/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include "bridge.hxx" #include "types.hxx" #include "unointerfaceproxy.hxx" #include "vtables.hxx" #include "share.hxx" #include #include using namespace ::com::sun::star::uno; namespace ppc64 { #if defined(_CALL_ELF) && _CALL_ELF == 2 bool is_complex_struct(const typelib_TypeDescription * type) { const typelib_CompoundTypeDescription * p = reinterpret_cast< const typelib_CompoundTypeDescription * >(type); for (sal_Int32 i = 0; i < p->nMembers; ++i) { if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT || p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION) { typelib_TypeDescription * t = 0; TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]); bool b = is_complex_struct(t); TYPELIB_DANGER_RELEASE(t); if (b) { return true; } } else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass)) return true; } if (p->pBaseTypeDescription != 0) return is_complex_struct(&p->pBaseTypeDescription->aBase); return false; } #endif bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef ) { if (bridges::cpp_uno::shared::isSimpleType(pTypeRef)) return false; #if defined(_CALL_ELF) && _CALL_ELF == 2 else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION) { typelib_TypeDescription * pTypeDescr = 0; TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef ); //A Composite Type not larger than 16 bytes is returned in up to two GPRs bool bRet = pTypeDescr->nSize > 16 || is_complex_struct(pTypeDescr); TYPELIB_DANGER_RELEASE( pTypeDescr ); return bRet; } #endif return true; } } void MapReturn(long r3, long r4, double dret, typelib_TypeDescriptionReference* pReturnType, void *pRegisterReturn) { switch (pReturnType->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: *reinterpret_cast( pRegisterReturn ) = r3; break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: *reinterpret_cast( pRegisterReturn ) = r3; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *reinterpret_cast( pRegisterReturn ) = (unsigned short)r3; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *reinterpret_cast( pRegisterReturn ) = (unsigned char)r3; break; case typelib_TypeClass_FLOAT: *reinterpret_cast( pRegisterReturn ) = dret; break; case typelib_TypeClass_DOUBLE: *reinterpret_cast( pRegisterReturn ) = dret; break; #if defined(_CALL_ELF) && _CALL_ELF == 2 case typelib_TypeClass_STRUCT: case typelib_TypeClass_EXCEPTION: if (!ppc64::return_in_hidden_param(pReturnType)) { sal_uInt64 *pRegisters = reinterpret_cast(pRegisterReturn); pRegisters[0] = r3; if (pReturnType->pType->nSize > 8) pRegisters[1] = r4; } #else (void)r4; #endif default: break; } } namespace { static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex, void * pRegisterReturn, typelib_TypeDescription * pReturnTypeDescr, sal_uInt64 *pStack, sal_uInt32 nStack, sal_uInt64 *pGPR, sal_uInt32 nGPR, double *pFPR, sal_uInt32 nFPR) { // Stack, if used, must be 16-bytes aligned if ( nStack ) nStack = ( nStack + 1 ) & ~1; // Should not happen, but... if ( nFPR > ppc64::MAX_SSE_REGS ) nFPR = ppc64::MAX_SSE_REGS; if ( nGPR > ppc64::MAX_GPR_REGS ) nGPR = ppc64::MAX_GPR_REGS; #if OSL_DEBUG_LEVEL > 2 // Let's figure out what is really going on here { fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR ); for ( int i = 0; i < nGPR; ++i ) fprintf( stderr, "0x%lx, ", pGPR[i] ); fprintf( stderr, "\nFPR's (%d): ", nFPR ); for ( int i = 0; i < nFPR; ++i ) fprintf( stderr, "0x%lx (%f), ", pFPR[i], pFPR[i] ); fprintf( stderr, "\nStack (%d): ", nStack ); for ( int i = 0; i < nStack; ++i ) fprintf( stderr, "0x%lx, ", pStack[i] ); fprintf( stderr, "\n" ); } #endif // Load parameters to stack, if necessary sal_uInt64 *stack = (sal_uInt64 *) __builtin_alloca( nStack * 8 ); memcpy( stack, pStack, nStack * 8 ); // Get pointer to method sal_uInt64 pMethod = *((sal_uInt64 *)pThis); pMethod += 8 * nVtableIndex; pMethod = *((sal_uInt64 *)pMethod); #if defined(_CALL_ELF) && _CALL_ELF == 2 typedef void (* FunctionCall )(...); #else typedef void (* FunctionCall )( sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64 ); #endif FunctionCall pFunc = (FunctionCall)pMethod; volatile double dret; // fill registers __asm__ __volatile__ ( "lfd 1, 0(%0)\n\t" "lfd 2, 8(%0)\n\t" "lfd 3, 16(%0)\n\t" "lfd 4, 24(%0)\n\t" "lfd 5, 32(%0)\n\t" "lfd 6, 40(%0)\n\t" "lfd 7, 48(%0)\n\t" "lfd 8, 56(%0)\n\t" "lfd 9, 64(%0)\n\t" "lfd 10, 72(%0)\n\t" "lfd 11, 80(%0)\n\t" "lfd 12, 88(%0)\n\t" "lfd 13, 96(%0)\n\t" : : "r" (pFPR) : "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9", "fr10", "fr11", "fr12", "fr13" ); // tell gcc that r3 to r11 are not available to it for doing the TOC and exception munge on the func call register sal_uInt64 r3 asm("r3"); register sal_uInt64 r4 asm("r4"); (*pFunc)(pGPR[0], pGPR[1], pGPR[2], pGPR[3], pGPR[4], pGPR[5], pGPR[6], pGPR[7]); // get return value __asm__ __volatile__ ( "mr %1, 3\n\t" "mr %2, 4\n\t" "fmr %0, 1\n\t" : "=f" (dret), "=r" (r3), "=r" (r4) : ); MapReturn(r3, r4, dret, reinterpret_cast(pReturnTypeDescr), pRegisterReturn); } // Macros for easier insertion of values to registers or stack // pSV - pointer to the source // nr - order of the value [will be increased if stored to register] // pFPR, pGPR - pointer to the registers // pDS - pointer to the stack [will be increased if stored here] // The value in %xmm register is already prepared to be retrieved as a float, // thus we treat float and double the same #define INSERT_FLOAT( pSV, nr, pFPR, nGPR, pDS, bOverflow ) \ if ( nGPR < ppc64::MAX_GPR_REGS ) \ ++nGPR; \ if ( nr < ppc64::MAX_SSE_REGS ) \ pFPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverflow = true; \ if (bOverflow) \ *pDS++ = *reinterpret_cast( pSV ); // verbatim! #define INSERT_DOUBLE( pSV, nr, pFPR, nGPR, pDS, bOverflow ) \ if ( nGPR < ppc64::MAX_GPR_REGS ) \ ++nGPR; \ if ( nr < ppc64::MAX_SSE_REGS ) \ pFPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverflow = true; \ if (bOverflow) \ *pDS++ = *reinterpret_cast( pSV ); // verbatim! #define INSERT_INT64( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverflow = true; \ if (bOverflow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverflow = true; \ if (bOverflow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT16( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverflow = true; \ if (bOverflow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT8( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverflow = true; \ if (bOverflow) \ *pDS++ = *reinterpret_cast( pSV ); static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... sal_uInt64 * pStack = (sal_uInt64 *)alloca( (nParams+3) * sizeof(sal_Int64) ); sal_uInt64 * pStackStart = pStack; sal_uInt64 pGPR[ppc64::MAX_GPR_REGS]; sal_uInt32 nGPR = 0; double pFPR[ppc64::MAX_SSE_REGS]; sal_uInt32 nFPR = 0; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); assert(pReturnTypeDescr); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion bool bOverflow = false; if (pReturnTypeDescr) { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "return type is %d\n", pReturnTypeDescr->eTypeClass); #endif bool bSimpleReturn =!ppc64::return_in_hidden_param(pReturnTypeRef); if (bSimpleReturn) { pCppReturn = pUnoReturn; // direct way for simple types #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "simple return\n"); #endif } else { // complex return via ptr pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ) : pUnoReturn); #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "pCppReturn/pUnoReturn is %lx/%lx", pCppReturn, pUnoReturn); #endif INSERT_INT64( &pCppReturn, nGPR, pGPR, pStack, bOverflow ); } } // push "this" pointer void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset; #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "this pointer is %p\n", pAdjustedThisPtr); #endif INSERT_INT64( &pAdjustedThisPtr, nGPR, pGPR, pStack, bOverflow ); // Args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "n params is %d\n", nParams); #endif for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "param %d is %d %d %d\n", nPos, rParam.bOut, bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ), pParamTypeDescr->eTypeClass); #endif if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "hyper is %lx\n", pCppArgs[nPos]); #endif INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow ); break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "long is %x\n", pCppArgs[nPos]); #endif INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow ); break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow ); break; case typelib_TypeClass_FLOAT: INSERT_FLOAT( pCppArgs[nPos], nFPR, pFPR, nGPR, pStack, bOverflow ); break; case typelib_TypeClass_DOUBLE: INSERT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, nGPR, pStack, bOverflow ); break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "complex type again %d\n", rParam.bIn); #endif if (! rParam.bIn) // is pure out { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "complex size is %d\n", pParamTypeDescr->nSize ); #endif // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "this one\n"); #endif uno_copyAndConvertData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "that one, passing %lx through\n", pUnoArgs[nPos]); #endif pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack, bOverflow ); } } try { try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr, pStackStart, ( pStack - pStackStart ), pGPR, nGPR, pFPR, nFPR ); } catch (css::uno::Exception &) { throw; } catch (std::exception & e) { throw css::uno::RuntimeException( "C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": " + o3tl::runtimeToOUString(e.what())); } catch (...) { throw css::uno::RuntimeException("C++ code threw unknown exception"); } // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno()); // temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges::cpp_uno::shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI); switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( "illegal member type description!", ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */