1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
/* Copyright (C) 2022 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "knot/zone/timers.h"
#include "contrib/wire_ctx.h"
#include "knot/zone/zonedb.h"
/*
* # Timer database
*
* Timer database stores timestamps of events which need to be retained
* across server restarts. The key in the database is the zone name in
* wire format. The value contains serialized timers.
*
* # Serialization format
*
* The value is a sequence of timers. Each timer consists of the timer
* identifier (1 byte, unsigned integer) and timer value (8 bytes, unsigned
* integer, network order).
*
* For example, the following byte sequence:
*
* 81 00 00 00 00 57 e3 e8 0a 82 00 00 00 00 57 e3 e9 a1
*
* Encodes the following timers:
*
* last_flush = 1474553866
* last_refresh = 1474554273
*/
/*!
* \brief Timer database fields identifiers.
*
* Valid ID starts with '1' in MSB to avoid conflicts with "old timers".
*/
enum timer_id {
TIMER_INVALID = 0,
TIMER_SOA_EXPIRE = 0x80, // DEPRECATED
TIMER_LAST_FLUSH = 0x81,
TIMER_LAST_REFRESH = 0x82, // DEPRECATED
TIMER_NEXT_REFRESH = 0x83,
TIMER_NEXT_DS_CHECK = 0x85,
TIMER_NEXT_DS_PUSH = 0x86,
TIMER_CATALOG_MEMBER = 0x87,
TIMER_LAST_NOTIFIED = 0x88,
TIMER_LAST_REFR_OK = 0x89,
TIMER_NEXT_EXPIRE = 0x8a,
};
#define TIMER_SIZE (sizeof(uint8_t) + sizeof(uint64_t))
/*!
* \brief Deserialize timers from a binary buffer.
*
* \note Unknown timers are ignored.
*/
static int deserialize_timers(zone_timers_t *timers_ptr,
const uint8_t *data, size_t size)
{
if (!timers_ptr || !data) {
return KNOT_EINVAL;
}
zone_timers_t timers = { 0 };
wire_ctx_t wire = wire_ctx_init_const(data, size);
while (wire_ctx_available(&wire) >= TIMER_SIZE) {
uint8_t id = wire_ctx_read_u8(&wire);
uint64_t value = wire_ctx_read_u64(&wire);
switch (id) {
case TIMER_SOA_EXPIRE: timers.soa_expire = value; break;
case TIMER_LAST_FLUSH: timers.last_flush = value; break;
case TIMER_LAST_REFRESH: timers.last_refresh = value; break;
case TIMER_NEXT_REFRESH: timers.next_refresh = value; break;
case TIMER_LAST_REFR_OK: timers.last_refresh_ok = value; break;
case TIMER_LAST_NOTIFIED: timers.last_notified_serial = value; break;
case TIMER_NEXT_DS_CHECK: timers.next_ds_check = value; break;
case TIMER_NEXT_DS_PUSH: timers.next_ds_push = value; break;
case TIMER_CATALOG_MEMBER: timers.catalog_member = value; break;
case TIMER_NEXT_EXPIRE: timers.next_expire = value; break;
default: break; // ignore
}
}
if (wire_ctx_available(&wire) != 0) {
return KNOT_EMALF;
}
assert(wire.error == KNOT_EOK);
*timers_ptr = timers;
return KNOT_EOK;
}
static void txn_write_timers(knot_lmdb_txn_t *txn, const knot_dname_t *zone,
const zone_timers_t *timers)
{
MDB_val k = { knot_dname_size(zone), (void *)zone };
MDB_val v = knot_lmdb_make_key("BLBLBLBLBLBLBLBL",
TIMER_LAST_FLUSH, (uint64_t)timers->last_flush,
TIMER_NEXT_REFRESH, (uint64_t)timers->next_refresh,
TIMER_LAST_REFR_OK, (uint64_t)timers->last_refresh_ok,
TIMER_LAST_NOTIFIED, timers->last_notified_serial,
TIMER_NEXT_DS_CHECK, (uint64_t)timers->next_ds_check,
TIMER_NEXT_DS_PUSH, (uint64_t)timers->next_ds_push,
TIMER_CATALOG_MEMBER,(uint64_t)timers->catalog_member,
TIMER_NEXT_EXPIRE, (uint64_t)timers->next_expire);
knot_lmdb_insert(txn, &k, &v);
free(v.mv_data);
}
int zone_timers_open(const char *path, knot_db_t **db, size_t mapsize)
{
if (path == NULL || db == NULL) {
return KNOT_EINVAL;
}
struct knot_db_lmdb_opts opts = KNOT_DB_LMDB_OPTS_INITIALIZER;
opts.mapsize = mapsize;
opts.path = path;
return knot_db_lmdb_api()->init(db, NULL, &opts);
}
void zone_timers_close(knot_db_t *db)
{
if (db == NULL) {
return;
}
knot_db_lmdb_api()->deinit(db);
}
int zone_timers_read(knot_lmdb_db_t *db, const knot_dname_t *zone,
zone_timers_t *timers)
{
if (knot_lmdb_exists(db) == KNOT_ENODB) {
return KNOT_ENODB;
}
int ret = knot_lmdb_open(db);
if (ret != KNOT_EOK) {
return ret;
}
knot_lmdb_txn_t txn = { 0 };
knot_lmdb_begin(db, &txn, false);
MDB_val k = { knot_dname_size(zone), (void *)zone };
if (knot_lmdb_find(&txn, &k, KNOT_LMDB_EXACT | KNOT_LMDB_FORCE)) {
deserialize_timers(timers, txn.cur_val.mv_data, txn.cur_val.mv_size);
}
knot_lmdb_abort(&txn);
// backward compatibility
// For catalog zones, next_expire is cleaned up later by zone_timers_sanitize().
if (timers->next_expire == 0 && timers->last_refresh > 0) {
timers->next_expire = timers->last_refresh + timers->soa_expire;
}
return txn.ret;
}
int zone_timers_write(knot_lmdb_db_t *db, const knot_dname_t *zone,
const zone_timers_t *timers)
{
knot_lmdb_txn_t txn = { 0 };
knot_lmdb_begin(db, &txn, true);
txn_write_timers(&txn, zone, timers);
knot_lmdb_commit(&txn);
return txn.ret;
}
static void txn_zone_write(zone_t *z, knot_lmdb_txn_t *txn)
{
txn_write_timers(txn, z->name, &z->timers);
}
int zone_timers_write_all(knot_lmdb_db_t *db, knot_zonedb_t *zonedb)
{
int ret = knot_lmdb_open(db);
if (ret != KNOT_EOK) {
return ret;
}
knot_lmdb_txn_t txn = { 0 };
knot_lmdb_begin(db, &txn, true);
knot_zonedb_foreach(zonedb, txn_zone_write, &txn);
knot_lmdb_commit(&txn);
return txn.ret;
}
int zone_timers_sweep(knot_lmdb_db_t *db, sweep_cb keep_zone, void *cb_data)
{
if (knot_lmdb_exists(db) == KNOT_ENODB) {
return KNOT_EOK;
}
int ret = knot_lmdb_open(db);
if (ret != KNOT_EOK) {
return ret;
}
knot_lmdb_txn_t txn = { 0 };
knot_lmdb_begin(db, &txn, true);
knot_lmdb_forwhole(&txn) {
if (!keep_zone((const knot_dname_t *)txn.cur_key.mv_data, cb_data)) {
knot_lmdb_del_cur(&txn);
}
}
knot_lmdb_commit(&txn);
return txn.ret;
}
bool zone_timers_serial_notified(const zone_timers_t *timers, uint32_t serial)
{
return (timers->last_notified_serial & LAST_NOTIFIED_SERIAL_VALID) &&
((uint32_t)timers->last_notified_serial == serial);
}
|