/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include // implementations of the 3D raster converter namespace basegfx { void RasterConverter3D::addArea(const B3DPolygon& rFill, const B3DHomMatrix* pViewToEye) { const sal_uInt32 nPointCount(rFill.count()); for(sal_uInt32 a(0); a < nPointCount; a++) { addEdge(rFill, a, (a + 1) % nPointCount, pViewToEye); } } void RasterConverter3D::addArea(const B3DPolyPolygon& rFill, const B3DHomMatrix* pViewToEye) { const sal_uInt32 nPolyCount(rFill.count()); for(sal_uInt32 a(0); a < nPolyCount; a++) { addArea(rFill.getB3DPolygon(a), pViewToEye); } } RasterConverter3D::RasterConverter3D() {} RasterConverter3D::~RasterConverter3D() {} void RasterConverter3D::rasterconvertB3DArea(sal_Int32 nStartLine, sal_Int32 nStopLine) { if(maLineEntries.empty()) return; OSL_ENSURE(nStopLine >= nStartLine, "nStopLine is bigger than nStartLine (!)"); // sort global entries by Y, X once. After this, the vector // is seen as frozen. Pointers to its entries will be used in the following code. std::sort(maLineEntries.begin(), maLineEntries.end()); // local parameters std::vector< RasterConversionLineEntry3D >::iterator aCurrentEntry(maLineEntries.begin()); std::vector< RasterConversionLineEntry3D* > aCurrentLine; std::vector< RasterConversionLineEntry3D* > aNextLine; std::vector< RasterConversionLineEntry3D* >::iterator aRasterConversionLineEntry3D; // get scanlines first LineNumber as start sal_Int32 nLineNumber(std::max(aCurrentEntry->getY(), nStartLine)); while((!aCurrentLine.empty() || aCurrentEntry != maLineEntries.end()) && (nLineNumber < nStopLine)) { // add all entries which start at current line to current scanline while(aCurrentEntry != maLineEntries.end()) { const sal_Int32 nCurrentLineNumber(aCurrentEntry->getY()); if(nCurrentLineNumber > nLineNumber) { // line is below current one, done (since array is sorted) break; } else { // less or equal. Line is above or at current one. Advance it exactly to // current line const sal_uInt32 nStep(nLineNumber - nCurrentLineNumber); if(!nStep || aCurrentEntry->decrementRasterConversionLineEntry3D(nStep)) { // add when exactly on current line or when increment to it did not // completely consume it if(nStep) { aCurrentEntry->incrementRasterConversionLineEntry3D(nStep, *this); } aCurrentLine.push_back(&(*aCurrentEntry)); } } ++aCurrentEntry; } // sort current scanline using comparator. Only X is used there // since all entries are already in one processed line. This needs to be done // every time since not only new spans may have benn added or old removed, // but incrementing may also have changed the order std::sort(aCurrentLine.begin(), aCurrentLine.end(), lineComparator()); // process current scanline aRasterConversionLineEntry3D = aCurrentLine.begin(); aNextLine.clear(); sal_uInt32 nPairCount(0); while(aRasterConversionLineEntry3D != aCurrentLine.end()) { RasterConversionLineEntry3D& rPrevScanRasterConversionLineEntry3D(**aRasterConversionLineEntry3D++); // look for 2nd span if(aRasterConversionLineEntry3D != aCurrentLine.end()) { // work on span from rPrevScanRasterConversionLineEntry3D to aRasterConversionLineEntry3D, fLineNumber is valid processLineSpan(rPrevScanRasterConversionLineEntry3D, **aRasterConversionLineEntry3D, nLineNumber, nPairCount++); } // increment to next line if(rPrevScanRasterConversionLineEntry3D.decrementRasterConversionLineEntry3D(1)) { rPrevScanRasterConversionLineEntry3D.incrementRasterConversionLineEntry3D(1, *this); aNextLine.push_back(&rPrevScanRasterConversionLineEntry3D); } } // copy back next scanline if count has changed if(aNextLine.size() != aCurrentLine.size()) { aCurrentLine = aNextLine; } // increment fLineNumber nLineNumber++; } } void RasterConverter3D::addEdge(const B3DPolygon& rFill, sal_uInt32 a, sal_uInt32 b, const B3DHomMatrix* pViewToEye) { B3DPoint aStart(rFill.getB3DPoint(a)); B3DPoint aEnd(rFill.getB3DPoint(b)); sal_Int32 nYStart(fround(aStart.getY())); sal_Int32 nYEnd(fround(aEnd.getY())); if(nYStart == nYEnd) return; if(nYStart > nYEnd) { std::swap(aStart, aEnd); std::swap(nYStart, nYEnd); std::swap(a, b); } const sal_uInt32 nYDelta(nYEnd - nYStart); const double fInvYDelta(1.0 / nYDelta); maLineEntries.emplace_back( aStart.getX(), (aEnd.getX() - aStart.getX()) * fInvYDelta, aStart.getZ(), (aEnd.getZ() - aStart.getZ()) * fInvYDelta, nYStart, nYDelta); // if extra interpolation data is used, add it to the last created entry RasterConversionLineEntry3D& rEntry = maLineEntries[maLineEntries.size() - 1]; if(rFill.areBColorsUsed()) { rEntry.setColorIndex(addColorInterpolator(rFill.getBColor(a), rFill.getBColor(b), fInvYDelta)); } if(rFill.areNormalsUsed()) { rEntry.setNormalIndex(addNormalInterpolator(rFill.getNormal(a), rFill.getNormal(b), fInvYDelta)); } if(!rFill.areTextureCoordinatesUsed()) return; if(pViewToEye) { const double fEyeA(((*pViewToEye) * aStart).getZ()); const double fEyeB(((*pViewToEye) * aEnd).getZ()); rEntry.setInverseTextureIndex(addInverseTextureInterpolator( rFill.getTextureCoordinate(a), rFill.getTextureCoordinate(b), fEyeA, fEyeB, fInvYDelta)); } else { rEntry.setTextureIndex(addTextureInterpolator( rFill.getTextureCoordinate(a), rFill.getTextureCoordinate(b), fInvYDelta)); } } void RasterConverter3D::rasterconvertB3DEdge(const B3DPolygon& rLine, sal_uInt32 nA, sal_uInt32 nB, sal_Int32 nStartLine, sal_Int32 nStopLine, sal_uInt16 nLineWidth) { B3DPoint aStart(rLine.getB3DPoint(nA)); B3DPoint aEnd(rLine.getB3DPoint(nB)); const double fZBufferLineAdd(0x00ff); if(nLineWidth > 1) { // this is not a hairline anymore, in most cases since it's an oversampled // hairline to get e.g. AA for Z-Buffering. Create fill geometry. if(!aStart.equal(aEnd)) { reset(); maLineEntries.clear(); B2DVector aVector(aEnd.getX() - aStart.getX(), aEnd.getY() - aStart.getY()); aVector.normalize(); const B2DVector aPerpend(getPerpendicular(aVector) * ((static_cast(nLineWidth) + 0.5) * 0.5)); const double fZStartWithAdd(aStart.getZ() + fZBufferLineAdd); const double fZEndWithAdd(aEnd.getZ() + fZBufferLineAdd); B3DPolygon aPolygon; aPolygon.append(B3DPoint(aStart.getX() + aPerpend.getX(), aStart.getY() + aPerpend.getY(), fZStartWithAdd)); aPolygon.append(B3DPoint(aEnd.getX() + aPerpend.getX(), aEnd.getY() + aPerpend.getY(), fZEndWithAdd)); aPolygon.append(B3DPoint(aEnd.getX() - aPerpend.getX(), aEnd.getY() - aPerpend.getY(), fZEndWithAdd)); aPolygon.append(B3DPoint(aStart.getX() - aPerpend.getX(), aStart.getY() - aPerpend.getY(), fZStartWithAdd)); aPolygon.setClosed(true); addArea(aPolygon, nullptr); } } else { // it's a hairline. Use direct RasterConversionLineEntry creation to // rasterconvert lines as similar to areas as possible to avoid Z-Fighting sal_Int32 nYStart(fround(aStart.getY())); sal_Int32 nYEnd(fround(aEnd.getY())); if(nYStart == nYEnd) { // horizontal line, check X const sal_Int32 nXStart(static_cast(aStart.getX())); const sal_Int32 nXEnd(static_cast(aEnd.getX())); if(nXStart != nXEnd) { reset(); maLineEntries.clear(); // horizontal line, create vertical entries. These will be sorted by // X anyways, so no need to distinguish the case here maLineEntries.emplace_back( aStart.getX(), 0.0, aStart.getZ() + fZBufferLineAdd, 0.0, nYStart, 1); maLineEntries.emplace_back( aEnd.getX(), 0.0, aEnd.getZ() + fZBufferLineAdd, 0.0, nYStart, 1); } } else { reset(); maLineEntries.clear(); if(nYStart > nYEnd) { std::swap(aStart, aEnd); std::swap(nYStart, nYEnd); } const sal_uInt32 nYDelta(static_cast(nYEnd - nYStart)); const double fInvYDelta(1.0 / nYDelta); // non-horizontal line, create two parallel entries. These will be sorted by // X anyways, so no need to distinguish the case here maLineEntries.emplace_back( aStart.getX(), (aEnd.getX() - aStart.getX()) * fInvYDelta, aStart.getZ() + fZBufferLineAdd, (aEnd.getZ() - aStart.getZ()) * fInvYDelta, nYStart, nYDelta); RasterConversionLineEntry3D& rEntry = maLineEntries[maLineEntries.size() - 1]; // need to choose a X-Distance for the 2nd edge which guarantees all pixels // of the line to be set. This is exactly the X-Increment for one Y-Step. // Same is true for Z, so in both cases, add one increment to them. To also // guarantee one pixel per line, add a minimum of one for X. const double fDistanceX(fabs(rEntry.getX().getInc()) >= 1.0 ? rEntry.getX().getInc() : 1.0); maLineEntries.emplace_back( rEntry.getX().getVal() + fDistanceX, rEntry.getX().getInc(), rEntry.getZ().getVal() + rEntry.getZ().getInc(), rEntry.getZ().getInc(), nYStart, nYDelta); } } if(!maLineEntries.empty()) { rasterconvertB3DArea(nStartLine, nStopLine); } } void RasterConverter3D::rasterconvertB3DPolyPolygon(const B3DPolyPolygon& rFill, const B3DHomMatrix* pViewToEye, sal_Int32 nStartLine, sal_Int32 nStopLine) { reset(); maLineEntries.clear(); addArea(rFill, pViewToEye); rasterconvertB3DArea(nStartLine, nStopLine); } void RasterConverter3D::rasterconvertB3DPolygon(const B3DPolygon& rLine, sal_Int32 nStartLine, sal_Int32 nStopLine, sal_uInt16 nLineWidth) { const sal_uInt32 nPointCount(rLine.count()); if(nPointCount) { const sal_uInt32 nEdgeCount(rLine.isClosed() ? nPointCount : nPointCount - 1); for(sal_uInt32 a(0); a < nEdgeCount; a++) { rasterconvertB3DEdge(rLine, a, (a + 1) % nPointCount, nStartLine, nStopLine, nLineWidth); } } } } // end of namespace basegfx /* vim:set shiftwidth=4 softtabstop=4 expandtab: */