summaryrefslogtreecommitdiffstats
path: root/sal/rtl/math.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'sal/rtl/math.cxx')
-rw-r--r--sal/rtl/math.cxx828
1 files changed, 828 insertions, 0 deletions
diff --git a/sal/rtl/math.cxx b/sal/rtl/math.cxx
new file mode 100644
index 000000000..0d70e9718
--- /dev/null
+++ b/sal/rtl/math.cxx
@@ -0,0 +1,828 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#include <rtl/math.h>
+
+#include <o3tl/safeint.hxx>
+#include <osl/diagnose.h>
+#include <rtl/character.hxx>
+#include <rtl/math.hxx>
+
+#include <algorithm>
+#include <cassert>
+#include <cfenv>
+#include <cmath>
+#include <float.h>
+#include <limits>
+#include <limits.h>
+#include <math.h>
+#include <memory>
+#include <stdlib.h>
+
+#include "strtmpl.hxx"
+
+#include <dtoa.h>
+
+constexpr int minExp = -323, maxExp = 308;
+constexpr double n10s[] = {
+ 1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316, 1e-315, 1e-314, 1e-313, 1e-312,
+ 1e-311, 1e-310, 1e-309, 1e-308, 1e-307, 1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300,
+ 1e-299, 1e-298, 1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289, 1e-288,
+ 1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280, 1e-279, 1e-278, 1e-277, 1e-276,
+ 1e-275, 1e-274, 1e-273, 1e-272, 1e-271, 1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264,
+ 1e-263, 1e-262, 1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253, 1e-252,
+ 1e-251, 1e-250, 1e-249, 1e-248, 1e-247, 1e-246, 1e-245, 1e-244, 1e-243, 1e-242, 1e-241, 1e-240,
+ 1e-239, 1e-238, 1e-237, 1e-236, 1e-235, 1e-234, 1e-233, 1e-232, 1e-231, 1e-230, 1e-229, 1e-228,
+ 1e-227, 1e-226, 1e-225, 1e-224, 1e-223, 1e-222, 1e-221, 1e-220, 1e-219, 1e-218, 1e-217, 1e-216,
+ 1e-215, 1e-214, 1e-213, 1e-212, 1e-211, 1e-210, 1e-209, 1e-208, 1e-207, 1e-206, 1e-205, 1e-204,
+ 1e-203, 1e-202, 1e-201, 1e-200, 1e-199, 1e-198, 1e-197, 1e-196, 1e-195, 1e-194, 1e-193, 1e-192,
+ 1e-191, 1e-190, 1e-189, 1e-188, 1e-187, 1e-186, 1e-185, 1e-184, 1e-183, 1e-182, 1e-181, 1e-180,
+ 1e-179, 1e-178, 1e-177, 1e-176, 1e-175, 1e-174, 1e-173, 1e-172, 1e-171, 1e-170, 1e-169, 1e-168,
+ 1e-167, 1e-166, 1e-165, 1e-164, 1e-163, 1e-162, 1e-161, 1e-160, 1e-159, 1e-158, 1e-157, 1e-156,
+ 1e-155, 1e-154, 1e-153, 1e-152, 1e-151, 1e-150, 1e-149, 1e-148, 1e-147, 1e-146, 1e-145, 1e-144,
+ 1e-143, 1e-142, 1e-141, 1e-140, 1e-139, 1e-138, 1e-137, 1e-136, 1e-135, 1e-134, 1e-133, 1e-132,
+ 1e-131, 1e-130, 1e-129, 1e-128, 1e-127, 1e-126, 1e-125, 1e-124, 1e-123, 1e-122, 1e-121, 1e-120,
+ 1e-119, 1e-118, 1e-117, 1e-116, 1e-115, 1e-114, 1e-113, 1e-112, 1e-111, 1e-110, 1e-109, 1e-108,
+ 1e-107, 1e-106, 1e-105, 1e-104, 1e-103, 1e-102, 1e-101, 1e-100, 1e-99, 1e-98, 1e-97, 1e-96,
+ 1e-95, 1e-94, 1e-93, 1e-92, 1e-91, 1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84,
+ 1e-83, 1e-82, 1e-81, 1e-80, 1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73, 1e-72,
+ 1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64, 1e-63, 1e-62, 1e-61, 1e-60,
+ 1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48,
+ 1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40, 1e-39, 1e-38, 1e-37, 1e-36,
+ 1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28, 1e-27, 1e-26, 1e-25, 1e-24,
+ 1e-23, 1e-22, 1e-21, 1e-20, 1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12,
+ 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0,
+ 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12,
+ 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24,
+ 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36,
+ 1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48,
+ 1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59, 1e60,
+ 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69, 1e70, 1e71, 1e72,
+ 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79, 1e80, 1e81, 1e82, 1e83, 1e84,
+ 1e85, 1e86, 1e87, 1e88, 1e89, 1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96,
+ 1e97, 1e98, 1e99, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108,
+ 1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120,
+ 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132,
+ 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144,
+ 1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156,
+ 1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168,
+ 1e169, 1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180,
+ 1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190, 1e191, 1e192,
+ 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199, 1e200, 1e201, 1e202, 1e203, 1e204,
+ 1e205, 1e206, 1e207, 1e208, 1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216,
+ 1e217, 1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228,
+ 1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239, 1e240,
+ 1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252,
+ 1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262, 1e263, 1e264,
+ 1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276,
+ 1e277, 1e278, 1e279, 1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288,
+ 1e289, 1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299, 1e300,
+ 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308,
+};
+static_assert(SAL_N_ELEMENTS(n10s) == maxExp - minExp + 1);
+
+// return pow(10.0,nExp) optimized for exponents in the interval [-323,308] (i.e., incl. denormals)
+static double getN10Exp(int nExp)
+{
+ if (nExp < minExp || nExp > maxExp)
+ return pow(10.0, static_cast<double>(nExp)); // will return 0 or INF with IEEE 754
+ return n10s[nExp - minExp];
+}
+
+namespace {
+
+/** If value (passed as absolute value) is an integer representable as double,
+ which we handle explicitly at some places.
+ */
+bool isRepresentableInteger(double fAbsValue)
+{
+ assert(fAbsValue >= 0.0);
+ const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1;
+ if (fAbsValue <= static_cast< double >(kMaxInt))
+ {
+ sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue);
+ // Check the integer range again because double comparison may yield
+ // true within the precision range.
+ // XXX loplugin:fpcomparison complains about floating-point comparison
+ // for static_cast<double>(nInt) == fAbsValue, though we actually want
+ // this here.
+ if (nInt > kMaxInt)
+ return false;
+ double fInt = static_cast< double >(nInt);
+ return !(fInt < fAbsValue) && !(fInt > fAbsValue);
+ }
+ return false;
+}
+
+// Returns 1-based index of least significant bit in a number, or zero if number is zero
+int findFirstSetBit(unsigned n)
+{
+#if defined _WIN32
+ unsigned long pos;
+ unsigned char bNonZero = _BitScanForward(&pos, n);
+ return (bNonZero == 0) ? 0 : pos + 1;
+#else
+ return __builtin_ffs(n);
+#endif
+}
+
+/** Returns number of binary bits for fractional part of the number
+ Expects a proper non-negative double value, not +-INF, not NAN
+ */
+int getBitsInFracPart(double fAbsValue)
+{
+ assert(std::isfinite(fAbsValue) && fAbsValue >= 0.0);
+ if (fAbsValue == 0.0)
+ return 0;
+ auto pValParts = reinterpret_cast< const sal_math_Double * >(&fAbsValue);
+ int nExponent = pValParts->inf_parts.exponent - 1023;
+ if (nExponent >= 52)
+ return 0; // All bits in fraction are in integer part of the number
+ int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo);
+ if (nLeastSignificant == 0)
+ {
+ nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi);
+ if (nLeastSignificant == 0)
+ nLeastSignificant = 53; // the implied leading 1 is the least significant
+ else
+ nLeastSignificant += 32;
+ }
+ int nFracSignificant = 53 - nLeastSignificant;
+ int nBitsInFracPart = nFracSignificant - nExponent;
+
+ return std::max(nBitsInFracPart, 0);
+}
+
+}
+
+void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult,
+ sal_Int32 * pResultCapacity,
+ sal_Int32 nResultOffset, double fValue,
+ rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces,
+ char cDecSeparator,
+ sal_Int32 const * pGroups,
+ char cGroupSeparator,
+ sal_Bool bEraseTrailingDecZeros)
+ SAL_THROW_EXTERN_C()
+{
+ rtl::str::doubleToString(
+ pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
+ cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
+}
+
+void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult,
+ sal_Int32 * pResultCapacity,
+ sal_Int32 nResultOffset, double fValue,
+ rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces,
+ sal_Unicode cDecSeparator,
+ sal_Int32 const * pGroups,
+ sal_Unicode cGroupSeparator,
+ sal_Bool bEraseTrailingDecZeros)
+ SAL_THROW_EXTERN_C()
+{
+ rtl::str::doubleToString(
+ pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
+ cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
+}
+
+namespace {
+
+template< typename CharT >
+double stringToDouble(CharT const * pBegin, CharT const * pEnd,
+ CharT cDecSeparator, CharT cGroupSeparator,
+ rtl_math_ConversionStatus * pStatus,
+ CharT const ** pParsedEnd)
+{
+ double fVal = 0.0;
+ rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;
+
+ CharT const * p0 = pBegin;
+ while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t')))
+ {
+ ++p0;
+ }
+
+ bool bSign;
+ bool explicitSign = false;
+ if (p0 != pEnd && *p0 == CharT('-'))
+ {
+ bSign = true;
+ explicitSign = true;
+ ++p0;
+ }
+ else
+ {
+ bSign = false;
+ if (p0 != pEnd && *p0 == CharT('+'))
+ {
+ explicitSign = true;
+ ++p0;
+ }
+ }
+
+ CharT const * p = p0;
+ bool bDone = false;
+
+ // #i112652# XMLSchema-2
+ if ((pEnd - p) >= 3)
+ {
+ if (!explicitSign && (CharT('N') == p[0]) && (CharT('a') == p[1])
+ && (CharT('N') == p[2]))
+ {
+ p += 3;
+ fVal = std::numeric_limits<double>::quiet_NaN();
+ bDone = true;
+ }
+ else if ((CharT('I') == p[0]) && (CharT('N') == p[1])
+ && (CharT('F') == p[2]))
+ {
+ p += 3;
+ fVal = HUGE_VAL;
+ eStatus = rtl_math_ConversionStatus_OutOfRange;
+ bDone = true;
+ }
+ }
+
+ if (!bDone) // do not recognize e.g. NaN1.23
+ {
+ std::unique_ptr<char[]> bufInHeap;
+ std::unique_ptr<const CharT * []> bufInHeapMap;
+ constexpr int bufOnStackSize = 256;
+ char bufOnStack[bufOnStackSize];
+ const CharT* bufOnStackMap[bufOnStackSize];
+ char* buf = bufOnStack;
+ const CharT** bufmap = bufOnStackMap;
+ int bufpos = 0;
+ const size_t bufsize = pEnd - p + (bSign ? 2 : 1);
+ if (bufsize > bufOnStackSize)
+ {
+ bufInHeap = std::make_unique<char[]>(bufsize);
+ bufInHeapMap = std::make_unique<const CharT*[]>(bufsize);
+ buf = bufInHeap.get();
+ bufmap = bufInHeapMap.get();
+ }
+
+ if (bSign)
+ {
+ buf[0] = '-';
+ bufmap[0] = p; // yes, this may be the same pointer as for the next mapping
+ bufpos = 1;
+ }
+ // Put first zero to buffer for strings like "-0"
+ if (p != pEnd && *p == CharT('0'))
+ {
+ buf[bufpos] = '0';
+ bufmap[bufpos] = p;
+ ++bufpos;
+ ++p;
+ }
+ // Leading zeros and group separators between digits may be safely
+ // ignored. p0 < p implies that there was a leading 0 already,
+ // consecutive group separators may not happen as *(p+1) is checked for
+ // digit.
+ while (p != pEnd && (*p == CharT('0') || (*p == cGroupSeparator
+ && p0 < p && p+1 < pEnd && rtl::isAsciiDigit(*(p+1)))))
+ {
+ ++p;
+ }
+
+ // integer part of mantissa
+ for (; p != pEnd; ++p)
+ {
+ CharT c = *p;
+ if (rtl::isAsciiDigit(c))
+ {
+ buf[bufpos] = static_cast<char>(c);
+ bufmap[bufpos] = p;
+ ++bufpos;
+ }
+ else if (c != cGroupSeparator)
+ {
+ break;
+ }
+ else if (p == p0 || (p+1 == pEnd) || !rtl::isAsciiDigit(*(p+1)))
+ {
+ // A leading or trailing (not followed by a digit) group
+ // separator character is not a group separator.
+ break;
+ }
+ }
+
+ // fraction part of mantissa
+ if (p != pEnd && *p == cDecSeparator)
+ {
+ buf[bufpos] = '.';
+ bufmap[bufpos] = p;
+ ++bufpos;
+ ++p;
+
+ for (; p != pEnd; ++p)
+ {
+ CharT c = *p;
+ if (!rtl::isAsciiDigit(c))
+ {
+ break;
+ }
+ buf[bufpos] = static_cast<char>(c);
+ bufmap[bufpos] = p;
+ ++bufpos;
+ }
+ }
+
+ // Exponent
+ if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e')))
+ {
+ buf[bufpos] = 'E';
+ bufmap[bufpos] = p;
+ ++bufpos;
+ ++p;
+ if (p != pEnd && *p == CharT('-'))
+ {
+ buf[bufpos] = '-';
+ bufmap[bufpos] = p;
+ ++bufpos;
+ ++p;
+ }
+ else if (p != pEnd && *p == CharT('+'))
+ ++p;
+
+ for (; p != pEnd; ++p)
+ {
+ CharT c = *p;
+ if (!rtl::isAsciiDigit(c))
+ break;
+
+ buf[bufpos] = static_cast<char>(c);
+ bufmap[bufpos] = p;
+ ++bufpos;
+ }
+ }
+ else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#')
+ && p[-1] == cDecSeparator && p[-2] == CharT('1'))
+ {
+ if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N')
+ && p[3] == CharT('F'))
+ {
+ // "1.#INF", "+1.#INF", "-1.#INF"
+ p += 4;
+ fVal = HUGE_VAL;
+ eStatus = rtl_math_ConversionStatus_OutOfRange;
+ // Eat any further digits:
+ while (p != pEnd && rtl::isAsciiDigit(*p))
+ ++p;
+ bDone = true;
+ }
+ else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A')
+ && p[3] == CharT('N'))
+ {
+ // "1.#NAN", "+1.#NAN", "-1.#NAN"
+ p += 4;
+ fVal = std::copysign(std::numeric_limits<double>::quiet_NaN(), bSign ? -1.0 : 1.0);
+ bSign = false; // don't negate again
+
+ // Eat any further digits:
+ while (p != pEnd && rtl::isAsciiDigit(*p))
+ {
+ ++p;
+ }
+ bDone = true;
+ }
+ }
+
+ if (!bDone)
+ {
+ buf[bufpos] = '\0';
+ bufmap[bufpos] = p;
+ char* pCharParseEnd;
+ errno = 0;
+ fVal = strtod_nolocale(buf, &pCharParseEnd);
+ if (errno == ERANGE)
+ {
+ // Check for the dreaded rounded to 15 digits max value
+ // 1.79769313486232e+308 for 1.7976931348623157e+308 we wrote
+ // everywhere, accept with or without plus sign in exponent.
+ const char* b = buf;
+ if (b[0] == '-')
+ ++b;
+ if (((pCharParseEnd - b == 21) || (pCharParseEnd - b == 20))
+ && !strncmp( b, "1.79769313486232", 16)
+ && (b[16] == 'e' || b[16] == 'E')
+ && (((pCharParseEnd - b == 21) && !strncmp( b+17, "+308", 4))
+ || ((pCharParseEnd - b == 20) && !strncmp( b+17, "308", 3))))
+ {
+ fVal = (buf < b) ? -DBL_MAX : DBL_MAX;
+ }
+ else
+ {
+ eStatus = rtl_math_ConversionStatus_OutOfRange;
+ }
+ }
+ p = bufmap[pCharParseEnd - buf];
+ bSign = false;
+ }
+ }
+
+ // overflow also if more than DBL_MAX_10_EXP digits without decimal
+ // separator, or 0. and more than DBL_MIN_10_EXP digits, ...
+ bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
+ if (bHuge)
+ eStatus = rtl_math_ConversionStatus_OutOfRange;
+
+ if (bSign)
+ fVal = -fVal;
+
+ if (pStatus)
+ *pStatus = eStatus;
+
+ if (pParsedEnd)
+ *pParsedEnd = p == p0 ? pBegin : p;
+
+ return fVal;
+}
+
+}
+
+double SAL_CALL rtl_math_stringToDouble(char const * pBegin,
+ char const * pEnd,
+ char cDecSeparator,
+ char cGroupSeparator,
+ rtl_math_ConversionStatus * pStatus,
+ char const ** pParsedEnd)
+ SAL_THROW_EXTERN_C()
+{
+ return stringToDouble(
+ reinterpret_cast<unsigned char const *>(pBegin),
+ reinterpret_cast<unsigned char const *>(pEnd),
+ static_cast<unsigned char>(cDecSeparator),
+ static_cast<unsigned char>(cGroupSeparator), pStatus,
+ reinterpret_cast<unsigned char const **>(pParsedEnd));
+}
+
+double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin,
+ sal_Unicode const * pEnd,
+ sal_Unicode cDecSeparator,
+ sal_Unicode cGroupSeparator,
+ rtl_math_ConversionStatus * pStatus,
+ sal_Unicode const ** pParsedEnd)
+ SAL_THROW_EXTERN_C()
+{
+ return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
+ pParsedEnd);
+}
+
+double SAL_CALL rtl_math_round(double fValue, int nDecPlaces,
+ enum rtl_math_RoundingMode eMode)
+ SAL_THROW_EXTERN_C()
+{
+ if (!std::isfinite(fValue))
+ return fValue;
+
+ if (fValue == 0.0)
+ return fValue;
+
+ if (nDecPlaces == 0)
+ {
+ switch (eMode)
+ {
+ case rtl_math_RoundingMode_Corrected:
+ return std::round(fValue);
+ case rtl_math_RoundingMode_HalfEven:
+ if (const int oldMode = std::fegetround(); std::fesetround(FE_TONEAREST) == 0)
+ {
+ fValue = std::nearbyint(fValue);
+ std::fesetround(oldMode);
+ return fValue;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+ const double fOrigValue = fValue;
+
+ // sign adjustment
+ bool bSign = std::signbit( fValue );
+ if (bSign)
+ fValue = -fValue;
+
+ // Rounding to decimals between integer distance precision (gaps) does not
+ // make sense, do not even try to multiply/divide and introduce inaccuracy.
+ // For same reasons, do not attempt to round integers to decimals.
+ if (nDecPlaces >= 0
+ && (fValue >= 0x1p52
+ || isRepresentableInteger(fValue)))
+ return fOrigValue;
+
+ double fFac = 0;
+ if (nDecPlaces != 0)
+ {
+ if (nDecPlaces > 0)
+ {
+ // Determine how many decimals are representable in the precision.
+ // Anything greater 2^52 and 0.0 was already ruled out above.
+ // Theoretically 0.5, 0.25, 0.125, 0.0625, 0.03125, ...
+ const sal_math_Double* pd = reinterpret_cast<const sal_math_Double*>(&fValue);
+ const sal_Int32 nDec = 52 - (pd->parts.exponent - 1023);
+
+ if (nDec <= 0)
+ {
+ assert(!"Shouldn't this had been caught already as large number?");
+ return fOrigValue;
+ }
+
+ if (nDec < nDecPlaces)
+ nDecPlaces = nDec;
+ }
+
+ // Avoid 1e-5 (1.0000000000000001e-05) and such inaccurate fractional
+ // factors that later when dividing back spoil things. For negative
+ // decimals divide first with the inverse, then multiply the rounded
+ // value back.
+ fFac = getN10Exp(abs(nDecPlaces));
+
+ if (fFac == 0.0 || (nDecPlaces < 0 && !std::isfinite(fFac)))
+ // Underflow, rounding to that many integer positions would be 0.
+ return 0.0;
+
+ if (!std::isfinite(fFac))
+ // Overflow with very small values and high number of decimals.
+ return fOrigValue;
+
+ if (nDecPlaces < 0)
+ fValue /= fFac;
+ else
+ fValue *= fFac;
+
+ if (!std::isfinite(fValue))
+ return fOrigValue;
+ }
+
+ // Round only if not already in distance precision gaps of integers, where
+ // for [2^52,2^53) adding 0.5 would even yield the next representable
+ // integer.
+ if (fValue < 0x1p52)
+ {
+ switch ( eMode )
+ {
+ case rtl_math_RoundingMode_Corrected :
+ fValue = rtl::math::approxFloor(fValue + 0.5);
+ break;
+ case rtl_math_RoundingMode_Down:
+ fValue = rtl::math::approxFloor(fValue);
+ break;
+ case rtl_math_RoundingMode_Up:
+ fValue = rtl::math::approxCeil(fValue);
+ break;
+ case rtl_math_RoundingMode_Floor:
+ fValue = bSign ? rtl::math::approxCeil(fValue)
+ : rtl::math::approxFloor( fValue );
+ break;
+ case rtl_math_RoundingMode_Ceiling:
+ fValue = bSign ? rtl::math::approxFloor(fValue)
+ : rtl::math::approxCeil(fValue);
+ break;
+ case rtl_math_RoundingMode_HalfDown :
+ {
+ double f = floor(fValue);
+ fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue);
+ }
+ break;
+ case rtl_math_RoundingMode_HalfUp:
+ {
+ double f = floor(fValue);
+ fValue = ((fValue - f) < 0.5) ? f : ceil(fValue);
+ }
+ break;
+ case rtl_math_RoundingMode_HalfEven:
+#if defined FLT_ROUNDS
+ /*
+ Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
+
+ DBL_EPSILON is the smallest fractional number which can be represented,
+ its reciprocal is therefore the smallest number that cannot have a
+ fractional part. Once you add this reciprocal to `x', its fractional part
+ is stripped off. Simply subtracting the reciprocal back out returns `x'
+ without its fractional component.
+ Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
+ who placed it into public domain.
+
+ volatile: prevent compiler from being too smart
+ */
+ if (FLT_ROUNDS == 1)
+ {
+ volatile double x = fValue + 1.0 / DBL_EPSILON;
+ fValue = x - 1.0 / DBL_EPSILON;
+ }
+ else
+#endif // FLT_ROUNDS
+ {
+ double f = floor(fValue);
+ if ((fValue - f) != 0.5)
+ {
+ fValue = floor( fValue + 0.5 );
+ }
+ else
+ {
+ double g = f / 2.0;
+ fValue = (g == floor( g )) ? f : (f + 1.0);
+ }
+ }
+ break;
+ default:
+ OSL_ASSERT(false);
+ break;
+ }
+ }
+
+ if (nDecPlaces != 0)
+ {
+ if (nDecPlaces < 0)
+ fValue *= fFac;
+ else
+ fValue /= fFac;
+ }
+
+ if (!std::isfinite(fValue))
+ return fOrigValue;
+
+ return bSign ? -fValue : fValue;
+}
+
+double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
+{
+ return fValue * getN10Exp(nExp);
+}
+
+double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C()
+{
+ const double fBigInt = 0x1p41; // 2^41 -> only 11 bits left for fractional part, fine as decimal
+ if (fValue == 0.0 || fValue == HUGE_VAL || !std::isfinite( fValue) || fValue > fBigInt)
+ {
+ // We don't handle these conditions. Bail out.
+ return fValue;
+ }
+
+ double fOrigValue = fValue;
+
+ bool bSign = std::signbit(fValue);
+ if (bSign)
+ fValue = -fValue;
+
+ // If the value is either integer representable as double,
+ // or only has small number of bits in fraction part, then we need not do any approximation
+ if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11)
+ return fOrigValue;
+
+ int nExp = static_cast< int >(floor(log10(fValue)));
+ nExp = 14 - nExp;
+ double fExpValue = getN10Exp(abs(nExp));
+
+ if (nExp < 0)
+ fValue /= fExpValue;
+ else
+ fValue *= fExpValue;
+
+ // If the original value was near DBL_MIN we got an overflow. Restore and
+ // bail out.
+ if (!std::isfinite(fValue))
+ return fOrigValue;
+
+ fValue = std::round(fValue);
+
+ if (nExp < 0)
+ fValue *= fExpValue;
+ else
+ fValue /= fExpValue;
+
+ // If the original value was near DBL_MAX we got an overflow. Restore and
+ // bail out.
+ if (!std::isfinite(fValue))
+ return fOrigValue;
+
+ return bSign ? -fValue : fValue;
+}
+
+bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C()
+{
+ static const double e48 = 0x1p-48;
+ static const double e44 = 0x1p-44;
+
+ if (a == b)
+ return true;
+
+ if (a == 0.0 || b == 0.0)
+ return false;
+
+ const double d = fabs(a - b);
+ if (!std::isfinite(d))
+ return false; // Nan or Inf involved
+
+ a = fabs(a);
+ if (d > (a * e44))
+ return false;
+ b = fabs(b);
+ if (d > (b * e44))
+ return false;
+
+ if (isRepresentableInteger(d) && isRepresentableInteger(a) && isRepresentableInteger(b))
+ return false; // special case for representable integers.
+
+ return (d < a * e48 && d < b * e48);
+}
+
+double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C()
+{
+ return expm1(fValue);
+}
+
+double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C()
+{
+#ifdef __APPLE__
+ if (fValue == -0.0)
+ return fValue; // macOS 10.8 libc returns 0.0 for -0.0
+#endif
+
+ return log1p(fValue);
+}
+
+double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C()
+{
+ return ::atanh(fValue);
+}
+
+/** Parent error function (erf) */
+double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C()
+{
+ return erf(x);
+}
+
+/** Parent complementary error function (erfc) */
+double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C()
+{
+ return erfc(x);
+}
+
+/** improved accuracy of asinh for |x| large and for x near zero
+ @see #i97605#
+ */
+double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C()
+{
+ if ( fX == 0.0 )
+ return 0.0;
+
+ double fSign = 1.0;
+ if ( fX < 0.0 )
+ {
+ fX = - fX;
+ fSign = -1.0;
+ }
+
+ if ( fX < 0.125 )
+ return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX)));
+
+ if ( fX < 1.25e7 )
+ return fSign * log( fX + sqrt( 1.0 + fX*fX));
+
+ return fSign * log( 2.0*fX);
+}
+
+/** improved accuracy of acosh for x large and for x near 1
+ @see #i97605#
+ */
+double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C()
+{
+ volatile double fZ = fX - 1.0;
+ if (fX < 1.0)
+ return std::numeric_limits<double>::quiet_NaN();
+ if ( fX == 1.0 )
+ return 0.0;
+
+ if ( fX < 1.1 )
+ return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ));
+
+ if ( fX < 1.25e7 )
+ return log( fX + sqrt( fX*fX - 1.0));
+
+ return log( 2.0*fX);
+}
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */