1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 Martin Owens <doctormo@gmail.com>
# Sergei Izmailov <sergei.a.izmailov@gmail.com>
# Thomas Holder <thomas.holder@schrodinger.com>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# pylint: disable=arguments-differ
"""
Interface for all shapes/polygons such as lines, paths, rectangles, circles etc.
"""
from math import cos, pi, sin
from typing import Optional, Tuple
from ..paths import Arc, Curve, Move, Path, ZoneClose
from ..paths import Line as PathLine
from ..transforms import Transform, ImmutableVector2d, Vector2d
from ..bezier import pointdistance
from ._utils import addNS
from ._base import ShapeElement
class PathElementBase(ShapeElement):
"""Base element for path based shapes"""
get_path = lambda self: Path(self.get("d"))
@classmethod
def new(cls, path, **attrs):
return super().new(d=Path(path), **attrs)
def set_path(self, path):
"""Set the given data as a path as the 'd' attribute"""
self.set("d", str(Path(path)))
def apply_transform(self):
"""Apply the internal transformation to this node and delete"""
if "transform" in self.attrib:
self.path = self.path.transform(self.transform)
self.set("transform", Transform())
@property
def original_path(self):
"""Returns the original path if this is a LPE, or the path if not"""
return Path(self.get("inkscape:original-d", self.path))
@original_path.setter
def original_path(self, path):
if addNS("inkscape:original-d") in self.attrib:
self.set("inkscape:original-d", str(Path(path)))
else:
self.path = path
class PathElement(PathElementBase):
"""Provide a useful extension for path elements"""
tag_name = "path"
@staticmethod
def _arcpath(
cx: float,
cy: float,
rx: float,
ry: float,
start: float,
end: float,
arctype: str,
) -> Optional[Path]:
"""Compute the path for an arc defined by Inkscape-specific attributes.
For details on arguments, see :func:`arc`.
.. versionadded:: 1.2"""
if abs(rx) < 1e-8 or abs(ry) < 1e-8:
return None
incr = end - start
if incr < 0:
incr += 2 * pi
numsegs = min(1 + int(incr * 2.0 / pi), 4)
incr = incr / numsegs
computed = Path()
computed.append(Move(cos(start), sin(start)))
for seg in range(1, numsegs + 1):
computed.append(
Arc(1, 1, 0, 0, 1, cos(start + seg * incr), sin(start + seg * incr))
)
if abs(incr * numsegs - 2 * pi) > 1e-8 and (
arctype in ("slice", "")
): # slice is default
computed.append(PathLine(0, 0))
if arctype != "arc":
computed.append(ZoneClose())
computed.transform(
Transform().add_translate(cx, cy).add_scale(rx, ry), inplace=True
)
return computed.to_relative()
@classmethod
def arc(
cls, center, rx, ry=None, arctype="", pathonly=False, **kw
): # pylint: disable=invalid-name
"""Generates a sodipodi elliptical arc (special type). Also computes the path
that Inkscape uses under the hood.
All data may be given as parseable strings or using numeric data types.
Args:
center (tuple-like): Coordinates of the star/polygon center as tuple or
Vector2d
rx (Union[float, str]): Radius in x direction
ry (Union[float, str], optional): Radius in y direction. If not given,
ry=rx. Defaults to None.
arctype (str, optional): "arc", "chord" or "slice". Defaults to "", i.e.
"slice".
.. versionadded:: 1.2
Previously set to "arc" as fixed value
pathonly (bool, optional): Whether to create the path without
Inkscape-specific attributes. Defaults to False.
.. versionadded:: 1.2
Keyword args:
start (Union[float, str]): start angle in radians
end (Union[float, str]): end angle in radians
open (str): whether the path should be open (true/false). Not used in
Inkscape > 1.1
Returns:
PathElement : the created star/polygon
"""
others = [(name, kw.pop(name, None)) for name in ("start", "end", "open")]
elem = cls(**kw)
elem.set("sodipodi:cx", center[0])
elem.set("sodipodi:cy", center[1])
elem.set("sodipodi:rx", rx)
elem.set("sodipodi:ry", ry or rx)
elem.set("sodipodi:type", "arc")
if arctype != "":
elem.set("sodipodi:arc-type", arctype)
for name, value in others:
if value is not None:
elem.set("sodipodi:" + name, str(value).lower())
path = cls._arcpath(
float(center[0]),
float(center[1]),
float(rx),
float(ry or rx),
float(elem.get("sodipodi:start", 0)),
float(elem.get("sodipodi:end", 2 * pi)),
arctype,
)
if pathonly:
elem = cls(**kw)
if path is not None:
elem.path = path
return elem
@staticmethod
def _starpath(
c: Tuple[float, float],
sides: int,
r: Tuple[float, float], # pylint: disable=invalid-name
arg: Tuple[float, float],
rounded: float,
flatsided: bool,
):
"""Helper method to generate the path for an Inkscape star/ polygon; randomized
is ignored.
For details on arguments, see :func:`star`.
.. versionadded:: 1.2"""
def _star_get_xy(point, index):
cur_arg = arg[point] + 2 * pi / sides * (index % sides)
return Vector2d(*c) + r[point] * Vector2d(cos(cur_arg), sin(cur_arg))
def _rot90_rel(origin, other):
"""Returns a unit length vector at 90 deg from origin to other"""
return (
1
/ pointdistance(other, origin)
* Vector2d(other.y - origin.y, other.x - origin.x)
)
def _star_get_curvepoint(point, index, is_prev: bool):
index = index % sides
orig = _star_get_xy(point, index)
previ = (index - 1 + sides) % sides
nexti = (index + 1) % sides
# neighbors of the current point depend on polygon or star
prev = (
_star_get_xy(point, previ)
if flatsided
else _star_get_xy(1 - point, index if point == 1 else previ)
)
nextp = (
_star_get_xy(point, nexti)
if flatsided
else _star_get_xy(1 - point, index if point == 0 else nexti)
)
mid = 0.5 * (prev + nextp)
# direction of bezier handles
rot = _rot90_rel(orig, mid + 100000 * _rot90_rel(mid, nextp))
ret = (
rounded
* rot
* (
-1 * pointdistance(prev, orig)
if is_prev
else pointdistance(nextp, orig)
)
)
return orig + ret
pointy = abs(rounded) < 1e-4
result = Path()
result.append(Move(*_star_get_xy(0, 0)))
for i in range(0, sides):
# draw to point type 1 for stars
if not flatsided:
if pointy:
result.append(PathLine(*_star_get_xy(1, i)))
else:
result.append(
Curve(
*_star_get_curvepoint(0, i, False),
*_star_get_curvepoint(1, i, True),
*_star_get_xy(1, i),
)
)
# draw to point type 0 for both stars and rectangles
if pointy and i < sides - 1:
result.append(PathLine(*_star_get_xy(0, i + 1)))
if not pointy:
if not flatsided:
result.append(
Curve(
*_star_get_curvepoint(1, i, False),
*_star_get_curvepoint(0, i + 1, True),
*_star_get_xy(0, i + 1),
)
)
else:
result.append(
Curve(
*_star_get_curvepoint(0, i, False),
*_star_get_curvepoint(0, i + 1, True),
*_star_get_xy(0, i + 1),
)
)
result.append(ZoneClose())
return result.to_relative()
@classmethod
def star(
cls,
center,
radii,
sides=5,
rounded=0,
args=(0, 0),
flatsided=False,
pathonly=False,
):
"""Generate a sodipodi star / polygon. Also computes the path that Inkscape uses
under the hood. The arguments for center, radii, sides, rounded and args can be
given as strings or as numeric data.
.. versionadded:: 1.1
Args:
center (Tuple-like): Coordinates of the star/polygon center as tuple or
Vector2d
radii (tuple): Radii of the control points, i.e. their distances from the
center. The control points are specified in polar coordinates. Only the
first control point is used for polygons.
sides (int, optional): Number of sides / tips of the polygon / star.
Defaults to 5.
rounded (int, optional): Controls the rounding radius of the polygon / star.
For `rounded=0`, only straight lines are used. Defaults to 0.
args (tuple, optional): Angle between horizontal axis and control points.
Defaults to (0,0).
.. versionadded:: 1.2
Previously fixed to (0.85, 1.3)
flatsided (bool, optional): True for polygons, False for stars.
Defaults to False.
.. versionadded:: 1.2
pathonly (bool, optional): Whether to create the path without
Inkscape-specific attributes. Defaults to False.
.. versionadded:: 1.2
Returns:
PathElement : the created star/polygon
"""
elem = cls()
elem.set("sodipodi:cx", center[0])
elem.set("sodipodi:cy", center[1])
elem.set("sodipodi:r1", radii[0])
elem.set("sodipodi:r2", radii[1])
elem.set("sodipodi:arg1", args[0])
elem.set("sodipodi:arg2", args[1])
elem.set("sodipodi:sides", max(sides, 3) if flatsided else max(sides, 2))
elem.set("inkscape:rounded", rounded)
elem.set("inkscape:flatsided", str(flatsided).lower())
elem.set("sodipodi:type", "star")
path = cls._starpath(
(float(center[0]), float(center[1])),
int(sides),
(float(radii[0]), float(radii[1])),
(float(args[0]), float(args[1])),
float(rounded),
flatsided,
)
if pathonly:
elem = cls()
# inkex.errormsg(path)
if path is not None:
elem.path = path
return elem
class Polyline(ShapeElement):
"""Like a path, but made up of straight line segments only"""
tag_name = "polyline"
def get_path(self):
return Path("M" + self.get("points"))
def set_path(self, path):
points = [f"{x:g},{y:g}" for x, y in Path(path).end_points]
self.set("points", " ".join(points))
class Polygon(ShapeElement):
"""A closed polyline"""
tag_name = "polygon"
get_path = lambda self: Path("M" + self.get("points") + " Z")
class Line(ShapeElement):
"""A line segment connecting two points"""
tag_name = "line"
x1 = property(lambda self: self.to_dimensionless(self.get("x1", 0)))
y1 = property(lambda self: self.to_dimensionless(self.get("y1", 0)))
x2 = property(lambda self: self.to_dimensionless(self.get("x2", 0)))
y2 = property(lambda self: self.to_dimensionless(self.get("y2", 0)))
get_path = lambda self: Path(f"M{self.x1},{self.y1} L{self.x2},{self.y2}")
@classmethod
def new(cls, start, end, **attrs):
start = Vector2d(start)
end = Vector2d(end)
return super().new(x1=start.x, y1=start.y, x2=end.x, y2=end.y, **attrs)
class RectangleBase(ShapeElement):
"""Provide a useful extension for rectangle elements"""
left = property(lambda self: self.to_dimensionless(self.get("x", "0")))
top = property(lambda self: self.to_dimensionless(self.get("y", "0")))
right = property(lambda self: self.left + self.width)
bottom = property(lambda self: self.top + self.height)
width = property(lambda self: self.to_dimensionless(self.get("width", "0")))
height = property(lambda self: self.to_dimensionless(self.get("height", "0")))
rx = property(
lambda self: self.to_dimensionless(self.get("rx", self.get("ry", 0.0)))
)
ry = property(
lambda self: self.to_dimensionless(self.get("ry", self.get("rx", 0.0)))
) # pylint: disable=invalid-name
def get_path(self):
"""Calculate the path as the box around the rect"""
if self.rx:
rx, ry = self.rx, self.ry # pylint: disable=invalid-name
cpts = [self.left + rx, self.right - rx, self.top + ry, self.bottom - ry]
return (
f"M {cpts[0]},{self.top}"
f"L {cpts[1]},{self.top} "
f"A {self.rx},{self.ry} 0 0 1 {self.right},{cpts[2]}"
f"L {self.right},{cpts[3]} "
f"A {self.rx},{self.ry} 0 0 1 {cpts[1]},{self.bottom}"
f"L {cpts[0]},{self.bottom} "
f"A {self.rx},{self.ry} 0 0 1 {self.left},{cpts[3]}"
f"L {self.left},{cpts[2]} "
f"A {self.rx},{self.ry} 0 0 1 {cpts[0]},{self.top} z"
)
return f"M {self.left},{self.top} h{self.width}v{self.height}h{-self.width} z"
class Rectangle(RectangleBase):
"""Provide a useful extension for rectangle elements"""
tag_name = "rect"
@classmethod
def new(cls, left, top, width, height, **attrs):
return super().new(x=left, y=top, width=width, height=height, **attrs)
class EllipseBase(ShapeElement):
"""Absorbs common part of Circle and Ellipse classes"""
def get_path(self):
"""Calculate the arc path of this circle"""
rx, ry = self._rxry()
cx, y = self.center.x, self.center.y - ry
return (
"M {cx},{y} "
"a {rx},{ry} 0 1 0 {rx}, {ry} "
"a {rx},{ry} 0 0 0 -{rx}, -{ry} z"
).format(cx=cx, y=y, rx=rx, ry=ry)
@property
def center(self):
"""Return center of circle/ellipse"""
return ImmutableVector2d(
self.to_dimensionless(self.get("cx", "0")),
self.to_dimensionless(self.get("cy", "0")),
)
@center.setter
def center(self, value):
value = Vector2d(value)
self.set("cx", value.x)
self.set("cy", value.y)
def _rxry(self):
# type: () -> Vector2d
"""Helper function"""
raise NotImplementedError()
@classmethod
def new(cls, center, radius, **attrs):
circle = super().new(**attrs)
circle.center = center
circle.radius = radius
return circle
class Circle(EllipseBase):
"""Provide a useful extension for circle elements"""
tag_name = "circle"
@property
def radius(self) -> float:
"""Return radius of circle"""
return self.to_dimensionless(self.get("r", "0"))
@radius.setter
def radius(self, value):
self.set("r", self.to_dimensionless(value))
def _rxry(self):
r = self.radius
return Vector2d(r, r)
class Ellipse(EllipseBase):
"""Provide a similar extension to the Circle interface for ellipses"""
tag_name = "ellipse"
@property
def radius(self) -> ImmutableVector2d:
"""Return radii of ellipse"""
return ImmutableVector2d(
self.to_dimensionless(self.get("rx", "0")),
self.to_dimensionless(self.get("ry", "0")),
)
@radius.setter
def radius(self, value):
value = Vector2d(value)
self.set("rx", str(value.x))
self.set("ry", str(value.y))
def _rxry(self):
return self.radius
|