summaryrefslogtreecommitdiffstats
path: root/chart2/source/view/charttypes/Splines.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'chart2/source/view/charttypes/Splines.cxx')
-rw-r--r--chart2/source/view/charttypes/Splines.cxx872
1 files changed, 872 insertions, 0 deletions
diff --git a/chart2/source/view/charttypes/Splines.cxx b/chart2/source/view/charttypes/Splines.cxx
new file mode 100644
index 000000000..2aac96929
--- /dev/null
+++ b/chart2/source/view/charttypes/Splines.cxx
@@ -0,0 +1,872 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#include "Splines.hxx"
+#include <osl/diagnose.h>
+#include <com/sun/star/drawing/Position3D.hpp>
+
+#include <vector>
+#include <algorithm>
+#include <memory>
+#include <cmath>
+#include <limits>
+
+namespace chart
+{
+using namespace ::com::sun::star;
+
+namespace
+{
+
+typedef std::pair< double, double > tPointType;
+typedef std::vector< tPointType > tPointVecType;
+typedef tPointVecType::size_type lcl_tSizeType;
+
+class lcl_SplineCalculation
+{
+public:
+ /** @descr creates an object that calculates cubic splines on construction
+
+ @param rSortedPoints the points for which splines shall be calculated, they need to be sorted in x values
+ @param fY1FirstDerivation the resulting spline should have the first
+ derivation equal to this value at the x-value of the first point
+ of rSortedPoints. If fY1FirstDerivation is set to infinity, a natural
+ spline is calculated.
+ @param fYnFirstDerivation the resulting spline should have the first
+ derivation equal to this value at the x-value of the last point
+ of rSortedPoints
+ */
+ lcl_SplineCalculation( tPointVecType && rSortedPoints,
+ double fY1FirstDerivation,
+ double fYnFirstDerivation );
+
+ /** @descr creates an object that calculates cubic splines on construction
+ for the special case of periodic cubic spline
+
+ @param rSortedPoints the points for which splines shall be calculated,
+ they need to be sorted in x values. First and last y value must be equal
+ */
+ explicit lcl_SplineCalculation( tPointVecType && rSortedPoints);
+
+ /** @descr this function corresponds to the function splint in [1].
+
+ [1] Numerical Recipes in C, 2nd edition
+ William H. Press, et al.,
+ Section 3.3, page 116
+ */
+ double GetInterpolatedValue( double x );
+
+private:
+ /// a copy of the points given in the CTOR
+ tPointVecType m_aPoints;
+
+ /// the result of the Calculate() method
+ std::vector< double > m_aSecDerivY;
+
+ double m_fYp1;
+ double m_fYpN;
+
+ // these values are cached for performance reasons
+ lcl_tSizeType m_nKLow;
+ lcl_tSizeType m_nKHigh;
+ double m_fLastInterpolatedValue;
+
+ /** @descr this function corresponds to the function spline in [1].
+
+ [1] Numerical Recipes in C, 2nd edition
+ William H. Press, et al.,
+ Section 3.3, page 115
+ */
+ void Calculate();
+
+ /** @descr this function corresponds to the algorithm 4.76 in [2] and
+ theorem 5.3.7 in [3]
+
+ [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen
+ Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004)
+ Section 4.10.2, page 175
+
+ [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur
+ Veranstaltung im WS 2007/2008
+ Fachhochschule Aachen, 2009-09-19
+ Numerik_01.pdf, downloaded 2011-04-19 via
+ http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191
+ Section 5.3, page 129
+ */
+ void CalculatePeriodic();
+};
+
+lcl_SplineCalculation::lcl_SplineCalculation(
+ tPointVecType && rSortedPoints,
+ double fY1FirstDerivation,
+ double fYnFirstDerivation )
+ : m_aPoints( std::move(rSortedPoints) ),
+ m_fYp1( fY1FirstDerivation ),
+ m_fYpN( fYnFirstDerivation ),
+ m_nKLow( 0 ),
+ m_nKHigh( m_aPoints.size() - 1 ),
+ m_fLastInterpolatedValue(std::numeric_limits<double>::infinity())
+{
+ Calculate();
+}
+
+lcl_SplineCalculation::lcl_SplineCalculation(
+ tPointVecType && rSortedPoints)
+ : m_aPoints( std::move(rSortedPoints) ),
+ m_fYp1( 0.0 ), /*dummy*/
+ m_fYpN( 0.0 ), /*dummy*/
+ m_nKLow( 0 ),
+ m_nKHigh( m_aPoints.size() - 1 ),
+ m_fLastInterpolatedValue(std::numeric_limits<double>::infinity())
+{
+ CalculatePeriodic();
+}
+
+void lcl_SplineCalculation::Calculate()
+{
+ if( m_aPoints.size() <= 1 )
+ return;
+
+ // n is the last valid index to m_aPoints
+ const lcl_tSizeType n = m_aPoints.size() - 1;
+ std::vector< double > u( n );
+ m_aSecDerivY.resize( n + 1, 0.0 );
+
+ if( std::isinf( m_fYp1 ) )
+ {
+ // natural spline
+ m_aSecDerivY[ 0 ] = 0.0;
+ u[ 0 ] = 0.0;
+ }
+ else
+ {
+ m_aSecDerivY[ 0 ] = -0.5;
+ double xDiff = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
+ u[ 0 ] = ( 3.0 / xDiff ) *
+ ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 );
+ }
+
+ for( lcl_tSizeType i = 1; i < n; ++i )
+ {
+ tPointType
+ p_i = m_aPoints[ i ],
+ p_im1 = m_aPoints[ i - 1 ],
+ p_ip1 = m_aPoints[ i + 1 ];
+
+ double sig = ( p_i.first - p_im1.first ) /
+ ( p_ip1.first - p_im1.first );
+ double p = sig * m_aSecDerivY[ i - 1 ] + 2.0;
+
+ m_aSecDerivY[ i ] = ( sig - 1.0 ) / p;
+ u[ i ] =
+ ( ( p_ip1.second - p_i.second ) /
+ ( p_ip1.first - p_i.first ) ) -
+ ( ( p_i.second - p_im1.second ) /
+ ( p_i.first - p_im1.first ) );
+ u[ i ] =
+ ( 6.0 * u[ i ] / ( p_ip1.first - p_im1.first )
+ - sig * u[ i - 1 ] ) / p;
+ }
+
+ // initialize to values for natural splines (used for m_fYpN equal to
+ // infinity)
+ double qn = 0.0;
+ double un = 0.0;
+
+ if( ! std::isinf( m_fYpN ) )
+ {
+ qn = 0.5;
+ double xDiff = m_aPoints[ n ].first - m_aPoints[ n - 1 ].first;
+ un = ( 3.0 / xDiff ) *
+ ( m_fYpN - ( m_aPoints[ n ].second - m_aPoints[ n - 1 ].second ) / xDiff );
+ }
+
+ m_aSecDerivY[ n ] = ( un - qn * u[ n - 1 ] ) / ( qn * m_aSecDerivY[ n - 1 ] + 1.0 );
+
+ // note: the algorithm in [1] iterates from n-1 to 0, but as size_type
+ // may be (usually is) an unsigned type, we can not write k >= 0, as this
+ // is always true.
+ for( lcl_tSizeType k = n; k > 0; --k )
+ {
+ m_aSecDerivY[ k - 1 ] = (m_aSecDerivY[ k - 1 ] * m_aSecDerivY[ k ] ) + u[ k - 1 ];
+ }
+}
+
+void lcl_SplineCalculation::CalculatePeriodic()
+{
+ if( m_aPoints.size() <= 1 )
+ return;
+
+ // n is the last valid index to m_aPoints
+ const lcl_tSizeType n = m_aPoints.size() - 1;
+
+ // u is used for vector f in A*c=f in [3], vector a in Ax=a in [2],
+ // vector z in Rtranspose z = a and Dr=z in [2]
+ std::vector< double > u( n + 1, 0.0 );
+
+ // used for vector c in A*c=f and vector x in Ax=a in [2]
+ m_aSecDerivY.resize( n + 1, 0.0 );
+
+ // diagonal of matrix A, used index 1 to n
+ std::vector< double > Adiag( n + 1, 0.0 );
+
+ // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n]
+ std::vector< double > Aupper( n + 1, 0.0 );
+
+ // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n
+ std::vector< double > Ddiag( n+1, 0.0 );
+
+ // right column of matrix R, used index 1 to n-2
+ std::vector< double > Rright( n-1, 0.0 );
+
+ // secondary diagonal of matrix R, used index 1 to n-1
+ std::vector< double > Rupper( n, 0.0 );
+
+ if (n<4)
+ {
+ if (n==3)
+ { // special handling of three polynomials, that are four points
+ double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ;
+ double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ;
+ double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ;
+ double xDiff2p1 = xDiff2 + xDiff1;
+ double xDiff0p2 = xDiff0 + xDiff2;
+ double xDiff1p0 = xDiff1 + xDiff0;
+ double fFactor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0);
+ double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0;
+ double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1;
+ double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2;
+ m_aSecDerivY[ 1 ] = fFactor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2);
+ m_aSecDerivY[ 2 ] = fFactor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0);
+ m_aSecDerivY[ 3 ] = fFactor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1);
+ m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ];
+ }
+ else if (n==2)
+ {
+ // special handling of two polynomials, that are three points
+ double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
+ double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first;
+ double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1);
+ m_aSecDerivY[ 1 ] = fHelp ;
+ m_aSecDerivY[ 2 ] = -fHelp ;
+ m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ;
+ }
+ else
+ {
+ // should be handled with natural spline, periodic not possible.
+ }
+ }
+ else
+ {
+ double xDiff_i =1.0; // values are dummy;
+ double xDiff_im1 =1.0;
+ double yDiff_i = 1.0;
+ double yDiff_im1 = 1.0;
+ // fill matrix A and fill right side vector u
+ for( lcl_tSizeType i=1; i<n; ++i )
+ {
+ xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first;
+ xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first;
+ yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1;
+ yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i;
+ Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i);
+ Aupper[ i ] = xDiff_i;
+ u [ i ] = 3 * (yDiff_i - yDiff_im1);
+ }
+ xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first;
+ xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
+ yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1;
+ yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i;
+ Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i);
+ Aupper[ n ] = xDiff_i;
+ u [ n ] = 3 * (yDiff_i - yDiff_im1);
+
+ // decomposite A=(R transpose)*D*R
+ Ddiag[1] = Adiag[1];
+ Rupper[1] = Aupper[1] / Ddiag[1];
+ Rright[1] = Aupper[n] / Ddiag[1];
+ for( lcl_tSizeType i=2; i<=n-2; ++i )
+ {
+ Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ];
+ Rupper[ i ] = Aupper[ i ] / Ddiag[ i ];
+ Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ];
+ }
+ Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ];
+ Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ];
+ double fSum = 0.0;
+ for ( lcl_tSizeType i=1; i<=n-2; ++i )
+ {
+ fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ];
+ }
+ Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]!
+
+ // solve forward (R transpose)*z=u, overwrite u with z
+ for ( lcl_tSizeType i=2; i<=n-1; ++i )
+ {
+ u[ i ] -= u[ i-1 ]* Rupper[ i-1 ];
+ }
+ fSum = 0.0;
+ for ( lcl_tSizeType i=1; i<=n-2; ++i )
+ {
+ fSum += Rright[ i ] * u[ i ];
+ }
+ u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ];
+
+ // solve forward D*r=z, z is in u, overwrite u with r
+ for ( lcl_tSizeType i=1; i<=n; ++i )
+ {
+ u[ i ] = u[i] / Ddiag[ i ];
+ }
+
+ // solve backward R*x= r, r is in u
+ m_aSecDerivY[ n ] = u[ n ];
+ m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ];
+ for ( lcl_tSizeType i=n-2; i>=1; --i)
+ {
+ m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ];
+ }
+ // periodic
+ m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ];
+ }
+
+ // adapt m_aSecDerivY for usage in GetInterpolatedValue()
+ for( lcl_tSizeType i = 0; i <= n ; ++i )
+ {
+ m_aSecDerivY[ i ] *= 2.0;
+ }
+
+}
+
+double lcl_SplineCalculation::GetInterpolatedValue( double x )
+{
+ OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) &&
+ ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ),
+ "Trying to extrapolate" );
+
+ const lcl_tSizeType n = m_aPoints.size() - 1;
+ if( x < m_fLastInterpolatedValue )
+ {
+ m_nKLow = 0;
+ m_nKHigh = n;
+
+ // calculate m_nKLow and m_nKHigh
+ // first initialization is done in CTOR
+ while( m_nKHigh - m_nKLow > 1 )
+ {
+ lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2;
+ if( m_aPoints[ k ].first > x )
+ m_nKHigh = k;
+ else
+ m_nKLow = k;
+ }
+ }
+ else
+ {
+ while( ( m_nKHigh <= n ) &&
+ ( m_aPoints[ m_nKHigh ].first < x ) )
+ {
+ ++m_nKHigh;
+ ++m_nKLow;
+ }
+ OSL_ENSURE( m_nKHigh <= n, "Out of Bounds" );
+ }
+ m_fLastInterpolatedValue = x;
+
+ double h = m_aPoints[ m_nKHigh ].first - m_aPoints[ m_nKLow ].first;
+ OSL_ENSURE( h != 0, "Bad input to GetInterpolatedValue()" );
+
+ double a = ( m_aPoints[ m_nKHigh ].first - x ) / h;
+ double b = ( x - m_aPoints[ m_nKLow ].first ) / h;
+
+ return ( a * m_aPoints[ m_nKLow ].second +
+ b * m_aPoints[ m_nKHigh ].second +
+ (( a*a*a - a ) * m_aSecDerivY[ m_nKLow ] +
+ ( b*b*b - b ) * m_aSecDerivY[ m_nKHigh ] ) *
+ ( h*h ) / 6.0 );
+}
+
+// helper methods for B-spline
+
+// Create parameter t_0 to t_n using the centripetal method with a power of 0.5
+bool createParameterT(const tPointVecType& rUniquePoints, double* t)
+{ // precondition: no adjacent identical points
+ // postcondition: 0 = t_0 < t_1 < ... < t_n = 1
+ bool bIsSuccessful = true;
+ const lcl_tSizeType n = rUniquePoints.size() - 1;
+ t[0]=0.0;
+ double fDenominator = 0.0; // initialized for summing up
+ for (lcl_tSizeType i=1; i<=n ; ++i)
+ { // 4th root(dx^2+dy^2)
+ double dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
+ double dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
+ if (dx == 0 && dy == 0)
+ {
+ bIsSuccessful = false;
+ break;
+ }
+ else
+ {
+ fDenominator += sqrt(std::hypot(dx, dy));
+ }
+ }
+ if (fDenominator == 0.0)
+ {
+ bIsSuccessful = false;
+ }
+ if (bIsSuccessful)
+ {
+ for (lcl_tSizeType j=1; j<=n ; ++j)
+ {
+ double fNumerator = 0.0;
+ for (lcl_tSizeType i=1; i<=j ; ++i)
+ {
+ double dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
+ double dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
+ fNumerator += sqrt(std::hypot(dx, dy));
+ }
+ t[j] = fNumerator / fDenominator;
+
+ }
+ // postcondition check
+ t[n] = 1.0;
+ double fPrevious = 0.0;
+ for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i)
+ {
+ if (fPrevious >= t[i])
+ {
+ bIsSuccessful = false;
+ }
+ else
+ {
+ fPrevious = t[i];
+ }
+ }
+ }
+ return bIsSuccessful;
+}
+
+void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, const double* t, double* u)
+{ // precondition: 0 = t_0 < t_1 < ... < t_n = 1
+ for (lcl_tSizeType j = 0; j <= p; ++j)
+ {
+ u[j] = 0.0;
+ }
+ for (lcl_tSizeType j = 1; j <= n-p; ++j )
+ {
+ double fSum = 0.0;
+ for (lcl_tSizeType i = j; i <= j+p-1; ++i)
+ {
+ fSum += t[i];
+ }
+ assert(p != 0);
+ u[j+p] = fSum / p ;
+ }
+ for (lcl_tSizeType j = n+1; j <= n+1+p; ++j)
+ {
+ u[j] = 1.0;
+ }
+}
+
+void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN)
+{
+ // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero
+
+ // initialize with indicator function degree 0
+ rowN[p] = 1.0; // all others are zero
+
+ // calculate up to degree p
+ for (sal_uInt32 s = 1; s <= p; ++s)
+ {
+ // first element
+ double fLeftFactor = 0.0;
+ double fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] );
+ // i-s "true index" - (i-p)"shift" = p-s
+ rowN[p-s] = fRightFactor * rowN[p-s+1];
+
+ // middle elements
+ for (sal_uInt32 j = s-1; j>=1 ; --j)
+ {
+ fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ;
+ fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] );
+ // i-j "true index" - (i-p)"shift" = p-j
+ rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor * rowN[p-j+1];
+ }
+
+ // last element
+ fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] );
+ // i "true index" - (i-p)"shift" = p
+ rowN[p] = fLeftFactor * rowN[p];
+ }
+}
+
+} // anonymous namespace
+
+// Calculates uniform parametric splines with subinterval length 1,
+// according ODF1.2 part 1, chapter 'chart interpolation'.
+void SplineCalculater::CalculateCubicSplines(
+ const std::vector<std::vector<css::drawing::Position3D>>& rInput
+ , std::vector<std::vector<css::drawing::Position3D>>& rResult
+ , sal_uInt32 nGranularity )
+{
+ OSL_PRECOND( nGranularity > 0, "Granularity is invalid" );
+
+ sal_uInt32 nOuterCount = rInput.size();
+
+ rResult.resize(nOuterCount);
+
+ auto pSequence = rResult.data();
+
+ if( !nOuterCount )
+ return;
+
+ for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
+ {
+ if( rInput[nOuter].size() <= 1 )
+ continue; //we need at least two points
+
+ sal_uInt32 nMaxIndexPoints = rInput[nOuter].size()-1; // is >=1
+ const css::drawing::Position3D* pOld = rInput[nOuter].data();
+
+ std::vector < double > aParameter(nMaxIndexPoints+1);
+ aParameter[0]=0.0;
+ for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ )
+ {
+ aParameter[nIndex]=aParameter[nIndex-1]+1;
+ }
+
+ // Split the calculation to X, Y and Z coordinate
+ tPointVecType aInputX;
+ aInputX.resize(nMaxIndexPoints+1);
+ tPointVecType aInputY;
+ aInputY.resize(nMaxIndexPoints+1);
+ tPointVecType aInputZ;
+ aInputZ.resize(nMaxIndexPoints+1);
+ for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ )
+ {
+ aInputX[ nN ].first=aParameter[nN];
+ aInputX[ nN ].second=pOld[ nN ].PositionX;
+ aInputY[ nN ].first=aParameter[nN];
+ aInputY[ nN ].second=pOld[ nN ].PositionY;
+ aInputZ[ nN ].first=aParameter[nN];
+ aInputZ[ nN ].second=pOld[ nN ].PositionZ;
+ }
+
+ // generate a spline for each coordinate. It holds the complete
+ // information to calculate each point of the curve
+ std::unique_ptr<lcl_SplineCalculation> aSplineX;
+ std::unique_ptr<lcl_SplineCalculation> aSplineY;
+ // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in
+ // a data series are equal. No spline calculation needed, but copy
+ // coordinate to output
+
+ if( pOld[ 0 ].PositionX == pOld[nMaxIndexPoints].PositionX &&
+ pOld[ 0 ].PositionY == pOld[nMaxIndexPoints].PositionY &&
+ pOld[ 0 ].PositionZ == pOld[nMaxIndexPoints].PositionZ &&
+ nMaxIndexPoints >=2 )
+ { // periodic spline
+ aSplineX = std::make_unique<lcl_SplineCalculation>(std::move(aInputX));
+ aSplineY = std::make_unique<lcl_SplineCalculation>(std::move(aInputY));
+ }
+ else // generate the kind "natural spline"
+ {
+ double fXDerivation = std::numeric_limits<double>::infinity();
+ double fYDerivation = std::numeric_limits<double>::infinity();
+ aSplineX = std::make_unique<lcl_SplineCalculation>(std::move(aInputX), fXDerivation, fXDerivation);
+ aSplineY = std::make_unique<lcl_SplineCalculation>(std::move(aInputY), fYDerivation, fYDerivation);
+ }
+
+ // fill result polygon with calculated values
+ pSequence[nOuter].resize( nMaxIndexPoints*nGranularity + 1);
+
+ css::drawing::Position3D* pNew = pSequence[nOuter].data();
+
+ sal_uInt32 nNewPointIndex = 0; // Index in result points
+
+ for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ )
+ {
+ // given point is surely a curve point
+ pNew[nNewPointIndex].PositionX = pOld[ni].PositionX;
+ pNew[nNewPointIndex].PositionY = pOld[ni].PositionY;
+ pNew[nNewPointIndex].PositionZ = pOld[ni].PositionZ;
+ nNewPointIndex++;
+
+ // calculate intermediate points
+ double fInc = ( aParameter[ ni+1 ] - aParameter[ni] ) / static_cast< double >( nGranularity );
+ for(sal_uInt32 nj = 1; nj < nGranularity; nj++)
+ {
+ double fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) );
+
+ pNew[nNewPointIndex].PositionX = aSplineX->GetInterpolatedValue( fParam );
+ pNew[nNewPointIndex].PositionY = aSplineY->GetInterpolatedValue( fParam );
+ // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam );
+ pNew[nNewPointIndex].PositionZ = pOld[ni].PositionZ;
+ nNewPointIndex++;
+ }
+ }
+ // add last point
+ pNew[nNewPointIndex] = pOld[nMaxIndexPoints];
+ }
+}
+
+void SplineCalculater::CalculateBSplines(
+ const std::vector<std::vector<css::drawing::Position3D>>& rInput
+ , std::vector<std::vector<css::drawing::Position3D>>& rResult
+ , sal_uInt32 nResolution
+ , sal_uInt32 nDegree )
+{
+ // nResolution is ODF1.2 file format attribute chart:spline-resolution and
+ // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition.
+ // nDegree is ODF1.2 file format attribute chart:spline-order and
+ // ODF1.2 spec variable p
+ OSL_ASSERT( nResolution > 1 );
+ OSL_ASSERT( nDegree >= 1 );
+
+ // limit the b-spline degree at 15 to prevent insanely large sets of points
+ sal_uInt32 p = std::min<sal_uInt32>(nDegree, 15);
+
+ sal_Int32 nOuterCount = rInput.size();
+
+ rResult.resize(nOuterCount);
+
+ auto pSequence = rResult.data();
+
+ if( !nOuterCount )
+ return; // no input
+
+ for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
+ {
+ if( rInput[nOuter].size() <= 1 )
+ continue; // need at least 2 points, next piece of the series
+
+ // Copy input to vector of points and remove adjacent double points. The
+ // Z-coordinate is equal for all points in a series and holds the depth
+ // in 3D mode, simple copying is enough.
+ lcl_tSizeType nMaxIndexPoints = rInput[nOuter].size()-1; // is >=1
+ const css::drawing::Position3D* pOld = rInput[nOuter].data();
+ double fZCoordinate = pOld[0].PositionZ;
+ tPointVecType aPointsIn;
+ aPointsIn.resize(nMaxIndexPoints+1);
+ for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i )
+ {
+ aPointsIn[ i ].first = pOld[i].PositionX;
+ aPointsIn[ i ].second = pOld[i].PositionY;
+ }
+ aPointsIn.erase( std::unique( aPointsIn.begin(), aPointsIn.end()),
+ aPointsIn.end() );
+
+ // n is the last valid index to the reduced aPointsIn
+ // There are n+1 valid data points.
+ const lcl_tSizeType n = aPointsIn.size() - 1;
+ if (n < 1 || p > n)
+ continue; // need at least 2 points, degree p needs at least n+1 points
+ // next piece of series
+
+ std::vector<double> t(n + 1);
+ if (!createParameterT(aPointsIn, t.data()))
+ {
+ continue; // next piece of series
+ }
+
+ lcl_tSizeType m = n + p + 1;
+ std::vector<double> u(m + 1);
+ createKnotVector(n, p, t.data(), u.data());
+
+ // The matrix N contains the B-spline basis functions applied to parameters.
+ // In each row only p+1 adjacent elements are non-zero. The starting
+ // column in a higher row is equal or greater than in the lower row.
+ // To store this matrix the non-zero elements are shifted to column 0
+ // and the amount of shifting is remembered in an array.
+ std::vector<std::vector<double>> aMatN(n + 1, std::vector<double>(p + 1));
+ std::vector<lcl_tSizeType> aShift(n + 1);
+ aMatN[0][0] = 1.0; //all others are zero
+ aShift[0] = 0;
+ aMatN[n][0] = 1.0;
+ aShift[n] = n;
+ for (lcl_tSizeType k = 1; k<=n-1; ++k)
+ { // all basis functions are applied to t_k,
+ // results are elements in row k in matrix N
+
+ // find the one interval with u_i <= t_k < u_(i+1)
+ // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1
+ lcl_tSizeType i = p;
+ while (u[i] > t[k] || t[k] >= u[i+1])
+ {
+ ++i;
+ }
+
+ // index in reduced matrix aMatN = (index in full matrix N) - (i-p)
+ aShift[k] = i - p;
+
+ applyNtoParameterT(i, t[k], p, u.data(), aMatN[k].data());
+ } // next row k
+
+ // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn
+ // aPointsIn is overwritten with C.
+ // Gaussian elimination is possible without pivoting, see reference
+ lcl_tSizeType r = 0; // true row index
+ lcl_tSizeType c = 0; // true column index
+ double fDivisor = 1.0; // used for diagonal element
+ double fEliminate = 1.0; // used for the element, that will become zero
+ bool bIsSuccessful = true;
+ for (c = 0 ; c <= n && bIsSuccessful; ++c)
+ {
+ // search for first non-zero downwards
+ r = c;
+ while ( r < n && aMatN[r][c-aShift[r]] == 0 )
+ {
+ ++r;
+ }
+ if (aMatN[r][c-aShift[r]] == 0.0)
+ {
+ // Matrix N is singular, although this is mathematically impossible
+ bIsSuccessful = false;
+ }
+ else
+ {
+ // exchange total row r with total row c if necessary
+ if (r != c)
+ {
+ std::swap( aMatN[r], aMatN[c] );
+ std::swap( aPointsIn[r], aPointsIn[c] );
+ std::swap( aShift[r], aShift[c] );
+ }
+
+ // divide row c, so that element(c,c) becomes 1
+ fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above
+ for (sal_uInt32 i = 0; i <= p; ++i)
+ {
+ aMatN[c][i] /= fDivisor;
+ }
+ aPointsIn[c].first /= fDivisor;
+ aPointsIn[c].second /= fDivisor;
+
+ // eliminate forward, examine row c+1 to n-1 (worst case)
+ // stop if first non-zero element in row has an higher column as c
+ // look at nShift for that, elements in nShift are equal or increasing
+ for ( r = c+1; r < n && aShift[r]<=c ; ++r)
+ {
+ fEliminate = aMatN[r][0];
+ if (fEliminate != 0.0) // else accidentally zero, nothing to do
+ {
+ for (sal_uInt32 i = 1; i <= p; ++i)
+ {
+ aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i];
+ }
+ aMatN[r][p]=0;
+ aPointsIn[r].first -= fEliminate * aPointsIn[c].first;
+ aPointsIn[r].second -= fEliminate * aPointsIn[c].second;
+ ++aShift[r];
+ }
+ }
+ }
+ }// upper triangle form is reached
+ if( bIsSuccessful)
+ {
+ // eliminate backwards, begin with last column
+ for (lcl_tSizeType cc = n; cc >= 1; --cc )
+ {
+ // In row cc the diagonal element(cc,cc) == 1 and all elements left from
+ // diagonal are zero and do not influence other rows.
+ // Full matrix N has semibandwidth < p, therefore element(r,c) is
+ // zero, if abs(r-cc)>=p. abs(r-cc)=cc-r, because r<cc.
+ r = cc - 1;
+ while ( r !=0 && cc-r < p )
+ {
+ fEliminate = aMatN[r][ cc - aShift[r] ];
+ if ( fEliminate != 0.0) // else element is accidentally zero, no action needed
+ {
+ // row r -= fEliminate * row cc only relevant for right side
+ aMatN[r][cc - aShift[r]] = 0.0;
+ aPointsIn[r].first -= fEliminate * aPointsIn[cc].first;
+ aPointsIn[r].second -= fEliminate * aPointsIn[cc].second;
+ }
+ --r;
+ }
+ }
+ // aPointsIn contains the control points now.
+
+ // calculate the intermediate points according given resolution
+ // using deBoor-Cox algorithm
+ lcl_tSizeType nNewSize = nResolution * n + 1;
+ pSequence[nOuter].resize(nNewSize);
+ css::drawing::Position3D* pNew = pSequence[nOuter].data();
+ pNew[0].PositionX = aPointsIn[0].first;
+ pNew[0].PositionY = aPointsIn[0].second;
+ pNew[0].PositionZ = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal
+ pNew[nNewSize -1 ].PositionX = aPointsIn[n].first;
+ pNew[nNewSize -1 ].PositionY = aPointsIn[n].second;
+ pNew[nNewSize -1 ].PositionZ = fZCoordinate;
+ std::vector<double> aP(m + 1);
+ lcl_tSizeType nLow = 0;
+ for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex)
+ {
+ for (sal_uInt32 nResolutionStep = 1;
+ nResolutionStep <= nResolution && ( nTIndex != n-1 || nResolutionStep != nResolution);
+ ++nResolutionStep)
+ {
+ lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep;
+ double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution;
+
+ // get index nLow, so that u[nLow]<= ux < u[nLow +1]
+ // continue from previous nLow
+ while ( u[nLow] <= ux)
+ {
+ ++nLow;
+ }
+ --nLow;
+
+ // x-coordinate
+ for (lcl_tSizeType i = nLow-p; i <= nLow; ++i)
+ {
+ aP[i] = aPointsIn[i].first;
+ }
+ for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
+ {
+ for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i)
+ {
+ double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
+ aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
+ }
+ }
+ pNew[nNewIndex].PositionX = aP[nLow];
+
+ // y-coordinate
+ for (lcl_tSizeType i = nLow - p; i <= nLow; ++i)
+ {
+ aP[i] = aPointsIn[i].second;
+ }
+ for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
+ {
+ for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i)
+ {
+ double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
+ aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
+ }
+ }
+ pNew[nNewIndex].PositionY = aP[nLow];
+ pNew[nNewIndex].PositionZ = fZCoordinate;
+ }
+ }
+ }
+ } // next piece of the series
+}
+
+} //namespace chart
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */