding the circle in perspective view\n(only in method \"Perspective circle\")"), "gen_perspective_frame", &wr, this, false) , gen_arc(_("_Arc"), _("Generate open arc (open ellipse) based on first and last node\n(only for methods \"Auto ellipse\" " "and \"Force circle\")"), "gen_arc", &wr, this, false) , other_arc(_("_Other arc side"), _("Switch sides of the arc"), "arc_other", &wr, this, false) , slice_arc(_("_Slice arc"), _("Create a circle / ellipse segment"), "slice_arc", &wr, this, false) , draw_axes(_("A_xes"), _("Draw both semi-major and semi-minor axes"), "draw_axes", &wr, this, false) , draw_perspective_axes(_("Perspective axes"), _("Draw the axes in perspective view\n(only in method \"Perspective circle\")"), "draw_perspective_axes", &wr, this, false) , rot_axes(_("Axes rotation"), _("Axes rotation angle [deg]"), "rot_axes", &wr, this, 0) , draw_ori_path(_("Source _path"), _("Show the original source path"), "draw_ori_path", &wr, this, false) { registerParameter(&method); registerParameter(&gen_arc); registerParameter(&other_arc); registerParameter(&slice_arc); registerParameter(&gen_isometric_frame); registerParameter(&draw_axes); registerParameter(&gen_perspective_frame); registerParameter(&draw_perspective_axes); registerParameter(&rot_axes); registerParameter(&draw_ori_path); rot_axes.param_set_range(-360, 360); rot_axes.param_set_increments(1, 10); show_orig_path = true; gsl_x = gsl_vector_alloc(8); gsl_p = gsl_permutation_alloc(8); } LPEPts2Ellipse::~LPEPts2Ellipse() { gsl_permutation_free(gsl_p); gsl_vector_free(gsl_x); } // helper function, transforms a given value into range [0, 2pi] inline double range2pi(double a) { a = fmod(a, 2 * M_PI); if (a < 0) { a += 2 * M_PI; } return a; } inline double deg2rad(double a) { return a * M_PI / 180.0; } inline double rad2deg(double a) { return a * 180.0 / M_PI; } // helper function, calculates the angle between a0 and a1 in ccw sense // examples: 0..1->1, -1..1->2, pi/4..-pi/4->1.5pi // full rotations: 0..2pi->2pi, -pi..pi->2pi, pi..-pi->0, 2pi..0->0 inline double calc_delta_angle(const double a0, const double a1) { double da = range2pi(a1 - a0); if ((fabs(da) < 1e-9) && (a0 < a1)) { da = 2 * M_PI; } return da; } int LPEPts2Ellipse::unit_arc_path(Geom::Path &path_in, Geom::Affine &affine, double start, double end, bool slice) { double arc_angle = calc_delta_angle(start, end); if (fabs(arc_angle) < 1e-9) { g_warning("angle was 0"); return -1; } // the delta angle double da = M_PI_2; // number of segments with da length int nda = (int)ceil(arc_angle / M_PI_2); // recalculate da da = arc_angle / (double)nda; bool closed = false; if (fabs(arc_angle - 2 * M_PI) < 1e-8) { closed = true; da = M_PI_2; nda = 4; } double s = range2pi(start); end = s + arc_angle; double x0 = cos(s); double y0 = sin(s); // construct the path Geom::Path path(Geom::Point(x0, y0)); path.setStitching(true); for (int i = 0; i < nda;) { double e = s + da; if (e > end) { e = end; } const double len = 4 * tan((e - s) / 4) / 3; const double x1 = x0 + len * cos(s + M_PI_2); const double y1 = y0 + len * sin(s + M_PI_2); const double x3 = cos(e); const double y3 = sin(e); const double x2 = x3 + len * cos(e - M_PI_2); const double y2 = y3 + len * sin(e - M_PI_2); path.appendNew(Geom::Point(x1, y1), Geom::Point(x2, y2), Geom::Point(x3, y3)); s = (++i) * da + start; x0 = cos(s); y0 = sin(s); } if (slice && !closed) { path.appendNew(Geom::Point(0.0, 0.0)); } path *= affine; path_in.append(path); if ((slice && !closed) || closed) { path_in.close(true); } return 0; } void LPEPts2Ellipse::gen_iso_frame_paths(Geom::PathVector &path_out, const Geom::Affine &affine) { Geom::Path rect(Geom::Point(-1, -1)); rect.setStitching(true); rect.appendNew(Geom::Point(+1, -1)); rect.appendNew(Geom::Point(+1, +1)); rect.appendNew(Geom::Point(-1, +1)); rect *= affine; rect.close(true); path_out.push_back(rect); } void LPEPts2Ellipse::gen_perspective_frame_paths(Geom::PathVector &path_out, const double rot_angle, double projmatrix[3][3]) { Geom::Point pts0[4] = { { -1.0, -1.0 }, { +1.0, -1.0 }, { +1.0, +1.0 }, { -1.0, +1.0 } }; // five_pts.resize(4); Geom::Affine affine2; // const double rot_angle = deg2rad(rot_axes); // negative for ccw rotation affine2 *= Geom::Rotate(-rot_angle); for (auto &i : pts0) { Geom::Point point = i; point *= affine2; i = projectPoint(point, projmatrix); } Geom::Path rect(pts0[0]); rect.setStitching(true); for (int i = 1; i < 4; i++) rect.appendNew(pts0[i]); rect.close(true); path_out.push_back(rect); } void LPEPts2Ellipse::gen_axes_paths(Geom::PathVector &path_out, const Geom::Affine &affine) { Geom::LineSegment clx(Geom::Point(-1, 0), Geom::Point(1, 0)); Geom::LineSegment cly(Geom::Point(0, -1), Geom::Point(0, 1)); Geom::Path plx, ply; plx.append(clx); ply.append(cly); plx *= affine; ply *= affine; path_out.push_back(plx); path_out.push_back(ply); } void LPEPts2Ellipse::gen_perspective_axes_paths(Geom::PathVector &path_out, const double rot_angle, double projmatrix[3][3]) { Geom::Point pts[4]; int h = 0; double dA = 2.0 * M_PI / 4.0; // delta Angle for (auto &i : pts) { const double angle = rot_angle + dA * h++; const Geom::Point circle_point(sin(angle), cos(angle)); i = projectPoint(circle_point, projmatrix); } { Geom::LineSegment clx(pts[0], pts[2]); Geom::LineSegment cly(pts[1], pts[3]); Geom::Path plx, ply; plx.append(clx); ply.append(cly); path_out.push_back(plx); path_out.push_back(ply); } } bool LPEPts2Ellipse::is_ccw(const std::vector &pts) { // method: sum up the angles between edges size_t n = pts.size(); // edges about vertex 0 Geom::Point e0(pts.front() - pts.back()); Geom::Point e1(pts[1] - pts[0]); Geom::Coord sum = cross(e0, e1); // the rest for (size_t i = 1; i < n; i++) { e0 = e1; e1 = pts[i] - pts[i - 1]; sum += cross(e0, e1); } // edges about last vertex (closing) e0 = e1; e1 = pts.front() - pts.back(); sum += cross(e0, e1); // close the if (sum < 0) { return true; } else { return false; } } void endpoints2angles(const bool ccw_wind, const bool use_other_arc, const Geom::Point &p0, const Geom::Point &p1, Geom::Coord &a0, Geom::Coord &a1) { if (!p0.isZero() && !p1.isZero()) { a0 = atan2(p0); a1 = atan2(p1); if (!ccw_wind) { std::swap(a0, a1); } if (!use_other_arc) { std::swap(a0, a1); } } } /** * Generates an ellipse (or circle) from the vertices of a given path. Thereby, using fitting * algorithms from 2geom. Depending on the settings made by the user regarding things like arc, * slice, circle etc. the final result will be different */ Geom::PathVector LPEPts2Ellipse::doEffect_path(Geom::PathVector const &path_in) { Geom::PathVector path_out; // 1) draw original path? if (draw_ori_path.get_value()) { path_out.insert(path_out.end(), path_in.begin(), path_in.end()); } // 2) get all points // (from: extension/internal/odf.cpp) points.resize(0); for (const auto &pit : path_in) { // extract first point of this path points.push_back(pit.initialPoint()); // iterate over all curves for (const auto &cit : pit) { points.push_back(cit.finalPoint()); } } // avoid identical start-point and end-point if (points.front() == points.back()) { points.pop_back(); } // 3) modify GUI based on selected method // 3.1) arc options switch (method) { case EM_AUTO: case EM_CIRCLE: gen_arc.param_widget_is_enabled(true); if (gen_arc.get_value()) { slice_arc.param_widget_is_enabled(true); other_arc.param_widget_is_enabled(true); } else { other_arc.param_widget_is_enabled(false); slice_arc.param_widget_is_enabled(false); } break; default: gen_arc.param_widget_is_enabled(false); other_arc.param_widget_is_enabled(false); slice_arc.param_widget_is_enabled(false); } // 3.2) perspective options switch (method) { case EM_PERSPECTIVE_CIRCLE: gen_perspective_frame.param_widget_is_enabled(true); draw_perspective_axes.param_widget_is_enabled(true); break; default: gen_perspective_frame.param_widget_is_enabled(false); draw_perspective_axes.param_widget_is_enabled(false); } // 4) call method specific code switch (method) { case EM_ISOMETRIC_CIRCLE: // special mode: Use first two edges, interpret them as two sides of a parallelogram and // generate an ellipse residing inside the parallelogram. This effect is quite useful when // generating isometric views. Hence, the name. if (0 != genIsometricEllipse(points, path_out)) { return path_in; } break; case EM_PERSPECTIVE_CIRCLE: // special mode: Use first four points, interpret them as the perspective representation of a square and // draw the ellipse as it was a circle inside that square. if (0 != genPerspectiveEllipse(points, path_out)) { return path_in; } break; case EM_STEINER_ELLIPSE: if (0 != genSteinerEllipse(points, false, path_out)) { return path_in; } break; case EM_STEINER_INELLIPSE: if (0 != genSteinerEllipse(points, true, path_out)) { return path_in; } break; default: if (0 != genFitEllipse(points, path_out)) { return path_in; } } return path_out; } /** * Generates an ellipse (or circle) from the vertices of a given path. Thereby, using fitting * algorithms from 2geom. Depending on the settings made by the user regarding things like arc, * slice, circle etc. the final result will be different. We need at least 5 points to fit an * ellipse. With 5 points each point is on the ellipse. For less points we get a circle. */ int LPEPts2Ellipse::genFitEllipse(std::vector const &pts, Geom::PathVector &path_out) { // rotation angle based on user provided rot_axes to position the vertices const double rot_angle = -deg2rad(rot_axes); // negative for ccw rotation Geom::Affine affine; affine *= Geom::Rotate(rot_angle); Geom::Coord a0 = 0; Geom::Coord a1 = 2 * M_PI; if (pts.size() < 2) { return -1; } else if (pts.size() == 2) { // simple line: circle in the middle of the line to the vertices Geom::Point line = pts.front() - pts.back(); double radius = line.length() * 0.5; if (radius < 1e-9) { return -1; } Geom::Point center = middle_point(pts.front(), pts.back()); Geom::Circle circle(center[0], center[1], radius); affine *= Geom::Scale(circle.radius()); affine *= Geom::Translate(circle.center()); Geom::Path path; unit_arc_path(path, affine); path_out.push_back(path); } else if (pts.size() >= 5 && EM_AUTO == method) { // do ellipse try { Geom::Ellipse ellipse; ellipse.fit(pts); affine *= Geom::Scale(ellipse.ray(Geom::X), ellipse.ray(Geom::Y)); affine *= Geom::Rotate(ellipse.rotationAngle()); affine *= Geom::Translate(ellipse.center()); if (gen_arc.get_value()) { Geom::Affine inv_affine = affine.inverse(); Geom::Point p0 = pts.front() * inv_affine; Geom::Point p1 = pts.back() * inv_affine; const bool ccw_wind = is_ccw(pts); endpoints2angles(ccw_wind, other_arc.get_value(), p0, p1, a0, a1); } Geom::Path path; unit_arc_path(path, affine, a0, a1, slice_arc.get_value()); path_out.push_back(path); } catch (...) { return -1; } } else { // do a circle (3,4 points, or only_circle set) try { Geom::Circle circle; circle.fit(pts); affine *= Geom::Scale(circle.radius()); affine *= Geom::Translate(circle.center()); if (gen_arc.get_value()) { Geom::Point p0 = pts.front() - circle.center(); Geom::Point p1 = pts.back() - circle.center(); const bool ccw_wind = is_ccw(pts); endpoints2angles(ccw_wind, other_arc.get_value(), p0, p1, a0, a1); } Geom::Path path; unit_arc_path(path, affine, a0, a1, slice_arc.get_value()); path_out.push_back(path); } catch (...) { return -1; } } // draw frame? if (gen_isometric_frame.get_value()) { gen_iso_frame_paths(path_out, affine); } // draw axes? if (draw_axes.get_value()) { gen_axes_paths(path_out, affine); } return 0; } int LPEPts2Ellipse::genIsometricEllipse(std::vector const &pts, Geom::PathVector &path_out) { // take the first 3 vertices for the edges if (pts.size() < 3) { return -1; } // calc edges Geom::Point e0 = pts[0] - pts[1]; Geom::Point e1 = pts[2] - pts[1]; Geom::Coord ce = cross(e0, e1); // parallel or one is zero? if (fabs(ce) < 1e-9) { return -1; } // unit vectors along edges Geom::Point u0 = unit_vector(e0); Geom::Point u1 = unit_vector(e1); // calc angles Geom::Coord a0 = atan2(e0); // Coord a1=M_PI_2-atan2(e1)-a0; Geom::Coord a1 = acos(dot(u0, u1)) - M_PI_2; // if(fabs(a1)<1e-9) return -1; if (ce < 0) { a1 = -a1; } // lengths: l0= length of edge 0; l1= height of parallelogram Geom::Coord l0 = e0.length() * 0.5; Geom::Point e0n = e1 - dot(u0, e1) * u0; Geom::Coord l1 = e0n.length() * 0.5; // center of the ellipse Geom::Point pos = pts[1] + 0.5 * (e0 + e1); // rotation angle based on user provided rot_axes to position the vertices const double rot_angle = -deg2rad(rot_axes); // negative for ccw rotation // build up the affine transformation Geom::Affine affine; affine *= Geom::Rotate(rot_angle); affine *= Geom::Scale(l0, l1); affine *= Geom::HShear(-tan(a1)); affine *= Geom::Rotate(a0); affine *= Geom::Translate(pos); Geom::Path path; unit_arc_path(path, affine); path_out.push_back(path); // draw frame? if (gen_isometric_frame.get_value()) { gen_iso_frame_paths(path_out, affine); } // draw axes? if (draw_axes.get_value()) { gen_axes_paths(path_out, affine); } return 0; } void evalSteinerEllipse(Geom::Point const &pCenter, Geom::Point const &pCenter_Pt2, Geom::Point const &pPt0_Pt1, const double &angle, Geom::Point &pRes) { // formula for the evaluation of points on the steiner ellipse using parameter angle pRes = pCenter + pCenter_Pt2 * cos(angle) + pPt0_Pt1 * sin(angle) / sqrt(3); } int LPEPts2Ellipse::genSteinerEllipse(std::vector const &pts, bool gen_inellipse, Geom::PathVector &path_out) { // take the first 3 vertices for the edges if (pts.size() < 3) { return -1; } // calc center Geom::Point pCenter = (pts[0] + pts[1] + pts[2]) / 3; // calc main directions of affine triangle Geom::Point f1 = pts[2] - pCenter; Geom::Point f2 = (pts[1] - pts[0]) / sqrt(3); // calc zero angle t0 const double denominator = dot(f1, f1) - dot(f2, f2); double t0 = 0; if (fabs(denominator) > 1e-12) { const double cot2t0 = 2.0 * dot(f1, f2) / denominator; t0 = atan(cot2t0) / 2.0; } // calc relative points of main axes (for axis directions) Geom::Point p0(0, 0), pRel0, pRel1; evalSteinerEllipse(p0, pts[2] - pCenter, pts[1] - pts[0], t0, pRel0); evalSteinerEllipse(p0, pts[2] - pCenter, pts[1] - pts[0], t0 + M_PI_2, pRel1); Geom::Coord l0 = pRel0.length(); Geom::Coord l1 = pRel1.length(); // basic rotation double a0 = atan2(pRel0); bool swapped = false; if (l1 > l0) { std::swap(l0, l1); a0 += M_PI_2; swapped = true; } // the Steiner inellipse is just scaled down by 2 if (gen_inellipse) { l0 /= 2; l1 /= 2; } // rotation angle based on user provided rot_axes to position the vertices const double rot_angle = -deg2rad(rot_axes); // negative for ccw rotation // build up the affine transformation Geom::Affine affine; affine *= Geom::Rotate(rot_angle); affine *= Geom::Scale(l0, l1); affine *= Geom::Rotate(a0); affine *= Geom::Translate(pCenter); Geom::Path path; unit_arc_path(path, affine); path_out.push_back(path); // draw frame? if (gen_isometric_frame.get_value()) { gen_iso_frame_paths(path_out, affine); } // draw axes? if (draw_axes.get_value()) { gen_axes_paths(path_out, affine); } return 0; } // identical to lpe-perspective-envelope.cpp Geom::Point LPEPts2Ellipse::projectPoint(Geom::Point p, double m[][3]) { Geom::Coord x = p[0]; Geom::Coord y = p[1]; return Geom::Point(Geom::Coord((x * m[0][0] + y * m[0][1] + m[0][2]) / (x * m[2][0] + y * m[2][1] + m[2][2])), Geom::Coord((x * m[1][0] + y * m[1][1] + m[1][2]) / (x * m[2][0] + y * m[2][1] + m[2][2]))); } int LPEPts2Ellipse::genPerspectiveEllipse(std::vector const &pts, Geom::PathVector &path_out) { using Geom::X; using Geom::Y; // we need at least four points! if (pts.size() < 4) return -1; // 1) check if the first three edges are a valid perspective // calc edge Geom::Point e[] = { pts[0] - pts[1], pts[1] - pts[2], pts[2] - pts[3], pts[3] - pts[0] }; // calc directions Geom::Coord c[] = { cross(e[0], e[1]), cross(e[1], e[2]), cross(e[2], e[3]), cross(e[3], e[0]) }; // is this quad not convex? if (!((c[0] > 0 && c[1] > 0 && c[2] > 0 && c[3] > 0) || (c[0] < 0 && c[1] < 0 && c[2] < 0 && c[3] < 0))) return -1; // 2) solve the direct linear transformation (see e.g. lpe-perspective-envelope.cpp or // https://franklinta.com/2014/09/08/computing-css-matrix3d-transforms/) // the square points in the initial configuration (about the unit circle): Geom::Point pts0[4] = { { -1.0, -1.0 }, { +1.0, -1.0 }, { +1.0, +1.0 }, { -1.0, +1.0 } }; // build equation in matrix form double eqnVec[8] = { 0 }; double eqnMat[64] = { 0 }; for (unsigned int i = 0; i < 4; ++i) { eqnMat[8 * (i + 0) + 0] = pts0[i][X]; eqnMat[8 * (i + 0) + 1] = pts0[i][Y]; eqnMat[8 * (i + 0) + 2] = 1; eqnMat[8 * (i + 0) + 6] = -pts[i][X] * pts0[i][X]; eqnMat[8 * (i + 0) + 7] = -pts[i][X] * pts0[i][Y]; eqnMat[8 * (i + 4) + 3] = pts0[i][X]; eqnMat[8 * (i + 4) + 4] = pts0[i][Y]; eqnMat[8 * (i + 4) + 5] = 1; eqnMat[8 * (i + 4) + 6] = -pts[i][Y] * pts0[i][X]; eqnMat[8 * (i + 4) + 7] = -pts[i][Y] * pts0[i][Y]; eqnVec[i] = pts[i][X]; eqnVec[i + 4] = pts[i][Y]; } // solve using gsl library gsl_matrix_view m = gsl_matrix_view_array(eqnMat, 8, 8); gsl_vector_view b = gsl_vector_view_array(eqnVec, 8); int s = 0; gsl_linalg_LU_decomp(&m.matrix, gsl_p, &s); gsl_linalg_LU_solve(&m.matrix, gsl_p, &b.vector, gsl_x); // transfer the solution to the projection matrix for further use size_t h = 0; double projmatrix[3][3]; for (auto &matRow : projmatrix) { for (double &matElement : matRow) { if (h == 8) { projmatrix[2][2] = 1.0; } else { matElement = gsl_vector_get(gsl_x, h++); } } } // 3) generate five points on a unit circle and project them five_pts.resize(5); // reuse and avoid new/delete h = 0; double dA = 2.0 * M_PI / 5.0; // delta Angle for (auto &i : five_pts) { const double angle = dA * h++; const Geom::Point circle_point(sin(angle), cos(angle)); i = projectPoint(circle_point, projmatrix); } // 4) fit the five points to an ellipse with the already known function inside genFitEllipse() function // build up the affine transformation const double rot_angle = -deg2rad(rot_axes); // negative for ccw rotation Geom::Affine affine; affine *= Geom::Rotate(rot_angle); try { Geom::Ellipse ellipse; ellipse.fit(five_pts); affine *= Geom::Scale(ellipse.ray(Geom::X), ellipse.ray(Geom::Y)); affine *= Geom::Rotate(ellipse.rotationAngle()); affine *= Geom::Translate(ellipse.center()); } catch (...) { return -1; } Geom::Path path; unit_arc_path(path, affine); path_out.push_back(path); // 5) frames and axes bool ccw_wind = false; if (gen_perspective_frame.get_value() || draw_perspective_axes.get_value()) ccw_wind = is_ccw(pts); const double ra = ccw_wind ? rot_angle : -rot_angle; // draw frame? if (gen_isometric_frame.get_value()) { gen_iso_frame_paths(path_out, affine); } // draw perspective frame? if (gen_perspective_frame.get_value()) { gen_perspective_frame_paths(path_out, ra, projmatrix); } // draw axes? if (draw_axes.get_value()) { gen_axes_paths(path_out, affine); } // draw perspective axes? if (draw_perspective_axes.get_value()) { gen_perspective_axes_paths(path_out, ra, projmatrix); } return 0; } /* ######################## */ } // namespace LivePathEffect } /* namespace Inkscape */ /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :