/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include "bridge.hxx" #include "types.hxx" #include "unointerfaceproxy.hxx" #include "vtables.hxx" #include "share.hxx" #include #include using namespace ::com::sun::star::uno; namespace { static sal_Int32 invoke_count_words(char * pPT) { sal_Int32 overflow = 0, gpr = 0, fpr = 0; while (*pPT != 'X') { // character of parameter type being decoded const int c = *pPT; switch (c) { case 'D': /* type is double */ if (fpr < 2) fpr++; else overflow+=2; break; case 'F': /* type is float */ if (fpr < 2) fpr++; else overflow++; break; case 'H': /* type is long long */ if (gpr < 4) gpr+=2; else gpr=5, overflow+=2; break; case 'S': case 'T': case 'B': case 'C': if (gpr < 5) gpr++; else overflow++; break; default: if (gpr < 5) gpr++; else overflow++; break; } pPT++; } /* Round up number of overflow words to ensure stack stays aligned to 8 bytes. */ return (overflow + 1) & ~1; } static void //invoke_copy_to_stack(sal_Int32 paramCount, sal_Int32 * pStackLongs, char * pPT, sal_Int32* d_ov, sal_Int32 overflow) invoke_copy_to_stack(sal_Int32 * pStackLongs, char * pPT, sal_Int32* d_ov, sal_Int32 overflow) { sal_Int32 *d_gpr = d_ov + overflow; sal_Int64 *d_fpr = (sal_Int64 *)(d_gpr + 5); sal_Int32 gpr = 0, fpr = 0; while (*pPT != 'X') { const char c = *pPT; switch (c) { case 'D': /* type is double */ if (fpr < 2) *((double*) d_fpr) = *((double *)pStackLongs), d_fpr++, fpr++; else *((double*) d_ov ) = *((double *)pStackLongs), d_ov+=2; pStackLongs += 2; break; case 'F': /* type is float */ if (fpr < 2) { *((sal_Int64*) d_fpr) = 0; *((float*) d_fpr) = *((float *)pStackLongs), d_fpr++, fpr++; } else { *((sal_Int64*) d_ov) = 0; *((float*) d_ov ) = *((float *)pStackLongs), d_ov++; } pStackLongs += 1; break; case 'H': /* type is long long */ if (gpr < 4) { *((sal_Int64*) d_gpr) = *((sal_Int64*) pStackLongs), d_gpr+=2, gpr+=2; } else { *((sal_Int64*) d_ov ) = *((sal_Int64*) pStackLongs), d_ov+=2, gpr=5; } pStackLongs += 2; break; case 'S': if (gpr < 5) *((sal_uInt32*)d_gpr) = *((unsigned short*)pStackLongs), d_gpr++, gpr++; else *((sal_uInt32*)d_ov ) = *((unsigned short*)pStackLongs), d_ov++; pStackLongs += 1; break; case 'T': if (gpr < 5) *((sal_Int32*)d_gpr) = *((signed short*)pStackLongs), d_gpr++, gpr++; else *((sal_Int32*)d_ov ) = *((signed short*)pStackLongs), d_ov++; pStackLongs += 1; break; case 'B': if (gpr < 5) *((sal_uInt32*)d_gpr) = *((unsigned char*)pStackLongs), d_gpr++, gpr++; else *((sal_uInt32*)d_ov ) = *((unsigned char*)pStackLongs), d_ov++; pStackLongs += 1; break; case 'C': if (gpr < 5) *((sal_Int32*)d_gpr) = *((signed char*)pStackLongs), d_gpr++, gpr++; else *((sal_Int32*)d_ov ) = *((signed char*)pStackLongs), d_ov++; pStackLongs += 1; break; default: if (gpr < 5) *((sal_Int32*)d_gpr) = *pStackLongs, d_gpr++, gpr++; else *((sal_Int32*)d_ov ) = *pStackLongs, d_ov++; pStackLongs += 1; break; } pPT++; } } static void callVirtualMethod( void * pThis, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeClass eReturnType, char * pPT, sal_Int32 * pStackLongs, sal_Int32 nStackLongs) { // parameter list is mixed list of * and values // reference parameters are pointers // the basic idea here is to use gpr[5] as a storage area for // the future values of registers r2 to r6 needed for the call, // and similarly fpr[2] as a storage area for the future values // of floating point registers f0 to f2 sal_Int32 *vtable = *(sal_Int32 **)pThis; // sal_Int32 method = vtable[nVtableIndex + 2]; sal_Int32 method = vtable[nVtableIndex]; sal_Int32 overflow = invoke_count_words (pPT); sal_Int32 result; volatile double dret; // temporary function return values volatile float fret; volatile int iret, iret2; void * dummy = alloca(32); // dummy alloca to force r11 usage for exception handling __asm__ __volatile__ ( "lr 7,15\n\t" "ahi 7,-48\n\t" "lr 3,%2\n\t" "sll 3,2\n\t" "lcr 3,3\n\t" "l 2,0(15)\n\t" "la 15,0(3,7)\n\t" "st 2,0(15)\n\t" "lr 2,%0\n\t" "lr 3,%1\n\t" "la 4,96(15)\n\t" "lr 5,%2\n\t" "basr 14,%3\n\t" "ld 0,116(7)\n\t" "ld 2,124(7)\n\t" "lm 2,6,96(7)\n\t" : : "r" (pStackLongs), "r" (pPT), "r" (overflow), "a" (invoke_copy_to_stack), "a" (method), "X" (dummy) : "2", "3", "4", "5", "6", "7", "memory" ); // "basr 14,%8\n\t" (*(void (*)())method)(); __asm__ __volatile__ ( "la 15,48(7)\n\t" "lr %2,2\n\t" "lr %3,3\n\t" "ler %0,0\n\t" "ldr %1,0\n\t" : "=f" (fret), "=f" (dret), "=r" (iret), "=r" (iret2) ); switch( eReturnType ) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: // ((long*)pRegisterReturn)[0] = iret; ((long*)pRegisterReturn)[1] = iret2; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: ((long*)pRegisterReturn)[0] = iret; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *(unsigned short*)pRegisterReturn = (unsigned short)iret; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *(unsigned char*)pRegisterReturn = (unsigned char)iret; break; case typelib_TypeClass_FLOAT: *(float*)pRegisterReturn = fret; break; case typelib_TypeClass_DOUBLE: *(double*)pRegisterReturn = dret; break; } } static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... char * pCppStack = (char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) ); char * pCppStackStart = pCppStack; // need to know parameter types for callVirtualMethod so generate a signature string char * pParamType = (char *) alloca(nParams+2); char * pPT = pParamType; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); assert(pReturnTypeDescr); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion if (pReturnTypeDescr) { if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr )) { pCppReturn = pUnoReturn; // direct way for simple types } else { // complex return via ptr pCppReturn = *(void **)pCppStack = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ) : pUnoReturn); // direct way *pPT++ = 'I'; //signify that a complex return type on stack pCppStack += sizeof(void *); } } // push "this" pointer void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset; *(void**)pCppStack = pAdjustedThisPtr; pCppStack += sizeof( void* ); *pPT++ = 'I'; // stack space static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!"); // args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { // we need to know type of each param so that we know whether to use // gpr or fpr to pass in parameters: // Key: I - int, long, pointer, etc means pass in gpr // B - byte value passed in gpr // S - short value passed in gpr // F - float value pass in fpr // D - double value pass in fpr // H - long long int pass in proper pairs of gpr (3,4) (5,6), etc // X - indicates end of parameter description string case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: *pPT++ = 'I'; break; case typelib_TypeClass_SHORT: *pPT++ = 'T'; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: *pPT++ = 'S'; break; case typelib_TypeClass_BOOLEAN: *pPT++ = 'B'; break; case typelib_TypeClass_BYTE: *pPT++ = 'C'; break; case typelib_TypeClass_FLOAT: *pPT++ = 'F'; break; case typelib_TypeClass_DOUBLE: *pPT++ = 'D'; pCppStack += sizeof(sal_Int32); // extra long break; case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: *pPT++ = 'H'; pCppStack += sizeof(sal_Int32); // extra long } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { *(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // KBH: FIXME: is this the right way to pass these *pPT++='I'; } pCppStack += sizeof(sal_Int32); // standard parameter length } // terminate the signature string *pPT++='X'; *pPT=0; try { assert( !( (pCppStack - pCppStackStart ) & 3) && "UNALIGNED STACK !!! (Please DO panic)" ); try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr->eTypeClass, pParamType, (sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) ); } catch (css::uno::Exception &) { throw; } catch (std::exception & e) { throw css::uno::RuntimeException( "C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": " + o3tl::runtimeToOUString(e.what())); } catch (...) { throw css::uno::RuntimeException("C++ code threw unknown exception"); } // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno()); // temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges::cpp_uno::shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "unoInterfaceProxyDispatch\n"); #endif // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI); switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( "illegal member type description!", ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */