/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include "bridge.hxx" #include "types.hxx" #include "unointerfaceproxy.hxx" #include "vtables.hxx" #include "share.hxx" using namespace ::com::sun::star::uno; namespace { static void callVirtualMethod( void * pAdjustedThisPtr, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeClass eReturnType, char * pPT, sal_Int32 * pStackLongs, sal_Int32 nStackLongs) { // parameter list is mixed list of * and values // reference parameters are pointers // the basic idea here is to use gpr[8] as a storage area for // the future values of registers r3 to r10 needed for the call, // and similarly fpr[8] as a storage area for the future values // of floating point registers f1 to f8 unsigned long * mfunc; // actual function to be invoked int gpr[8]; // storage for gpregisters, map to r3-r10 int off; // offset used to find function #ifndef __NO_FPRS__ double fpr[8]; // storage for fpregisters, map to f1-f8 int f; // number of fprs mapped so far double dret; // temporary function return values #endif int n; // number of gprs mapped so far long *p; // pointer to parameter overflow area int c; // character of parameter type being decoded int iret, iret2; // Because of the Power PC calling conventions we could be passing // parameters in both register types and on the stack. To create the // stack parameter area we need we now simply allocate local // variable storage param[] that is at least the size of the parameter stack // (more than enough space) which we can overwrite the parameters into. // Note: This keeps us from having to decode the signature twice and // prevents problems with later local variables. // Note: could require up to 2*nStackLongs words of parameter stack area // if the call has many float parameters (i.e. floats take up only 1 // word on the stack but double takes 2 words in parameter area in the // stack frame. // Update! Floats on the outgoing parameter stack only take up 1 word // (stfs is used) which is not correct according to the ABI but we // will match what the compiler does until this is figured out // this grows the current stack to the appropriate size // and sets the outgoing stack pointer p to the right place __asm__ __volatile__ ( "rlwinm %0,%0,3,3,28\n\t" "addi %0,%0,22\n\t" "rlwinm %0,%0,0,4,28\n\t" "lwz 0,0(1)\n\t" "subf 1,%0,1\n\t" "stw 0,0(1)\n\t" : : "r" (nStackLongs) : "0" ); __asm__ __volatile__ ( "addi %0,1,8" : "=r" (p) : ); // never called // if (! pAdjustedThisPtr ) dummy_can_throw_anything("xxx"); // address something // now begin to load the C++ function arguments into storage n = 0; #ifndef __NO_FPRS__ f = 0; #endif // now we need to parse the entire signature string */ // until we get the END indicator */ // treat complex return pointer like any other parameter #if 0 /* Let's figure out what is really going on here*/ fprintf(stderr,"callVirtualMethod parameters string is %s\n",pPT); int k = nStackLongs; long * q = (long *)pStackLongs; while (k > 0) { fprintf(stderr,"uno stack is: %x\n",*q); k--; q++; } #endif /* parse the argument list up to the ending ) */ while (*pPT != 'X') { c = *pPT; switch (c) { case 'D': /* type is double */ #ifndef __NO_FPRS__ if (f < 8) { fpr[f++] = *((double *)pStackLongs); /* store in register */ #else if (n & 1) n++; if (n < 8) { gpr[n++] = *pStackLongs; gpr[n++] = *(pStackLongs+1); #endif } else { if (((long) p) & 4) p++; *p++ = *pStackLongs; /* or on the parameter stack */ *p++ = *(pStackLongs + 1); } pStackLongs += 2; break; case 'F': /* type is float */ /* this assumes that floats are stored as 1 32 bit word on param stack and that if passed in parameter stack to C, should be as double word. Whoops: the abi is not actually followed by gcc, need to store floats as a *single* word on outgoing parameter stack to match what gcc actually does */ #ifndef __NO_FPRS__ if (f < 8) { fpr[f++] = *((float *)pStackLongs); #else if (n < 8) { gpr[n++] = *pStackLongs; #endif } else { #if 0 /* if abi were followed */ if (((long) p) & 4) p++; *((double *)p) = *((float *)pStackLongs); p += 2; #else *((float *)p) = *((float *)pStackLongs); p += 1; #endif } pStackLongs += 1; break; case 'H': /* type is long long */ if (n & 1) n++; /* note even elements gpr[] will map to odd registers*/ if (n <= 6) { gpr[n++] = *pStackLongs; gpr[n++] = *(pStackLongs+1); } else { if (((long) p) & 4) p++; *p++ = *pStackLongs; *p++ = *(pStackLongs+1); } pStackLongs += 2; break; case 'S': if (n < 8) { gpr[n++] = *((unsigned short*)pStackLongs); } else { *p++ = *((unsigned short *)pStackLongs); } pStackLongs += 1; break; case 'B': if (n < 8) { gpr[n++] = *((char *)pStackLongs); } else { *p++ = *((char *)pStackLongs); } pStackLongs += 1; break; default: if (n < 8) { gpr[n++] = *pStackLongs; } else { *p++ = *pStackLongs; } pStackLongs += 1; break; } pPT++; } /* figure out the address of the function we need to invoke */ off = nVtableIndex; off = off * 4; // 4 bytes per slot mfunc = *((unsigned long **)pAdjustedThisPtr); // get the address of the vtable mfunc = (unsigned long *)((char *)mfunc + off); // get the address from the vtable entry at offset mfunc = *((unsigned long **)mfunc); // the function is stored at the address typedef void (*FunctionCall)(sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32); FunctionCall ptr = (FunctionCall)mfunc; /* Set up the machine registers and invoke the function */ __asm__ __volatile__ ( "lwz 3, 0(%0)\n\t" "lwz 4, 4(%0)\n\t" "lwz 5, 8(%0)\n\t" "lwz 6, 12(%0)\n\t" "lwz 7, 16(%0)\n\t" "lwz 8, 20(%0)\n\t" "lwz 9, 24(%0)\n\t" "lwz 10, 28(%0)\n\t" #ifndef __NO_FPRS__ "lfd 1, 0(%1)\n\t" "lfd 2, 8(%1)\n\t" "lfd 3, 16(%1)\n\t" "lfd 4, 24(%1)\n\t" "lfd 5, 32(%1)\n\t" "lfd 6, 40(%1)\n\t" "lfd 7, 48(%1)\n\t" "lfd 8, 56(%1)\n\t" : : "r" (gpr), "r" (fpr) #else : : "r" (gpr) #endif : "0", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12" ); // tell gcc that r3 to r10 are not available to it for doing the TOC and exception munge on the func call register sal_uInt32 r3 __asm__("r3"); register sal_uInt32 r4 __asm__("r4"); register sal_uInt32 r5 __asm__("r5"); register sal_uInt32 r6 __asm__("r6"); register sal_uInt32 r7 __asm__("r7"); register sal_uInt32 r8 __asm__("r8"); register sal_uInt32 r9 __asm__("r9"); register sal_uInt32 r10 __asm__("r10"); (*ptr)(r3, r4, r5, r6, r7, r8, r9, r10); __asm__ __volatile__ ( "mr %0, 3\n\t" "mr %1, 4\n\t" #ifndef __NO_FPRS__ "fmr %2, 1\n\t" : "=r" (iret), "=r" (iret2), "=f" (dret) #else : "=r" (iret), "=r" (iret2) #endif : ); switch( eReturnType ) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: ((long*)pRegisterReturn)[0] = iret; ((long*)pRegisterReturn)[1] = iret2; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: ((long*)pRegisterReturn)[0] = iret; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *(unsigned short*)pRegisterReturn = (unsigned short)iret; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *(unsigned char*)pRegisterReturn = (unsigned char)iret; break; case typelib_TypeClass_FLOAT: #ifndef __NO_FPRS__ *(float*)pRegisterReturn = (float)dret; #else ((unsigned int*)pRegisterReturn)[0] = iret; #endif break; case typelib_TypeClass_DOUBLE: #ifndef __NO_FPRS__ *(double*)pRegisterReturn = dret; #else ((unsigned int*)pRegisterReturn)[0] = iret; ((unsigned int*)pRegisterReturn)[1] = iret2; #endif break; default: break; } } static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... char * pCppStack = (char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) ); char * pCppStackStart = pCppStack; // need to know parameter types for callVirtualMethod so generate a signature string char * pParamType = (char *) alloca(nParams+2); char * pPT = pParamType; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); // assert(pReturnTypeDescr); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion if (pReturnTypeDescr) { if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr )) { pCppReturn = pUnoReturn; // direct way for simple types } else { // complex return via ptr pCppReturn = *(void **)pCppStack = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ): pUnoReturn); // direct way *pPT++ = 'I'; //signify that a complex return type on stack pCppStack += sizeof(void *); } } // push this void* pAdjustedThisPtr = reinterpret_cast< void **>(pThis->getCppI()) + aVtableSlot.offset; *(void**)pCppStack = pAdjustedThisPtr; pCppStack += sizeof( void* ); *pPT++ = 'I'; // stack space // static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!"); // args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { // we need to know type of each param so that we know whether to use // gpr or fpr to pass in parameters: // Key: I - int, long, pointer, etc means pass in gpr // B - byte value passed in gpr // S - short value passed in gpr // F - float value pass in fpr // D - double value pass in fpr // H - long long int pass in proper pairs of gpr (3,4) (5,6), etc // X - indicates end of parameter description string case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: *pPT++ = 'I'; break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: *pPT++ = 'S'; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *pPT++ = 'B'; break; case typelib_TypeClass_FLOAT: *pPT++ = 'F'; break; case typelib_TypeClass_DOUBLE: *pPT++ = 'D'; pCppStack += sizeof(sal_Int32); // extra long break; case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: *pPT++ = 'H'; pCppStack += sizeof(sal_Int32); // extra long default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { *(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // KBH: FIXME: is this the right way to pass these *pPT++='I'; } pCppStack += sizeof(sal_Int32); // standard parameter length } // terminate the signature string *pPT++='X'; *pPT=0; try { assert( !( (pCppStack - pCppStackStart ) & 3) && "UNALIGNED STACK !!! (Please DO panic)"); try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr->eTypeClass, pParamType, (sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) ); } catch (css::uno::Exception &) { throw; } catch (std::exception & e) { throw css::uno::RuntimeException( "C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": " + o3tl::runtimeToOUString(e.what())); } catch (...) { throw css::uno::RuntimeException("C++ code threw unknown exception"); } // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno()); // temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges::cpp_uno::shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI); switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( "illegal member type description!", ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */