/* Copyright (C) CZ.NIC, z.s.p.o. * SPDX-License-Identifier: GPL-3.0-or-later */ /** @file * Implementation of NSEC3 handling. Prototypes in ./impl.h */ #include "lib/cache/impl.h" #include "contrib/base32hex.h" #include "lib/dnssec/nsec.h" #include "lib/dnssec/nsec3.h" #include "lib/layer/iterate.h" #include static const knot_db_val_t VAL_EMPTY = { NULL, 0 }; /** Common part: write all but the NSEC3 hash. */ static knot_db_val_t key_NSEC3_common(struct key *k, const knot_dname_t *zname, const nsec_p_hash_t nsec_p_hash) { if (kr_fails_assert(k && zname && !kr_dname_lf(k->buf, zname, false))) return VAL_EMPTY; /* CACHE_KEY_DEF: key == zone's dname_lf + '\0' + '3' + nsec_p hash (4B) * + NSEC3 hash (20B == NSEC3_HASH_LEN binary!) * LATER(optim.) nsec_p hash: perhaps 2B would give a sufficient probability * of avoiding collisions. */ uint8_t *begin = k->buf + 1 + k->zlf_len; /* one byte after zone's zero */ begin[0] = 0; begin[1] = '3'; /* tag for NSEC3 */ k->type = KNOT_RRTYPE_NSEC3; memcpy(begin + 2, &nsec_p_hash, sizeof(nsec_p_hash)); return (knot_db_val_t){ .data = k->buf + 1, .len = begin + 2 + sizeof(nsec_p_hash) - (k->buf + 1), }; } knot_db_val_t key_NSEC3(struct key *k, const knot_dname_t *nsec3_name, const nsec_p_hash_t nsec_p_hash) { knot_db_val_t val = key_NSEC3_common(k, nsec3_name /*only zname required*/, nsec_p_hash); if (!val.data) return val; int len = base32hex_decode(nsec3_name + 1, nsec3_name[0], knot_db_val_bound(val), KR_CACHE_KEY_MAXLEN - val.len); if (len != NSEC3_HASH_LEN) { return VAL_EMPTY; } val.len += len; return val; } /** Construct a string key for for NSEC3 predecessor-search, from an non-NSEC3 name. * \note k->zlf_len and k->zname are assumed to have been correctly set */ static knot_db_val_t key_NSEC3_name(struct key *k, const knot_dname_t *name, const bool add_wildcard, const struct nsec_p *nsec_p) { bool ok = k && name && nsec_p && nsec_p->raw; if (!ok) return VAL_EMPTY; knot_db_val_t val = key_NSEC3_common(k, k->zname, nsec_p->hash); if (!val.data) return val; /* Make `name` point to correctly wildcarded owner name. */ uint8_t buf[KNOT_DNAME_MAXLEN]; int name_len; if (add_wildcard) { buf[0] = '\1'; buf[1] = '*'; name_len = knot_dname_to_wire(buf + 2, name, sizeof(buf) - 2); if (name_len < 0) return VAL_EMPTY; /* wants wildcard but doesn't fit */ name = buf; name_len += 2; } else { name_len = knot_dname_size(name); } /* Append the NSEC3 hash. */ const dnssec_binary_t dname = { .size = name_len, .data = (uint8_t *)/*const-cast*/name, }; if (kr_fails_assert(nsec_p->libknot.iterations <= KR_NSEC3_MAX_ITERATIONS)) { /* This is mainly defensive; it shouldn't happen thanks to downgrades. */ return VAL_EMPTY; } #if 0 // LATER(optim.): this requires a patched libdnssec - tries to realloc() dnssec_binary_t hash = { .size = KR_CACHE_KEY_MAXLEN - val.len, .data = val.data + val.len, }; int ret = dnssec_nsec3_hash(&dname, &nsec_p->libknot, &hash); if (ret != DNSSEC_EOK) return VAL_EMPTY; if (kr_fails_assert(hash.size == NSEC3_HASH_LEN)) return VAL_EMPTY; #else dnssec_binary_t hash = { .size = 0, .data = NULL }; int ret = dnssec_nsec3_hash(&dname, &nsec_p->libknot, &hash); if (ret != DNSSEC_EOK) return VAL_EMPTY; if (kr_fails_assert(hash.size == NSEC3_HASH_LEN && hash.data)) return VAL_EMPTY; memcpy(knot_db_val_bound(val), hash.data, NSEC3_HASH_LEN); free(hash.data); #endif val.len += hash.size; return val; } /** Return h1 < h2, semantically on NSEC3 hashes. */ static inline bool nsec3_hash_ordered(const uint8_t *h1, const uint8_t *h2) { return memcmp(h1, h2, NSEC3_HASH_LEN) < 0; } /** NSEC3 range search. * * \param key Pass output of key_NSEC3(k, ...) * \param nsec_p Restrict to this NSEC3 parameter-set. * \param value[out] The raw data of the NSEC3 cache record (optional; consistency checked). * \param exact_match[out] Whether the key was matched exactly or just covered (optional). * \param hash_low[out] Output the low end hash of covering NSEC3, pointing within DB (optional). * \param new_ttl[out] New TTL of the NSEC3 (optional). * \return Error message or NULL. * \note The function itself does *no* bitmap checks, e.g. RFC 6840 sec. 4. */ static const char * find_leq_NSEC3(struct kr_cache *cache, const struct kr_query *qry, const knot_db_val_t key, const struct key *k, const struct nsec_p *nsec_p, knot_db_val_t *value, bool *exact_match, const uint8_t **hash_low, uint32_t *new_ttl) { /* Do the cache operation. */ const size_t hash_off = key_nsec3_hash_off(k); if (kr_fails_assert(key.data && key.len >= hash_off)) return "range search ERROR"; knot_db_val_t key_found = key; knot_db_val_t val = { NULL, 0 }; int ret = cache_op(cache, read_leq, &key_found, &val); /* ^^ LATER(optim.): incrementing key and doing less-than search * would probably be slightly more efficient with LMDB, * but the code complexity would grow considerably. */ if (ret < 0) { if (kr_fails_assert(ret == kr_error(ENOENT))) { return "range search ERROR"; } else { return "range search miss"; } } if (value) { *value = val; } /* Check consistency, TTL, rank. */ const bool is_exact = (ret == 0); if (exact_match) { *exact_match = is_exact; } const struct entry_h *eh = entry_h_consistent_NSEC(val); if (!eh) { /* This might be just finding something else than NSEC3 entry, * in case we searched before the very first one in the zone. */ return "range search found inconsistent entry"; } /* Passing just zone name instead of owner. */ int32_t new_ttl_ = get_new_ttl(eh, qry, k->zname, KNOT_RRTYPE_NSEC3, qry->timestamp.tv_sec); if (new_ttl_ < 0 || !kr_rank_test(eh->rank, KR_RANK_SECURE)) { return "range search found stale or insecure entry"; /* TODO: remove the stale record *and* retry, * in case we haven't run off. Perhaps start by in_zone check. */ } if (new_ttl) { *new_ttl = new_ttl_; } if (hash_low) { *hash_low = (uint8_t *)key_found.data + hash_off; } if (is_exact) { /* Nothing else to do. */ return NULL; } /* The NSEC3 starts strictly before our target name; * now check that it still belongs into that zone and chain. */ const uint8_t *nsec_p_raw = eh->data + KR_CACHE_RR_COUNT_SIZE + 2 /* RDLENGTH from rfc1034 */; const int nsec_p_len = nsec_p_rdlen(nsec_p_raw); const bool same_chain = key_found.len == hash_off + NSEC3_HASH_LEN /* CACHE_KEY_DEF */ && memcmp(key.data, key_found.data, hash_off) == 0 /* exact comparison of NSEC3 parameters */ && nsec_p_len == nsec_p_rdlen(nsec_p->raw) && memcmp(nsec_p_raw, nsec_p->raw, nsec_p_len) == 0; if (!same_chain) { return "range search miss (!same_chain)"; } /* We know it starts before sname, so let's check the other end. * A. find the next hash and check its length. */ if (kr_fails_assert(KR_CACHE_RR_COUNT_SIZE == 2 && get_uint16(eh->data) != 0)) return "ERROR"; /* TODO: more checks? Also, `next` computation is kinda messy. */ const uint8_t *hash_next = nsec_p_raw + nsec_p_len + sizeof(uint8_t) /* hash length from rfc5155 */; if (hash_next[-1] != NSEC3_HASH_LEN) { return "unexpected next hash length"; } /* B. do the actual range check. */ const uint8_t * const hash_searched = (uint8_t *)key.data + hash_off; bool covers = /* we know for sure that the low end is before the searched name */ nsec3_hash_ordered(hash_searched, hash_next) /* and the wrap-around case */ || nsec3_hash_ordered(hash_next, (const uint8_t *)key_found.data + hash_off); if (!covers) { return "range search miss (!covers)"; } return NULL; } /** Extract textual representation of NSEC3 hash from a cache key. * \param text must have length at least NSEC3_HASH_TXT_LEN+1 (will get 0-terminated). */ static void key_NSEC3_hash2text(const knot_db_val_t key, char *text) { kr_require(key.data && key.len > NSEC3_HASH_LEN); const uint8_t *hash_raw = knot_db_val_bound(key) - NSEC3_HASH_LEN; /* CACHE_KEY_DEF ^^ */ int len = base32hex_encode(hash_raw, NSEC3_HASH_LEN, (uint8_t *)text, NSEC3_HASH_TXT_LEN); kr_assert(len == NSEC3_HASH_TXT_LEN); text[NSEC3_HASH_TXT_LEN] = '\0'; } /** Reconstruct a name into a buffer (assuming length at least KNOT_DNAME_MAXLEN). * \return kr_ok() or error code (<0). */ static int dname_wire_reconstruct(knot_dname_t *buf, const knot_dname_t *zname, const uint8_t *hash_raw) { int len = base32hex_encode(hash_raw, NSEC3_HASH_LEN, buf + 1, NSEC3_HASH_TXT_LEN); if (kr_fails_assert(len == NSEC3_HASH_TXT_LEN)) return kr_error(EINVAL); buf[0] = len; int ret = knot_dname_to_wire(buf + 1 + len, zname, KNOT_DNAME_MAXLEN - 1 - len); return ret < 0 ? kr_error(ret) : kr_ok(); } static void nsec3_hash2text(const knot_dname_t *owner, char *text) { kr_require(owner[0] == NSEC3_HASH_TXT_LEN); memcpy(text, owner + 1, MIN(owner[0], NSEC3_HASH_TXT_LEN)); text[NSEC3_HASH_TXT_LEN] = '\0'; } int nsec3_encloser(struct key *k, struct answer *ans, const int sname_labels, int *clencl_labels, const struct kr_query *qry, struct kr_cache *cache) { static const int ESKIP = ABS(ENOENT); /* Basic sanity check. */ const bool ok = k && k->zname && ans && clencl_labels && qry && cache; if (kr_fails_assert(ok)) return kr_error(EINVAL); /*** Find the closest encloser - cycle: name starting at sname, * proceeding while longer than zname, shortening by one label on step. * We need a pair where a name doesn't exist *and* its parent does. */ /* LATER(optim.): perhaps iterate in the other order - that * should help significantly against deep queries where we have * a shallow proof in the cache. We can also optimize by using * only exact search unless we had a match in the previous iteration. */ const int zname_labels = knot_dname_labels(k->zname, NULL); int last_nxproven_labels = -1; const knot_dname_t *name = qry->sname; for (int name_labels = sname_labels; name_labels >= zname_labels; --name_labels, name += 1 + name[0]) { /* Find a previous-or-equal NSEC3 in cache covering the name, * checking TTL etc. */ const knot_db_val_t key = key_NSEC3_name(k, name, false, &ans->nsec_p); if (!key.data) continue; WITH_VERBOSE(qry) { char hash_txt[NSEC3_HASH_TXT_LEN + 1]; key_NSEC3_hash2text(key, hash_txt); VERBOSE_MSG(qry, "=> NSEC3 depth %d: hash %s\n", name_labels - zname_labels, hash_txt); } knot_db_val_t val = { NULL, 0 }; bool exact_match; uint32_t new_ttl; const uint8_t *hash_low; const char *err = find_leq_NSEC3(cache, qry, key, k, &ans->nsec_p, &val, &exact_match, &hash_low, &new_ttl); if (err) { WITH_VERBOSE(qry) { auto_free char *name_str = kr_dname_text(name); VERBOSE_MSG(qry, "=> NSEC3 encloser error for %s: %s\n", name_str, err); } continue; } if (exact_match && name_labels != sname_labels && name_labels + 1 != last_nxproven_labels) { /* This name exists (checked rank and TTL), and it's * neither of the two interesting cases, so we do not * keep searching for non-existence above this name. */ VERBOSE_MSG(qry, "=> NSEC3 encloser: only found existence of an ancestor\n"); return ESKIP; } /* Optimization: avoid the rest of the last iteration if pointless. */ if (!exact_match && name_labels == zname_labels && last_nxproven_labels != name_labels + 1) { break; } /* Basic checks OK -> materialize data, cleaning any previous * records on that answer index (unsuccessful attempts). */ knot_dname_t owner[KNOT_DNAME_MAXLEN]; { int ret = dname_wire_reconstruct(owner, k->zname, hash_low); if (unlikely(ret)) continue; } const int ans_id = (exact_match && name_labels + 1 == last_nxproven_labels) ? AR_CPE : AR_NSEC; { const struct entry_h *nsec_eh = val.data; memset(&ans->rrsets[ans_id], 0, sizeof(ans->rrsets[ans_id])); int ret = entry2answer(ans, ans_id, nsec_eh, knot_db_val_bound(val), owner, KNOT_RRTYPE_NSEC3, new_ttl); if (ret) return kr_error(ret); } if (!exact_match) { /* Non-existence proven, but we don't know if `name` * is the next closer name. * Note: we don't need to check for the sname being * delegated away by this record, as with NSEC3 only * *exact* match on an ancestor could do that. */ last_nxproven_labels = name_labels; WITH_VERBOSE(qry) { char hash_low_txt[NSEC3_HASH_TXT_LEN + 1]; nsec3_hash2text(owner, hash_low_txt); VERBOSE_MSG(qry, "=> NSEC3 depth %d: covered by %s -> TODO, new TTL %d\n", name_labels - zname_labels, hash_low_txt, new_ttl); } continue; } /* Exactly matched NSEC3: two cases, one after another. */ const knot_rrset_t *nsec_rr = ans->rrsets[ans_id].set.rr; const uint8_t *bm = knot_nsec3_bitmap(nsec_rr->rrs.rdata); uint16_t bm_size = knot_nsec3_bitmap_len(nsec_rr->rrs.rdata); if (kr_fails_assert(bm)) return kr_error(EFAULT); if (name_labels == sname_labels) { if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) != 0) { VERBOSE_MSG(qry, "=> NSEC3 sname: match but failed type check\n"); return ESKIP; } /* NODATA proven; just need to add SOA+RRSIG later */ VERBOSE_MSG(qry, "=> NSEC3 sname: match proved NODATA, new TTL %d\n", new_ttl); ans->rcode = PKT_NODATA; return kr_ok(); } /* else */ if (kr_fails_assert(name_labels + 1 == last_nxproven_labels)) return kr_error(EINVAL); if (kr_nsec_children_in_zone_check(bm, bm_size) != 0) { VERBOSE_MSG(qry, "=> NSEC3 encloser: found but delegated (or error)\n"); return ESKIP; } /* NXDOMAIN proven *except* for wildcards. */ WITH_VERBOSE(qry) { auto_free char *name_str = kr_dname_text(name); VERBOSE_MSG(qry, "=> NSEC3 encloser: confirmed as %s, new TTL %d\n", name_str, new_ttl); } *clencl_labels = name_labels; ans->rcode = PKT_NXDOMAIN; /* Avoid repeated NSEC3 - remove either if the hashes match. * This is very unlikely in larger zones: 1/size (per attempt). * Well, deduplication would happen anyway when the answer * from cache is read by kresd (internally). */ if (unlikely(0 == memcmp(ans->rrsets[AR_NSEC].set.rr->owner + 1, ans->rrsets[AR_CPE ].set.rr->owner + 1, NSEC3_HASH_LEN))) { memset(&ans->rrsets[AR_CPE], 0, sizeof(ans->rrsets[AR_CPE])); /* LATER(optim.): perhaps check this earlier and avoid some work? */ } return kr_ok(); } /* We've ran out of options. */ if (last_nxproven_labels > 0) { /* We didn't manage to prove existence of the closest encloser, * meaning the only chance left is a *positive* wildcard record. */ *clencl_labels = last_nxproven_labels - 1; ans->rcode = PKT_NXDOMAIN; /* FIXME: review */ } return ESKIP; } int nsec3_src_synth(struct key *k, struct answer *ans, const knot_dname_t *clencl_name, const struct kr_query *qry, struct kr_cache *cache) { /* Find a previous-or-equal NSEC3 in cache covering or matching * the source of synthesis, checking TTL etc. */ const knot_db_val_t key = key_NSEC3_name(k, clencl_name, true, &ans->nsec_p); if (!key.data) return kr_error(1); WITH_VERBOSE(qry) { char hash_txt[NSEC3_HASH_TXT_LEN + 1]; key_NSEC3_hash2text(key, hash_txt); VERBOSE_MSG(qry, "=> NSEC3 wildcard: hash %s\n", hash_txt); } knot_db_val_t val = { NULL, 0 }; bool exact_match; uint32_t new_ttl; const uint8_t *hash_low; const char *err = find_leq_NSEC3(cache, qry, key, k, &ans->nsec_p, &val, &exact_match, &hash_low, &new_ttl); if (err) { VERBOSE_MSG(qry, "=> NSEC3 wildcard: %s\n", err); return kr_ok(); } /* LATER(optim.): avoid duplicities in answer. */ /* Basic checks OK -> materialize the data (speculatively). */ knot_dname_t owner[KNOT_DNAME_MAXLEN]; { int ret = dname_wire_reconstruct(owner, k->zname, hash_low); if (unlikely(ret)) return kr_ok(); const struct entry_h *nsec_eh = val.data; ret = entry2answer(ans, AR_WILD, nsec_eh, knot_db_val_bound(val), owner, KNOT_RRTYPE_NSEC3, new_ttl); if (ret) return kr_error(ret); } const knot_rrset_t *nsec_rr = ans->rrsets[AR_WILD].set.rr; if (!exact_match) { /* The record proves wildcard non-existence. */ WITH_VERBOSE(qry) { char hash_low_txt[NSEC3_HASH_TXT_LEN + 1]; nsec3_hash2text(owner, hash_low_txt); VERBOSE_MSG(qry, "=> NSEC3 wildcard: covered by %s -> TODO, new TTL %d\n", hash_low_txt, new_ttl); } return AR_SOA; } /* The wildcard exists. Find if it's NODATA - check type bitmap. */ const uint8_t *bm = knot_nsec3_bitmap(nsec_rr->rrs.rdata); uint16_t bm_size = knot_nsec3_bitmap_len(nsec_rr->rrs.rdata); if (kr_fails_assert(bm)) return kr_error(EFAULT); if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) == 0) { /* NODATA proven; just need to add SOA+RRSIG later */ VERBOSE_MSG(qry, "=> NSEC3 wildcard: match proved NODATA, new TTL %d\n", new_ttl); ans->rcode = PKT_NODATA; return AR_SOA; } /* else */ /* The data probably exists -> don't add this NSEC3 * and (later) try to find the real wildcard data */ VERBOSE_MSG(qry, "=> NSEC3 wildcard: should exist (or error)\n"); ans->rcode = PKT_NOERROR; memset(&ans->rrsets[AR_WILD], 0, sizeof(ans->rrsets[AR_WILD])); return kr_ok(); }