summaryrefslogtreecommitdiffstats
path: root/canvas/source/vcl/canvashelper_texturefill.cxx
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:06:44 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:06:44 +0000
commited5640d8b587fbcfed7dd7967f3de04b37a76f26 (patch)
tree7a5f7c6c9d02226d7471cb3cc8fbbf631b415303 /canvas/source/vcl/canvashelper_texturefill.cxx
parentInitial commit. (diff)
downloadlibreoffice-upstream.tar.xz
libreoffice-upstream.zip
Adding upstream version 4:7.4.7.upstream/4%7.4.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--canvas/source/vcl/canvashelper_texturefill.cxx1088
1 files changed, 1088 insertions, 0 deletions
diff --git a/canvas/source/vcl/canvashelper_texturefill.cxx b/canvas/source/vcl/canvashelper_texturefill.cxx
new file mode 100644
index 000000000..fa8b97395
--- /dev/null
+++ b/canvas/source/vcl/canvashelper_texturefill.cxx
@@ -0,0 +1,1088 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#include <sal/config.h>
+
+#include <cstdlib>
+#include <tuple>
+
+#include <basegfx/matrix/b2dhommatrix.hxx>
+#include <basegfx/numeric/ftools.hxx>
+#include <basegfx/point/b2dpoint.hxx>
+#include <basegfx/polygon/b2dpolygon.hxx>
+#include <basegfx/polygon/b2dpolygontools.hxx>
+#include <basegfx/range/b2drectangle.hxx>
+#include <basegfx/utils/canvastools.hxx>
+#include <basegfx/utils/keystoplerp.hxx>
+#include <basegfx/utils/lerp.hxx>
+#include <basegfx/utils/tools.hxx>
+#include <com/sun/star/rendering/TexturingMode.hpp>
+#include <rtl/math.hxx>
+#include <tools/diagnose_ex.h>
+#include <tools/poly.hxx>
+#include <vcl/bitmapex.hxx>
+#include <vcl/canvastools.hxx>
+#include <vcl/virdev.hxx>
+#include <vcl/gradient.hxx>
+
+#include <canvas/canvastools.hxx>
+#include <parametricpolypolygon.hxx>
+
+#include "canvashelper.hxx"
+#include "impltools.hxx"
+
+
+using namespace ::com::sun::star;
+
+namespace vclcanvas
+{
+ namespace
+ {
+ bool textureFill( OutputDevice& rOutDev,
+ const GraphicObject& rGraphic,
+ const ::Point& rPosPixel,
+ const ::Size& rNextTileX,
+ const ::Size& rNextTileY,
+ sal_Int32 nTilesX,
+ sal_Int32 nTilesY,
+ const ::Size& rTileSize,
+ const GraphicAttr& rAttr)
+ {
+ bool bRet( false );
+ Point aCurrPos;
+ int nX, nY;
+
+ for( nY=0; nY < nTilesY; ++nY )
+ {
+ aCurrPos.setX( rPosPixel.X() + nY*rNextTileY.Width() );
+ aCurrPos.setY( rPosPixel.Y() + nY*rNextTileY.Height() );
+
+ for( nX=0; nX < nTilesX; ++nX )
+ {
+ // update return value. This method should return true, if
+ // at least one of the looped Draws succeeded.
+ bRet |= rGraphic.Draw(rOutDev,
+ aCurrPos,
+ rTileSize,
+ &rAttr);
+
+ aCurrPos.AdjustX(rNextTileX.Width() );
+ aCurrPos.AdjustY(rNextTileX.Height() );
+ }
+ }
+
+ return bRet;
+ }
+
+
+ /** Fill linear or axial gradient
+
+ Since most of the code for linear and axial gradients are
+ the same, we've a unified method here
+ */
+ void fillLinearGradient( OutputDevice& rOutDev,
+ const ::basegfx::B2DHomMatrix& rTextureTransform,
+ const ::tools::Rectangle& rBounds,
+ unsigned int nStepCount,
+ const ::canvas::ParametricPolyPolygon::Values& rValues,
+ const std::vector< ::Color >& rColors )
+ {
+ // determine general position of gradient in relation to
+ // the bound rect
+ // =====================================================
+
+ ::basegfx::B2DPoint aLeftTop( 0.0, 0.0 );
+ ::basegfx::B2DPoint aLeftBottom( 0.0, 1.0 );
+ ::basegfx::B2DPoint aRightTop( 1.0, 0.0 );
+ ::basegfx::B2DPoint aRightBottom( 1.0, 1.0 );
+
+ aLeftTop *= rTextureTransform;
+ aLeftBottom *= rTextureTransform;
+ aRightTop *= rTextureTransform;
+ aRightBottom*= rTextureTransform;
+
+ // calc length of bound rect diagonal
+ const ::basegfx::B2DVector aBoundRectDiagonal(
+ vcl::unotools::b2DPointFromPoint( rBounds.TopLeft() ) -
+ vcl::unotools::b2DPointFromPoint( rBounds.BottomRight() ) );
+ const double nDiagonalLength( aBoundRectDiagonal.getLength() );
+
+ // create direction of gradient:
+ // _______
+ // | | |
+ // -> | | | ...
+ // | | |
+ // -------
+ ::basegfx::B2DVector aDirection( aRightTop - aLeftTop );
+ aDirection.normalize();
+
+ // now, we potentially have to enlarge our gradient area
+ // atop and below the transformed [0,1]x[0,1] unit rect,
+ // for the gradient to fill the complete bound rect.
+ ::basegfx::utils::infiniteLineFromParallelogram( aLeftTop,
+ aLeftBottom,
+ aRightTop,
+ aRightBottom,
+ vcl::unotools::b2DRectangleFromRectangle(rBounds) );
+
+
+ // render gradient
+ // ===============
+
+ // First try to use directly VCL's DrawGradient(), as that one is generally
+ // a better choice than here decomposing to polygons. The VCL API allows
+ // only 2 colors, but that should generally do.
+ // Do not use nStepCount, it limits optimized implementations, and it's computed
+ // by vclcanvas based on number of colors, so it's practically irrelevant.
+
+ // 2 colors and 2 stops (at 0 and 1) is a linear gradient:
+ if( rColors.size() == 2 && rValues.maStops.size() == 2 && rValues.maStops[0] == 0 && rValues.maStops[1] == 1)
+ {
+ // tdf#144073: Note that the code below adjusts the gradient area this way.
+ // No, I have no idea why.
+ aLeftTop -= 2.0*nDiagonalLength*aDirection;
+ aLeftBottom -= 2.0*nDiagonalLength*aDirection;
+ aRightTop += 2.0*nDiagonalLength*aDirection;
+ aRightBottom += 2.0*nDiagonalLength*aDirection;
+ Gradient vclGradient( GradientStyle::Linear, rColors[ 0 ], rColors[ 1 ] );
+ ::tools::Polygon aTempPoly( static_cast<sal_uInt16>(5) );
+ aTempPoly[0] = ::Point( ::basegfx::fround( aLeftTop.getX() ),
+ ::basegfx::fround( aLeftTop.getY() ) );
+ aTempPoly[1] = ::Point( ::basegfx::fround( aRightTop.getX() ),
+ ::basegfx::fround( aRightTop.getY() ) );
+ aTempPoly[2] = ::Point( ::basegfx::fround( aRightBottom.getX() ),
+ ::basegfx::fround( aRightBottom.getY() ) );
+ aTempPoly[3] = ::Point( ::basegfx::fround( aLeftBottom.getX() ),
+ ::basegfx::fround( aLeftBottom.getY() ) );
+ aTempPoly[4] = aTempPoly[0];
+ rOutDev.DrawGradient( aTempPoly, vclGradient );
+ return;
+ }
+ // 3 colors with first and last being equal and 3 stops (at 0, 0.5 and 1) is an axial gradient:
+ if( rColors.size() == 3 && rColors[ 0 ] == rColors[ 2 ]
+ && rValues.maStops.size() == 3 && rValues.maStops[0] == 0
+ && rValues.maStops[1] == 0.5 && rValues.maStops[2] == 1)
+ {
+ // tdf#144073: Note that the code below adjusts the gradient area this way.
+ // No, I have no idea why.
+ aLeftTop -= 2.0*nDiagonalLength*aDirection;
+ aLeftBottom -= 2.0*nDiagonalLength*aDirection;
+ aRightTop += 2.0*nDiagonalLength*aDirection;
+ aRightBottom += 2.0*nDiagonalLength*aDirection;
+ Gradient vclGradient( GradientStyle::Axial, rColors[ 1 ], rColors[ 0 ] );
+ ::tools::Polygon aTempPoly( static_cast<sal_uInt16>(5) );
+ aTempPoly[0] = ::Point( ::basegfx::fround( aLeftTop.getX() ),
+ ::basegfx::fround( aLeftTop.getY() ) );
+ aTempPoly[1] = ::Point( ::basegfx::fround( aRightTop.getX() ),
+ ::basegfx::fround( aRightTop.getY() ) );
+ aTempPoly[2] = ::Point( ::basegfx::fround( aRightBottom.getX() ),
+ ::basegfx::fround( aRightBottom.getY() ) );
+ aTempPoly[3] = ::Point( ::basegfx::fround( aLeftBottom.getX() ),
+ ::basegfx::fround( aLeftBottom.getY() ) );
+ aTempPoly[4] = aTempPoly[0];
+ rOutDev.DrawGradient( aTempPoly, vclGradient );
+ return;
+ }
+
+ // for linear gradients, it's easy to render
+ // non-overlapping polygons: just split the gradient into
+ // nStepCount small strips. Prepare the strip now.
+
+ // For performance reasons, we create a temporary VCL
+ // polygon here, keep it all the way and only change the
+ // vertex values in the loop below (as ::Polygon is a
+ // pimpl class, creating one every loop turn would really
+ // stress the mem allocator)
+ ::tools::Polygon aTempPoly( static_cast<sal_uInt16>(5) );
+
+ OSL_ENSURE( nStepCount >= 3,
+ "fillLinearGradient(): stepcount smaller than 3" );
+
+
+ // fill initial strip (extending two times the bound rect's
+ // diagonal to the 'left'
+
+
+ // calculate left edge, by moving left edge of the
+ // gradient rect two times the bound rect's diagonal to
+ // the 'left'. Since we postpone actual rendering into the
+ // loop below, we set the _right_ edge here, which will be
+ // readily copied into the left edge in the loop below
+ const ::basegfx::B2DPoint& rPoint1( aLeftTop - 2.0*nDiagonalLength*aDirection );
+ aTempPoly[1] = ::Point( ::basegfx::fround( rPoint1.getX() ),
+ ::basegfx::fround( rPoint1.getY() ) );
+
+ const ::basegfx::B2DPoint& rPoint2( aLeftBottom - 2.0*nDiagonalLength*aDirection );
+ aTempPoly[2] = ::Point( ::basegfx::fround( rPoint2.getX() ),
+ ::basegfx::fround( rPoint2.getY() ) );
+
+
+ // iteratively render all other strips
+
+
+ // ensure that nStepCount matches color stop parity, to
+ // have a well-defined middle color e.g. for axial
+ // gradients.
+ if( (rColors.size() % 2) != (nStepCount % 2) )
+ ++nStepCount;
+
+ rOutDev.SetLineColor();
+
+ basegfx::utils::KeyStopLerp aLerper(rValues.maStops);
+
+ // only iterate nStepCount-1 steps, as the last strip is
+ // explicitly painted below
+ for( unsigned int i=0; i<nStepCount-1; ++i )
+ {
+ std::ptrdiff_t nIndex;
+ double fAlpha;
+ std::tie(nIndex,fAlpha)=aLerper.lerp(double(i)/nStepCount);
+
+ rOutDev.SetFillColor(
+ Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
+ static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
+ static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));
+
+ // copy right edge of polygon to left edge (and also
+ // copy the closing point)
+ aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
+ aTempPoly[3] = aTempPoly[2];
+
+ // calculate new right edge, from interpolating
+ // between start and end line. Note that i is
+ // increased by one, to account for the fact that we
+ // calculate the right border here (whereas the fill
+ // color is governed by the left edge)
+ const ::basegfx::B2DPoint& rPoint3(
+ (nStepCount - i-1)/double(nStepCount)*aLeftTop +
+ (i+1)/double(nStepCount)*aRightTop );
+ aTempPoly[1] = ::Point( ::basegfx::fround( rPoint3.getX() ),
+ ::basegfx::fround( rPoint3.getY() ) );
+
+ const ::basegfx::B2DPoint& rPoint4(
+ (nStepCount - i-1)/double(nStepCount)*aLeftBottom +
+ (i+1)/double(nStepCount)*aRightBottom );
+ aTempPoly[2] = ::Point( ::basegfx::fround( rPoint4.getX() ),
+ ::basegfx::fround( rPoint4.getY() ) );
+
+ rOutDev.DrawPolygon( aTempPoly );
+ }
+
+ // fill final strip (extending two times the bound rect's
+ // diagonal to the 'right'
+
+
+ // copy right edge of polygon to left edge (and also
+ // copy the closing point)
+ aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
+ aTempPoly[3] = aTempPoly[2];
+
+ // calculate new right edge, by moving right edge of the
+ // gradient rect two times the bound rect's diagonal to
+ // the 'right'.
+ const ::basegfx::B2DPoint& rPoint3( aRightTop + 2.0*nDiagonalLength*aDirection );
+ aTempPoly[0] = aTempPoly[4] = ::Point( ::basegfx::fround( rPoint3.getX() ),
+ ::basegfx::fround( rPoint3.getY() ) );
+
+ const ::basegfx::B2DPoint& rPoint4( aRightBottom + 2.0*nDiagonalLength*aDirection );
+ aTempPoly[3] = ::Point( ::basegfx::fround( rPoint4.getX() ),
+ ::basegfx::fround( rPoint4.getY() ) );
+
+ rOutDev.SetFillColor( rColors.back() );
+
+ rOutDev.DrawPolygon( aTempPoly );
+ }
+
+ void fillPolygonalGradient( OutputDevice& rOutDev,
+ const ::basegfx::B2DHomMatrix& rTextureTransform,
+ const ::tools::Rectangle& rBounds,
+ unsigned int nStepCount,
+ const ::canvas::ParametricPolyPolygon::Values& rValues,
+ const std::vector< ::Color >& rColors )
+ {
+ const ::basegfx::B2DPolygon& rGradientPoly( rValues.maGradientPoly );
+
+ ENSURE_OR_THROW( rGradientPoly.count() > 2,
+ "fillPolygonalGradient(): polygon without area given" );
+
+ // For performance reasons, we create a temporary VCL polygon
+ // here, keep it all the way and only change the vertex values
+ // in the loop below (as ::Polygon is a pimpl class, creating
+ // one every loop turn would really stress the mem allocator)
+ ::basegfx::B2DPolygon aOuterPoly( rGradientPoly );
+ ::basegfx::B2DPolygon aInnerPoly;
+
+ // subdivide polygon _before_ rendering, would otherwise have
+ // to be performed on every loop turn.
+ if( aOuterPoly.areControlPointsUsed() )
+ aOuterPoly = ::basegfx::utils::adaptiveSubdivideByAngle(aOuterPoly);
+
+ aInnerPoly = aOuterPoly;
+
+ // only transform outer polygon _after_ copying it into
+ // aInnerPoly, because inner polygon has to be scaled before
+ // the actual texture transformation takes place
+ aOuterPoly.transform( rTextureTransform );
+
+ // determine overall transformation for inner polygon (might
+ // have to be prefixed by anisotrophic scaling)
+ ::basegfx::B2DHomMatrix aInnerPolygonTransformMatrix;
+
+
+ // apply scaling (possibly anisotrophic) to inner polygon
+
+
+ // scale inner polygon according to aspect ratio: for
+ // wider-than-tall bounds (nAspectRatio > 1.0), the inner
+ // polygon, representing the gradient focus, must have
+ // non-zero width. Specifically, a bound rect twice as wide as
+ // tall has a focus polygon of half its width.
+ const double nAspectRatio( rValues.mnAspectRatio );
+ if( nAspectRatio > 1.0 )
+ {
+ // width > height case
+ aInnerPolygonTransformMatrix.scale( 1.0 - 1.0/nAspectRatio,
+ 0.0 );
+ }
+ else if( nAspectRatio < 1.0 )
+ {
+ // width < height case
+ aInnerPolygonTransformMatrix.scale( 0.0,
+ 1.0 - nAspectRatio );
+ }
+ else
+ {
+ // isotrophic case
+ aInnerPolygonTransformMatrix.scale( 0.0, 0.0 );
+ }
+
+ // and finally, add texture transform to it.
+ aInnerPolygonTransformMatrix *= rTextureTransform;
+
+ // apply final matrix to polygon
+ aInnerPoly.transform( aInnerPolygonTransformMatrix );
+
+
+ const sal_uInt32 nNumPoints( aOuterPoly.count() );
+ ::tools::Polygon aTempPoly( static_cast<sal_uInt16>(nNumPoints+1) );
+
+ // increase number of steps by one: polygonal gradients have
+ // the outermost polygon rendered in rColor2, and the
+ // innermost in rColor1. The innermost polygon will never
+ // have zero area, thus, we must divide the interval into
+ // nStepCount+1 steps. For example, to create 3 steps:
+
+ // | |
+ // |-------|-------|-------|
+ // | |
+ // 3 2 1 0
+
+ // This yields 4 tick marks, where 0 is never attained (since
+ // zero-area polygons typically don't display perceivable
+ // color).
+ ++nStepCount;
+
+ rOutDev.SetLineColor();
+
+ basegfx::utils::KeyStopLerp aLerper(rValues.maStops);
+
+ // fill background
+ rOutDev.SetFillColor( rColors.front() );
+ rOutDev.DrawRect( rBounds );
+
+ // render polygon
+ // ==============
+
+ for( unsigned int i=1,p; i<nStepCount; ++i )
+ {
+ const double fT( i/double(nStepCount) );
+
+ std::ptrdiff_t nIndex;
+ double fAlpha;
+ std::tie(nIndex,fAlpha)=aLerper.lerp(fT);
+
+ // lerp color
+ rOutDev.SetFillColor(
+ Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
+ static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
+ static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));
+
+ // scale and render polygon, by interpolating between
+ // outer and inner polygon.
+
+ for( p=0; p<nNumPoints; ++p )
+ {
+ const ::basegfx::B2DPoint& rOuterPoint( aOuterPoly.getB2DPoint(p) );
+ const ::basegfx::B2DPoint& rInnerPoint( aInnerPoly.getB2DPoint(p) );
+
+ aTempPoly[static_cast<sal_uInt16>(p)] = ::Point(
+ basegfx::fround( fT*rInnerPoint.getX() + (1-fT)*rOuterPoint.getX() ),
+ basegfx::fround( fT*rInnerPoint.getY() + (1-fT)*rOuterPoint.getY() ) );
+ }
+
+ // close polygon explicitly
+ aTempPoly[static_cast<sal_uInt16>(p)] = aTempPoly[0];
+
+ // TODO(P1): compare with vcl/source/gdi/outdev4.cxx,
+ // OutputDevice::ImplDrawComplexGradient(), there's a note
+ // that on some VDev's, rendering disjunct poly-polygons
+ // is faster!
+ rOutDev.DrawPolygon( aTempPoly );
+ }
+ }
+
+ void doGradientFill( OutputDevice& rOutDev,
+ const ::canvas::ParametricPolyPolygon::Values& rValues,
+ const std::vector< ::Color >& rColors,
+ const ::basegfx::B2DHomMatrix& rTextureTransform,
+ const ::tools::Rectangle& rBounds,
+ unsigned int nStepCount )
+ {
+ switch( rValues.meType )
+ {
+ case ::canvas::ParametricPolyPolygon::GradientType::Linear:
+ fillLinearGradient( rOutDev,
+ rTextureTransform,
+ rBounds,
+ nStepCount,
+ rValues,
+ rColors );
+ break;
+
+ case ::canvas::ParametricPolyPolygon::GradientType::Elliptical:
+ case ::canvas::ParametricPolyPolygon::GradientType::Rectangular:
+ fillPolygonalGradient( rOutDev,
+ rTextureTransform,
+ rBounds,
+ nStepCount,
+ rValues,
+ rColors );
+ break;
+
+ default:
+ ENSURE_OR_THROW( false,
+ "CanvasHelper::doGradientFill(): Unexpected case" );
+ }
+ }
+
+ int numColorSteps( const ::Color& rColor1, const ::Color& rColor2 )
+ {
+ return std::max(
+ std::abs( rColor1.GetRed() - rColor2.GetRed() ),
+ std::max(
+ std::abs( rColor1.GetGreen() - rColor2.GetGreen() ),
+ std::abs( rColor1.GetBlue() - rColor2.GetBlue() ) ) );
+ }
+
+ bool gradientFill( OutputDevice& rOutDev,
+ OutputDevice* p2ndOutDev,
+ const ::canvas::ParametricPolyPolygon::Values& rValues,
+ const std::vector< ::Color >& rColors,
+ const ::tools::PolyPolygon& rPoly,
+ const rendering::ViewState& viewState,
+ const rendering::RenderState& renderState,
+ const rendering::Texture& texture,
+ int nTransparency )
+ {
+ // TODO(T2): It is maybe necessary to lock here, should
+ // maGradientPoly someday cease to be const. But then, beware of
+ // deadlocks, canvashelper calls this method with locked own
+ // mutex.
+
+ // calc step size
+
+ int nColorSteps = 0;
+ for( size_t i=0; i<rColors.size()-1; ++i )
+ nColorSteps += numColorSteps(rColors[i],rColors[i+1]);
+
+ ::basegfx::B2DHomMatrix aTotalTransform;
+ const int nStepCount=
+ ::canvas::tools::calcGradientStepCount(aTotalTransform,
+ viewState,
+ renderState,
+ texture,
+ nColorSteps);
+
+ rOutDev.SetLineColor();
+
+ // determine maximal bound rect of texture-filled
+ // polygon
+ const ::tools::Rectangle aPolygonDeviceRectOrig(
+ rPoly.GetBoundRect() );
+
+ if( tools::isRectangle( rPoly ) )
+ {
+ // use optimized output path
+
+
+ // this distinction really looks like a
+ // micro-optimization, but in fact greatly speeds up
+ // especially complex gradients. That's because when using
+ // clipping, we can output polygons instead of
+ // poly-polygons, and don't have to output the gradient
+ // twice for XOR
+
+ rOutDev.Push( vcl::PushFlags::CLIPREGION );
+ rOutDev.IntersectClipRegion( aPolygonDeviceRectOrig );
+ doGradientFill( rOutDev,
+ rValues,
+ rColors,
+ aTotalTransform,
+ aPolygonDeviceRectOrig,
+ nStepCount );
+ rOutDev.Pop();
+
+ if( p2ndOutDev && nTransparency < 253 )
+ {
+ // HACK. Normally, CanvasHelper does not care about
+ // actually what mp2ndOutDev is... well, here we do &
+ // assume a 1bpp target - everything beyond 97%
+ // transparency is fully transparent
+ p2ndOutDev->SetFillColor( COL_BLACK );
+ p2ndOutDev->DrawRect( aPolygonDeviceRectOrig );
+ }
+ }
+ else
+ {
+ const vcl::Region aPolyClipRegion( rPoly );
+
+ rOutDev.Push( vcl::PushFlags::CLIPREGION );
+ rOutDev.IntersectClipRegion( aPolyClipRegion );
+
+ doGradientFill( rOutDev,
+ rValues,
+ rColors,
+ aTotalTransform,
+ aPolygonDeviceRectOrig,
+ nStepCount );
+ rOutDev.Pop();
+
+ if( p2ndOutDev && nTransparency < 253 )
+ {
+ // HACK. Normally, CanvasHelper does not care about
+ // actually what mp2ndOutDev is... well, here we do &
+ // assume a 1bpp target - everything beyond 97%
+ // transparency is fully transparent
+ p2ndOutDev->SetFillColor( COL_BLACK );
+ p2ndOutDev->DrawPolyPolygon( rPoly );
+ }
+ }
+
+#ifdef DEBUG_CANVAS_CANVASHELPER_TEXTUREFILL
+ // extra-verbosity
+ {
+ ::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
+ ::basegfx::B2DRectangle aTextureDeviceRect;
+ ::basegfx::B2DHomMatrix aTextureTransform;
+ ::canvas::tools::calcTransformedRectBounds( aTextureDeviceRect,
+ aRect,
+ aTextureTransform );
+ rOutDev.SetLineColor( COL_RED );
+ rOutDev.SetFillColor();
+ rOutDev.DrawRect( vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );
+
+ rOutDev.SetLineColor( COL_BLUE );
+ ::tools::Polygon aPoly1(
+ vcl::unotools::rectangleFromB2DRectangle( aRect ));
+ ::basegfx::B2DPolygon aPoly2( aPoly1.getB2DPolygon() );
+ aPoly2.transform( aTextureTransform );
+ ::tools::Polygon aPoly3( aPoly2 );
+ rOutDev.DrawPolygon( aPoly3 );
+ }
+#endif
+
+ return true;
+ }
+ }
+
+ uno::Reference< rendering::XCachedPrimitive > CanvasHelper::fillTexturedPolyPolygon( const rendering::XCanvas* pCanvas,
+ const uno::Reference< rendering::XPolyPolygon2D >& xPolyPolygon,
+ const rendering::ViewState& viewState,
+ const rendering::RenderState& renderState,
+ const uno::Sequence< rendering::Texture >& textures )
+ {
+ ENSURE_ARG_OR_THROW( xPolyPolygon.is(),
+ "CanvasHelper::fillPolyPolygon(): polygon is NULL");
+ ENSURE_ARG_OR_THROW( textures.hasElements(),
+ "CanvasHelper::fillTexturedPolyPolygon: empty texture sequence");
+
+ if( mpOutDevProvider )
+ {
+ tools::OutDevStateKeeper aStateKeeper( mpProtectedOutDevProvider );
+
+ const int nTransparency( setupOutDevState( viewState, renderState, IGNORE_COLOR ) );
+ ::tools::PolyPolygon aPolyPoly( tools::mapPolyPolygon(
+ ::basegfx::unotools::b2DPolyPolygonFromXPolyPolygon2D(xPolyPolygon),
+ viewState, renderState ) );
+
+ // TODO(F1): Multi-texturing
+ if( textures[0].Gradient.is() )
+ {
+ // try to cast XParametricPolyPolygon2D reference to
+ // our implementation class.
+ ::canvas::ParametricPolyPolygon* pGradient =
+ dynamic_cast< ::canvas::ParametricPolyPolygon* >( textures[0].Gradient.get() );
+
+ if( pGradient && pGradient->getValues().maColors.hasElements() )
+ {
+ // copy state from Gradient polypoly locally
+ // (given object might change!)
+ const ::canvas::ParametricPolyPolygon::Values& rValues(
+ pGradient->getValues() );
+
+ if( rValues.maColors.getLength() < 2 )
+ {
+ rendering::RenderState aTempState=renderState;
+ aTempState.DeviceColor = rValues.maColors[0];
+ fillPolyPolygon(pCanvas, xPolyPolygon, viewState, aTempState);
+ }
+ else
+ {
+ std::vector< ::Color > aColors(rValues.maColors.getLength());
+ std::transform(&rValues.maColors[0],
+ &rValues.maColors[0]+rValues.maColors.getLength(),
+ aColors.begin(),
+ [](const uno::Sequence< double >& aColor) {
+ return vcl::unotools::stdColorSpaceSequenceToColor( aColor );
+ } );
+
+ // TODO(E1): Return value
+ // TODO(F1): FillRule
+ gradientFill( mpOutDevProvider->getOutDev(),
+ mp2ndOutDevProvider ? &mp2ndOutDevProvider->getOutDev() : nullptr,
+ rValues,
+ aColors,
+ aPolyPoly,
+ viewState,
+ renderState,
+ textures[0],
+ nTransparency );
+ }
+ }
+ else
+ {
+ // TODO(F1): The generic case is missing here
+ ENSURE_OR_THROW( false,
+ "CanvasHelper::fillTexturedPolyPolygon(): unknown parametric polygon encountered" );
+ }
+ }
+ else if( textures[0].Bitmap.is() )
+ {
+ geometry::IntegerSize2D aBmpSize( textures[0].Bitmap->getSize() );
+
+ ENSURE_ARG_OR_THROW( aBmpSize.Width != 0 &&
+ aBmpSize.Height != 0,
+ "CanvasHelper::fillTexturedPolyPolygon(): zero-sized texture bitmap" );
+
+ // determine maximal bound rect of texture-filled
+ // polygon
+ const ::tools::Rectangle aPolygonDeviceRect(
+ aPolyPoly.GetBoundRect() );
+
+
+ // first of all, determine whether we have a
+ // drawBitmap() in disguise
+ // =========================================
+
+ const bool bRectangularPolygon( tools::isRectangle( aPolyPoly ) );
+
+ ::basegfx::B2DHomMatrix aTotalTransform;
+ ::canvas::tools::mergeViewAndRenderTransform(aTotalTransform,
+ viewState,
+ renderState);
+ ::basegfx::B2DHomMatrix aTextureTransform;
+ ::basegfx::unotools::homMatrixFromAffineMatrix( aTextureTransform,
+ textures[0].AffineTransform );
+
+ aTotalTransform *= aTextureTransform;
+
+ const ::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
+ ::basegfx::B2DRectangle aTextureDeviceRect;
+ ::canvas::tools::calcTransformedRectBounds( aTextureDeviceRect,
+ aRect,
+ aTotalTransform );
+
+ const ::tools::Rectangle aIntegerTextureDeviceRect(
+ vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );
+
+ if( bRectangularPolygon &&
+ aIntegerTextureDeviceRect == aPolygonDeviceRect )
+ {
+ rendering::RenderState aLocalState( renderState );
+ ::canvas::tools::appendToRenderState(aLocalState,
+ aTextureTransform);
+ ::basegfx::B2DHomMatrix aScaleCorrection;
+ aScaleCorrection.scale( 1.0/aBmpSize.Width,
+ 1.0/aBmpSize.Height );
+ ::canvas::tools::appendToRenderState(aLocalState,
+ aScaleCorrection);
+
+ // need alpha modulation?
+ if( !::rtl::math::approxEqual( textures[0].Alpha,
+ 1.0 ) )
+ {
+ // setup alpha modulation values
+ aLocalState.DeviceColor.realloc(4);
+ double* pColor = aLocalState.DeviceColor.getArray();
+ pColor[0] =
+ pColor[1] =
+ pColor[2] = 0.0;
+ pColor[3] = textures[0].Alpha;
+
+ return drawBitmapModulated( pCanvas,
+ textures[0].Bitmap,
+ viewState,
+ aLocalState );
+ }
+ else
+ {
+ return drawBitmap( pCanvas,
+ textures[0].Bitmap,
+ viewState,
+ aLocalState );
+ }
+ }
+ else
+ {
+ // No easy mapping to drawBitmap() - calculate
+ // texturing parameters
+ // ===========================================
+
+ BitmapEx aBmpEx( tools::bitmapExFromXBitmap( textures[0].Bitmap ) );
+
+ // scale down bitmap to [0,1]x[0,1] rect, as required
+ // from the XCanvas interface.
+ ::basegfx::B2DHomMatrix aScaling;
+ ::basegfx::B2DHomMatrix aPureTotalTransform; // pure view*render*texture transform
+ aScaling.scale( 1.0/aBmpSize.Width,
+ 1.0/aBmpSize.Height );
+
+ aTotalTransform = aTextureTransform * aScaling;
+ aPureTotalTransform = aTextureTransform;
+
+ // combine with view and render transform
+ ::basegfx::B2DHomMatrix aMatrix;
+ ::canvas::tools::mergeViewAndRenderTransform(aMatrix, viewState, renderState);
+
+ // combine all three transformations into one
+ // global texture-to-device-space transformation
+ aTotalTransform *= aMatrix;
+ aPureTotalTransform *= aMatrix;
+
+ // analyze transformation, and setup an
+ // appropriate GraphicObject
+ ::basegfx::B2DVector aScale;
+ ::basegfx::B2DPoint aOutputPos;
+ double nRotate;
+ double nShearX;
+ aTotalTransform.decompose( aScale, aOutputPos, nRotate, nShearX );
+
+ GraphicAttr aGrfAttr;
+ GraphicObjectSharedPtr pGrfObj;
+
+ if( ::basegfx::fTools::equalZero( nShearX ) )
+ {
+ // no shear, GraphicObject is enough (the
+ // GraphicObject only supports scaling, rotation
+ // and translation)
+
+ // #i75339# don't apply mirror flags, having
+ // negative size values is enough to make
+ // GraphicObject flip the bitmap
+
+ // The angle has to be mapped from radian to tenths of
+ // degrees with the orientation reversed: [0,2Pi) ->
+ // (3600,0]. Note that the original angle may have
+ // values outside the [0,2Pi) interval.
+ const double nAngleInTenthOfDegrees (3600.0 - basegfx::rad2deg<10>(nRotate));
+ aGrfAttr.SetRotation( Degree10(::basegfx::fround(nAngleInTenthOfDegrees)) );
+
+ pGrfObj = std::make_shared<GraphicObject>( aBmpEx );
+ }
+ else
+ {
+ // modify output position, to account for the fact
+ // that transformBitmap() always normalizes its output
+ // bitmap into the smallest enclosing box.
+ ::basegfx::B2DRectangle aDestRect;
+ ::canvas::tools::calcTransformedRectBounds( aDestRect,
+ ::basegfx::B2DRectangle(0,
+ 0,
+ aBmpSize.Width,
+ aBmpSize.Height),
+ aMatrix );
+
+ aOutputPos.setX( aDestRect.getMinX() );
+ aOutputPos.setY( aDestRect.getMinY() );
+
+ // complex transformation, use generic affine bitmap
+ // transformation
+ aBmpEx = tools::transformBitmap( aBmpEx,
+ aTotalTransform);
+
+ pGrfObj = std::make_shared<GraphicObject>( aBmpEx );
+
+ // clear scale values, generated bitmap already
+ // contains scaling
+ aScale.setX( 1.0 ); aScale.setY( 1.0 );
+
+ // update bitmap size, bitmap has changed above.
+ aBmpSize = vcl::unotools::integerSize2DFromSize(aBmpEx.GetSizePixel());
+ }
+
+
+ // render texture tiled into polygon
+ // =================================
+
+ // calc device space direction vectors. We employ
+ // the following approach for tiled output: the
+ // texture bitmap is output in texture space
+ // x-major order, i.e. tile neighbors in texture
+ // space x direction are rendered back-to-back in
+ // device coordinate space (after the full device
+ // transformation). Thus, the aNextTile* vectors
+ // denote the output position updates in device
+ // space, to get from one tile to the next.
+ ::basegfx::B2DVector aNextTileX( 1.0, 0.0 );
+ ::basegfx::B2DVector aNextTileY( 0.0, 1.0 );
+ aNextTileX *= aPureTotalTransform;
+ aNextTileY *= aPureTotalTransform;
+
+ ::basegfx::B2DHomMatrix aInverseTextureTransform( aPureTotalTransform );
+
+ ENSURE_ARG_OR_THROW( aInverseTextureTransform.isInvertible(),
+ "CanvasHelper::fillTexturedPolyPolygon(): singular texture matrix" );
+
+ aInverseTextureTransform.invert();
+
+ // calc bound rect of extended texture area in
+ // device coordinates. Therefore, we first calc
+ // the area of the polygon bound rect in texture
+ // space. To maintain texture phase, this bound
+ // rect is then extended to integer coordinates
+ // (extended, because shrinking might leave some
+ // inner polygon areas unfilled).
+ // Finally, the bound rect is transformed back to
+ // device coordinate space, were we determine the
+ // start point from it.
+ ::basegfx::B2DRectangle aTextureSpacePolygonRect;
+ ::canvas::tools::calcTransformedRectBounds( aTextureSpacePolygonRect,
+ vcl::unotools::b2DRectangleFromRectangle(aPolygonDeviceRect),
+ aInverseTextureTransform );
+
+ // calc left, top of extended polygon rect in
+ // texture space, create one-texture instance rect
+ // from it (i.e. rect from start point extending
+ // 1.0 units to the right and 1.0 units to the
+ // bottom). Note that the rounding employed here
+ // is a bit subtle, since we need to round up/down
+ // as _soon_ as any fractional amount is
+ // encountered. This is to ensure that the full
+ // polygon area is filled with texture tiles.
+ const sal_Int32 nX1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinX() ) );
+ const sal_Int32 nY1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinY() ) );
+ const sal_Int32 nX2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxX() ) );
+ const sal_Int32 nY2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxY() ) );
+ const ::basegfx::B2DRectangle aSingleTextureRect(
+ nX1, nY1,
+ nX1 + 1.0,
+ nY1 + 1.0 );
+
+ // and convert back to device space
+ ::basegfx::B2DRectangle aSingleDeviceTextureRect;
+ ::canvas::tools::calcTransformedRectBounds( aSingleDeviceTextureRect,
+ aSingleTextureRect,
+ aPureTotalTransform );
+
+ const ::Point aPtRepeat( vcl::unotools::pointFromB2DPoint(
+ aSingleDeviceTextureRect.getMinimum() ) );
+ const ::Size aSz( ::basegfx::fround( aScale.getX() * aBmpSize.Width ),
+ ::basegfx::fround( aScale.getY() * aBmpSize.Height ) );
+ const ::Size aIntegerNextTileX( vcl::unotools::sizeFromB2DSize(aNextTileX) );
+ const ::Size aIntegerNextTileY( vcl::unotools::sizeFromB2DSize(aNextTileY) );
+
+ const ::Point aPt( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
+ ::basegfx::fround( aOutputPos.getX() ) : aPtRepeat.X(),
+ textures[0].RepeatModeY == rendering::TexturingMode::NONE ?
+ ::basegfx::fround( aOutputPos.getY() ) : aPtRepeat.Y() );
+ const sal_Int32 nTilesX( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
+ 1 : nX2 - nX1 );
+ const sal_Int32 nTilesY( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
+ 1 : nY2 - nY1 );
+
+ OutputDevice& rOutDev( mpOutDevProvider->getOutDev() );
+
+ if( bRectangularPolygon )
+ {
+ // use optimized output path
+
+
+ // this distinction really looks like a
+ // micro-optimization, but in fact greatly speeds up
+ // especially complex fills. That's because when using
+ // clipping, we can output polygons instead of
+ // poly-polygons, and don't have to output the gradient
+ // twice for XOR
+
+ // setup alpha modulation
+ if( !::rtl::math::approxEqual( textures[0].Alpha,
+ 1.0 ) )
+ {
+ // TODO(F1): Note that the GraphicManager has
+ // a subtle difference in how it calculates
+ // the resulting alpha value: it's using the
+ // inverse alpha values (i.e. 'transparency'),
+ // and calculates transOrig + transModulate,
+ // instead of transOrig + transModulate -
+ // transOrig*transModulate (which would be
+ // equivalent to the origAlpha*modulateAlpha
+ // the DX canvas performs)
+ aGrfAttr.SetAlpha(
+ static_cast< sal_uInt8 >(
+ ::basegfx::fround( 255.0 * textures[0].Alpha ) ) );
+ }
+
+ rOutDev.IntersectClipRegion( aPolygonDeviceRect );
+ textureFill( rOutDev,
+ *pGrfObj,
+ aPt,
+ aIntegerNextTileX,
+ aIntegerNextTileY,
+ nTilesX,
+ nTilesY,
+ aSz,
+ aGrfAttr );
+
+ if( mp2ndOutDevProvider )
+ {
+ OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
+ r2ndOutDev.IntersectClipRegion( aPolygonDeviceRect );
+ textureFill( r2ndOutDev,
+ *pGrfObj,
+ aPt,
+ aIntegerNextTileX,
+ aIntegerNextTileY,
+ nTilesX,
+ nTilesY,
+ aSz,
+ aGrfAttr );
+ }
+ }
+ else
+ {
+ // output texture the hard way: XORing out the
+ // polygon
+ // ===========================================
+
+ if( !::rtl::math::approxEqual( textures[0].Alpha,
+ 1.0 ) )
+ {
+ // uh-oh. alpha blending is required,
+ // cannot do direct XOR, but have to
+ // prepare the filled polygon within a
+ // VDev
+ ScopedVclPtrInstance< VirtualDevice > pVDev( rOutDev );
+ pVDev->SetOutputSizePixel( aPolygonDeviceRect.GetSize() );
+
+ // shift output to origin of VDev
+ const ::Point aOutPos( aPt - aPolygonDeviceRect.TopLeft() );
+ aPolyPoly.Translate( ::Point( -aPolygonDeviceRect.Left(),
+ -aPolygonDeviceRect.Top() ) );
+
+ const vcl::Region aPolyClipRegion( aPolyPoly );
+
+ pVDev->SetClipRegion( aPolyClipRegion );
+ textureFill( *pVDev,
+ *pGrfObj,
+ aOutPos,
+ aIntegerNextTileX,
+ aIntegerNextTileY,
+ nTilesX,
+ nTilesY,
+ aSz,
+ aGrfAttr );
+
+ // output VDev content alpha-blended to
+ // target position.
+ const ::Point aEmptyPoint;
+ BitmapEx aContentBmp(
+ pVDev->GetBitmapEx( aEmptyPoint,
+ pVDev->GetOutputSizePixel() ) );
+
+ sal_uInt8 nCol( static_cast< sal_uInt8 >(
+ ::basegfx::fround( 255.0*( 1.0 - textures[0].Alpha ) ) ) );
+ AlphaMask aAlpha( pVDev->GetOutputSizePixel(),
+ &nCol );
+
+ BitmapEx aOutputBmpEx( aContentBmp.GetBitmap(), aAlpha );
+ rOutDev.DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
+ aOutputBmpEx );
+
+ if( mp2ndOutDevProvider )
+ mp2ndOutDevProvider->getOutDev().DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
+ aOutputBmpEx );
+ }
+ else
+ {
+ const vcl::Region aPolyClipRegion( aPolyPoly );
+
+ rOutDev.Push( vcl::PushFlags::CLIPREGION );
+ rOutDev.IntersectClipRegion( aPolyClipRegion );
+
+ textureFill( rOutDev,
+ *pGrfObj,
+ aPt,
+ aIntegerNextTileX,
+ aIntegerNextTileY,
+ nTilesX,
+ nTilesY,
+ aSz,
+ aGrfAttr );
+ rOutDev.Pop();
+
+ if( mp2ndOutDevProvider )
+ {
+ OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
+ r2ndOutDev.Push( vcl::PushFlags::CLIPREGION );
+
+ r2ndOutDev.IntersectClipRegion( aPolyClipRegion );
+ textureFill( r2ndOutDev,
+ *pGrfObj,
+ aPt,
+ aIntegerNextTileX,
+ aIntegerNextTileY,
+ nTilesX,
+ nTilesY,
+ aSz,
+ aGrfAttr );
+ r2ndOutDev.Pop();
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // TODO(P1): Provide caching here.
+ return uno::Reference< rendering::XCachedPrimitive >(nullptr);
+ }
+
+}
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */