/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include "com/sun/star/uno/RuntimeException.hpp" #include #include #include #include #include #include #include "share.hxx" #include #include #include #include using namespace ::com::sun::star::uno; void MapReturn(long d0, long d1, typelib_TypeClass eReturnType, long *pRegisterReturn) { register float fret asm("fp0"); register double dret asm("fp0"); switch( eReturnType ) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: pRegisterReturn[1] = d1; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: pRegisterReturn[0] = d0; break; case typelib_TypeClass_FLOAT: *(float*)pRegisterReturn = fret; break; case typelib_TypeClass_DOUBLE: *(double*)pRegisterReturn = dret; break; default: break; } } namespace { void callVirtualMethod( void * pThis, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeClass eReturnType, sal_uInt32 *pStack, sal_uInt32 nStack) __attribute__((noinline)); void callVirtualMethod( void * pThis, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeClass eReturnType, sal_uInt32 *pStack, sal_uInt32 nStack) { // never called if (! pThis) CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything("xxx"); // address something if ( nStack ) { // m68k stack is either 2 or 4 bytes aligned, doesn't really matter as // we deal in 4 byte units anyway sal_uInt32 nStackBytes = nStack * sizeof(sal_uInt32); sal_uInt32 *stack = (sal_uInt32 *) __builtin_alloca( nStackBytes ); memcpy( stack, pStack, nStackBytes ); } #if OSL_DEBUG_LEVEL > 2 // Let's figure out what is really going on here { fprintf( stderr, "\nStack (%d): ", nStack ); for ( unsigned int i = 0; i < nStack; ++i ) fprintf( stderr, "0x%lx, ", pStack[i] ); fprintf( stderr, "\n" ); fprintf( stderr, "pRegisterReturn is %p\n", pRegisterReturn); } #endif sal_uInt32 pMethod = *((sal_uInt32*)pThis); pMethod += 4 * nVtableIndex; pMethod = *((sal_uInt32 *)pMethod); typedef long (*FunctionCall )(); FunctionCall pFunc = (FunctionCall)pMethod; //stick the return area into r8 for big struct returning asm volatile("movel %0,%%a1" : : "m"(pRegisterReturn) : ); long d0 = (*pFunc)(); register long d1 asm("d1"); MapReturn(d0, d1, eReturnType, (long*)pRegisterReturn); } } #define INSERT_INT32( pSV, pDS )\ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT64( pSV, pDS )\ INSERT_INT32( pSV, pDS ) \ INSERT_INT32( ((sal_uInt32*)pSV)+1, pDS ) #define INSERT_FLOAT( pSV, pDS ) \ INSERT_INT32( pSV, pDS ) #define INSERT_DOUBLE( pSV, pDS ) \ INSERT_INT64( pSV, pDS ) #define INSERT_INT16( pSV, pDS ) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT8( pSV, pDS ) \ *pDS++ = *reinterpret_cast( pSV ); namespace { static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... sal_uInt32 * pStack = (sal_uInt32 *)__builtin_alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) ); sal_uInt32 * pStackStart = pStack; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); assert(pReturnTypeDescr); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion if (pReturnTypeDescr) { if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr )) { pCppReturn = pUnoReturn; // direct way for simple types } else { // complex return via ptr pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? __builtin_alloca( pReturnTypeDescr->nSize ) : pUnoReturn); // direct way // INSERT_INT32( &pCppReturn, pStack ); } } // push this void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI()) + aVtableSlot.offset; INSERT_INT32( &pAdjustedThisPtr, pStack ); // stack space static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!"); // args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { // uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos], uno_copyAndConvertData( pCppArgs[nPos] = alloca(8), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "hyper is %lx\n", pCppArgs[nPos]); #endif INSERT_INT64( pCppArgs[nPos], pStack ); break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "long is %x\n", pCppArgs[nPos]); #endif INSERT_INT32( pCppArgs[nPos], pStack ); break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: INSERT_INT16( pCppArgs[nPos], pStack ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: INSERT_INT8( pCppArgs[nPos], pStack ); break; case typelib_TypeClass_FLOAT: INSERT_FLOAT( pCppArgs[nPos], pStack ); break; case typelib_TypeClass_DOUBLE: INSERT_DOUBLE( pCppArgs[nPos], pStack ); break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT32( &(pCppArgs[nPos]), pStack ); } } try { try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr->eTypeClass, pStackStart, (pStack - pStackStart)); } catch (css::uno::Exception &) { throw; } catch (std::exception & e) { throw css::uno::RuntimeException( "C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": " + o3tl::runtimeToOUString(e.what())); } catch (...) { throw css::uno::RuntimeException("C++ code threw unknown exception"); } // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno()); // temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges::cpp_uno::shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI); typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { // determine vtable call index sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition; assert(nMemberPos < pTypeDescr->nAllMembers); VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast (pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; cpp_call( pThis, aVtableSlot, // get, then set method pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { // determine vtable call index sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition; assert(nMemberPos < pTypeDescr->nAllMembers); VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast (pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)( pThis->getBridge()->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( "illegal member type description!", ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */