/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include "abi.hxx" #include "callvirtualmethod.hxx" #include "share.hxx" using namespace ::com::sun::star::uno; namespace { // Functions for easier insertion of values to registers or stack // pSV - pointer to the source // nr - order of the value [will be increased if stored to register] // pFPR, pGPR - pointer to the registers // pDS - pointer to the stack [will be increased if stored here] // The value in %xmm register is already prepared to be retrieved as a float, // thus we treat float and double the same void INSERT_FLOAT_DOUBLE( void const * pSV, sal_uInt32 & nr, double * pFPR, sal_uInt64 *& pDS) { if ( nr < x86_64::MAX_SSE_REGS ) pFPR[nr++] = *static_cast( pSV ); else *pDS++ = *static_cast( pSV ); // verbatim! } void INSERT_INT64( void const * pSV, sal_uInt32 & nr, sal_uInt64 * pGPR, sal_uInt64 *& pDS) { if ( nr < x86_64::MAX_GPR_REGS ) pGPR[nr++] = *static_cast( pSV ); else *pDS++ = *static_cast( pSV ); } void INSERT_INT32( void const * pSV, sal_uInt32 & nr, sal_uInt64 * pGPR, sal_uInt64 *& pDS) { if ( nr < x86_64::MAX_GPR_REGS ) pGPR[nr++] = *static_cast( pSV ); else *pDS++ = *static_cast( pSV ); } void INSERT_INT16( void const * pSV, sal_uInt32 & nr, sal_uInt64 * pGPR, sal_uInt64 *& pDS) { if ( nr < x86_64::MAX_GPR_REGS ) pGPR[nr++] = *static_cast( pSV ); else *pDS++ = *static_cast( pSV ); } void INSERT_INT8( void const * pSV, sal_uInt32 & nr, sal_uInt64 * pGPR, sal_uInt64 *& pDS) { if ( nr < x86_64::MAX_GPR_REGS ) pGPR[nr++] = *static_cast( pSV ); else *pDS++ = *static_cast( pSV ); } } static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // Maximum space for [complex ret ptr], values | ptr ... // (but will be used less - some of the values will be in pGPR and pFPR) sal_uInt64 *pStack = static_cast(__builtin_alloca( (nParams + 3) * sizeof(sal_uInt64) )); sal_uInt64 *pStackStart = pStack; sal_uInt64 pGPR[x86_64::MAX_GPR_REGS]; sal_uInt32 nGPR = 0; double pFPR[x86_64::MAX_SSE_REGS]; sal_uInt32 nFPR = 0; // Return typelib_TypeDescription * pReturnTypeDescr = nullptr; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); assert(pReturnTypeDescr); void * pCppReturn = nullptr; // if != 0 && != pUnoReturn, needs reconversion (see below) bool bSimpleReturn = true; if ( pReturnTypeDescr ) { if ( x86_64::return_in_hidden_param( pReturnTypeRef ) ) bSimpleReturn = false; if ( bSimpleReturn ) pCppReturn = pUnoReturn; // direct way for simple types else { // complex return via ptr pCppReturn = bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )? __builtin_alloca( pReturnTypeDescr->nSize ) : pUnoReturn; INSERT_INT64( &pCppReturn, nGPR, pGPR, pStack ); } } // Push "this" pointer void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset; INSERT_INT64( &pAdjustedThisPtr, nGPR, pGPR, pStack ); // Args void ** pCppArgs = static_cast(alloca( 3 * sizeof(void *) * nParams )); // Indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndices = reinterpret_cast(pCppArgs + nParams); // Type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = reinterpret_cast(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = nullptr; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack ); break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack ); break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack ); break; case typelib_TypeClass_FLOAT: case typelib_TypeClass_DOUBLE: INSERT_FLOAT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, pStack ); break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack ); } } try { try { CPPU_CURRENT_NAMESPACE::callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeRef, bSimpleReturn, pStackStart, ( pStack - pStackStart ), pGPR, pFPR ); } catch (const Exception &) { throw; } catch (const std::exception & e) { throw RuntimeException( "C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": " + o3tl::runtimeToOUString(e.what())); } catch (...) { throw RuntimeException("C++ code threw unknown exception"); } *ppUnoExc = nullptr; // reconvert temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, nullptr ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno()); // temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } namespace bridges::cpp_uno::shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI); #if OSL_DEBUG_LEVEL > 0 typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; #endif switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { #if OSL_DEBUG_LEVEL > 0 // determine vtable call index sal_Int32 nMemberPos = reinterpret_cast(pMemberDescr)->nPosition; assert(nMemberPos < pTypeDescr->nAllMembers); #endif VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, reinterpret_cast(pMemberDescr)->pAttributeTypeRef, 0, nullptr, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = reinterpret_cast(pMemberDescr)->pAttributeTypeRef; aParam.bIn = true; aParam.bOut = false; typelib_TypeDescriptionReference * pReturnTypeRef = nullptr; OUString aVoidName("void"); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; // get, then set method cpp_call( pThis, aVtableSlot, // get, then set method pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { #if OSL_DEBUG_LEVEL > 0 // determine vtable call index sal_Int32 nMemberPos = reinterpret_cast(pMemberDescr)->nPosition; assert(nMemberPos < pTypeDescr->nAllMembers); #endif VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = nullptr; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = nullptr; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = nullptr; TYPELIB_DANGER_GET( &pTD, static_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = nullptr; (*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)( pThis->getBridge()->getUnoEnv(), reinterpret_cast(&pInterface), pThis->oid.pData, reinterpret_cast(pTD) ); if (pInterface) { ::uno_any_construct( static_cast< uno_Any * >( pReturn ), &pInterface, pTD, nullptr ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = nullptr; break; } TYPELIB_DANGER_RELEASE( pTD ); } [[fallthrough]]; // else perform queryInterface() } default: // dependent dispatch cpp_call( pThis, aVtableSlot, reinterpret_cast(pMemberDescr)->pReturnTypeRef, reinterpret_cast(pMemberDescr)->nParams, reinterpret_cast(pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( "illegal member type description!", ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), nullptr ); } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */