1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
#include <sys/time.h>
#include <iostream>
#include <sstream>
#include <vector>
#include <algorithm>
#include <assert.h>
#include <time.h>
#include <sched.h>
#include <math.h>
const long long US_PER_SECOND = 1000000L;
const long long NS_PER_US = 1000L;
using namespace std;
class Timer{
public:
Timer() {}
// note that CPU time is tracked per-thread, so the timer is only useful
// in the thread it was start()ed from.
void start() {
usec(start_time);
}
void lap(long long &us) {
usec(us);
us -= start_time;
}
long long lap() {
long long us;
usec(us);
return us - start_time;
}
void usec(long long &us) {
clock_gettime(clock, &ts);
us = ts.tv_sec * US_PER_SECOND + ts.tv_nsec / NS_PER_US;
}
/** Ask the OS nicely for a big time slice */
void ask_for_timeslice() {
sched_yield();
}
private:
long long start_time;
struct timespec ts;
#ifdef _POSIX_THREAD_CPUTIME
static const clockid_t clock = CLOCK_THREAD_CPUTIME_ID;
#else
# ifdef CLOCK_MONOTONIC
static const clockid_t clock = CLOCK_MONOTONIC;
# else
static const clockid_t clock = CLOCK_REALTIME;
# endif
#endif
};
int estimate_useful_window()
{
Timer tm;
tm.ask_for_timeslice();
int window = 1;
while(1) {
tm.start();
for(int i = 0; i < window; i++) {}
long long base_line = tm.lap();
if(base_line > 1 and window > 100)
return window;
window *= 2;
}
}
template <typename T>
string robust_timer(T &t) {
static int base_rate = estimate_useful_window();
//cout << "base line iterations:" << base_rate << endl;
double sum = 0;
vector<double> results;
const int n_trials = 20;
results.reserve(n_trials);
for(int trials = 0; trials < n_trials; trials++) {
Timer tm;
tm.ask_for_timeslice();
tm.start();
int iters = 0;
while(tm.lap() < 10000) {
for(int i = 0; i < base_rate; i++)
t();
iters+=base_rate;
}
base_rate = iters;
double lap_time = double(tm.lap());
double individual_time = lap_time/base_rate;
sum += individual_time;
results.push_back(individual_time);
//cout << individual_time << endl;
}
double resS = 0;
double resN = 0;
sort(results.begin(), results.end());
double ave = results[results.size()/2];//sum/n_trials; // median
//cout << "median:" << ave << endl;
double least = ave;
double resSS = 0;
for(int i = 0; i < n_trials; i++) {
double dt = results[i];
if(dt <= ave*1.1) {
resS += dt;
resN += 1;
resSS += dt*dt;
if(least < dt)
least = dt;
}
}
double filtered_ave = resS / resN;
double stddev = sqrt((resSS - 2*resS*filtered_ave + resN*filtered_ave*filtered_ave)/(resN-1)); // sum(x-u)^2 = sum(x^2-2xu+u*u)
assert (least > filtered_ave*0.7); // If this throws something was really screwy
std::basic_stringstream<char> ss;
ss << filtered_ave << " +/-" << stddev << "us";
return ss.str();
}
struct nop{
void operator()() const {}
};
#define degenerate_imported 1
#include "degenerate.cpp"
using namespace Geom;
template <typename T>
struct copy{
T a, b;
void operator()() {
T c = a;
}
};
template <typename T>
struct add{
T a, b;
void operator()() {
T c = a + b;
}
};
template <typename T>
struct add_mutate{
T a, b;
void operator()() {
a += b;
}
};
template <typename T>
struct scale{
T a;
double b;
void operator()() {
T c = a * b;
}
};
template <typename T>
struct scale_mutate{
T a;
double b;
void operator()() {
a *= b;
}
};
template <typename T>
struct mult{
T a, b;
void operator()() {
T c = a * b;
}
};
template <typename T>
struct mult_mutate{
T a, b, c;
void operator()() {
c = a;
c *= b;
}
};
template <typename T>
void basic_arith(T const & a, T const & b) {
{
::copy<T> A;
A.a = a;
A.b = b;
cout << "copy:"
<< robust_timer(A) << endl;
}
{
add<T> A;
A.a = a;
A.b = b;
cout << "add:"
<< robust_timer(A) << endl;
}
{
add_mutate<T> A;
A.a = a;
A.b = b;
cout << "add_mutate:"
<< robust_timer(A) << endl;
}
{
::scale<T> A;
A.a = a;
A.b = 1;
cout << "scale:"
<< robust_timer(A) << endl;
}
{
scale_mutate<T> A;
A.a = a;
A.b = 1;
cout << "scale_mutate:"
<< robust_timer(A) << endl;
}
{
mult<T> A;
A.a = a;
A.b = b;
cout << "mult:"
<< robust_timer(A) << endl;
}
{
mult_mutate<T> A;
A.a = a;
A.b = b;
cout << "mult_mutate:"
<< robust_timer(A) << endl;
}
}
#include <valarray>
#include <2geom/orphan-code/sbasisN.h>
#include <2geom/piecewise.h>
int main(int /*argc*/, char** /*argv*/) {
{
nop N;
cout << "nop:" << robust_timer(N) << endl;
}
vector<SBasis> sbs;
valarray<double> va(4), vb(4);
generate_random_sbasis(sbs);
cout << "double\n";
basic_arith(sbs[0][0][0], sbs[1][0][0]);
cout << "valarray\n";
basic_arith(va, vb);
//cout << "Linear\n";
//basic_arith(sbs[0][0], sbs[1][0]);
cout << "SBasis\n";
basic_arith(sbs[0], sbs[1]);
cout << "pw<SBasis>\n";
basic_arith(Piecewise<SBasis>(sbs[0]), Piecewise<SBasis>(sbs[1]));
/*cout << "SBasisN<1>\n";
SBasisN<1> sbnA = sbs[0];
SBasisN<1> sbnB = sbs[0];
basic_arith(sbnA, sbnB);*/
}
|