/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include "bridge.hxx" #include "types.hxx" #include "unointerfaceproxy.hxx" #include "vtables.hxx" #include "share.hxx" #include using namespace com::sun::star::uno; namespace { // The call instruction within the asm section of callVirtualMethod may throw // exceptions. So that the compiler handles this correctly, it is important // that (a) callVirtualMethod might call dummy_can_throw_anything (although this // never happens at runtime), which in turn can throw exceptions, and (b) // callVirtualMethod is not inlined at its call site (so that any exceptions are // caught which are thrown from the instruction calling callVirtualMethod): void callVirtualMethod( void * pAdjustedThisPtr, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeClass eReturnType, sal_Int32 * pStackLongs, sal_Int32 nStackLongs ) __attribute__((noinline)); void callVirtualMethod( void * pAdjustedThisPtr, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeClass eReturnType, sal_Int32 * pStackLongs, sal_Int32 nStackLongs ) { // parameter list is mixed list of * and values // reference parameters are pointers assert( pStackLongs && pAdjustedThisPtr); static_assert( (sizeof(void *) == 4) && (sizeof(sal_Int32) == 4), "### unexpected size of int!" ); assert(nStackLongs && pStackLongs && "### no stack in callVirtualMethod !"); // never called if (! pAdjustedThisPtr) CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything("xxx"); // address something long o0, o1; // for register returns double f0d; float f0f; volatile long long saveReg[7]; __asm__ ( // save registers "std %%l0, [%4]\n\t" "mov %4, %%l0\n\t" "mov %%l0, %%l1\n\t" "add %%l0, 8, %%l0\n\t" "std %%l2, [%%l0]\n\t" "add %%l0, 8, %%l0\n\t" "std %%l4, [%%l0]\n\t" "add %%l0, 8, %%l0\n\t" "std %%o0, [%%l0]\n\t" "add %%l0, 8, %%l0\n\t" "std %%o2, [%%l0]\n\t" "add %%l0, 8, %%l0\n\t" "std %%o4, [%%l0]\n\t" "add %%l0, 8, %%l0\n\t" "std %%l6, [%%l0]\n\t" "mov %%l1, %%l7\n\t" // increase our own stackframe if necessary "mov %%sp, %%l3\n\t" // save stack ptr for readjustment "subcc %%i5, 7, %%l0\n\t" "ble .LmoveOn\n\t" "nop\n\t" "sll %%l0, 2, %%l0\n\t" "add %%l0, 96, %%l0\n\t" "mov %%sp, %%l1\n\t" // old stack ptr "sub %%sp, %%l0, %%l0\n\t" // future stack ptr "andcc %%l0, 7, %%g0\n\t" // align stack to 8 "be .LisAligned\n\t" "nop\n\t" "sub %%l0, 4, %%l0\n" ".LisAligned:\n\t" "mov %%l0, %%o5\n\t" // save newly computed stack ptr "add %%g0, 16, %%o4\n" // now copy longs down to save register window // and local variables ".LcopyDown:\n\t" "ld [%%l1], %%l2\n\t" "st %%l2,[%%l0]\n\t" "add %%l0, 4, %%l0\n\t" "add %%l1, 4, %%l1\n\t" "subcc %%o4, 1, %%o4\n\t" "bne .LcopyDown\n\t" "mov %%o5, %%sp\n\t" // move new stack ptr (hopefully) atomically // while register window is valid in both spaces // (scheduling might hit in copyDown loop) "sub %%i5, 7, %%l0\n\t" // copy parameters past the sixth to stack "add %%i4, 28, %%l1\n\t" "add %%sp, 92, %%l2\n" ".LcopyLong:\n\t" "ld [%%l1], %%o0\n\t" "st %%o0, [%%l2]\n\t" "add %%l1, 4, %%l1\n\t" "add %%l2, 4, %%l2\n\t" "subcc %%l0, 1, %%l0\n\t" "bne .LcopyLong\n\t" "nop\n" ".LmoveOn:\n\t" "mov %%i5, %%l0\n\t" // prepare out registers "mov %%i4, %%l1\n\t" "ld [%%l1], %%o0\n\t" // prepare complex return ptr "st %%o0, [%%sp+64]\n\t" "sub %%l0, 1, %%l0\n\t" "add %%l1, 4, %%l1\n\t" "ld [%%l1], %%o0\n\t" "subcc %%l0, 1, %%l0\n\t" "be .LdoCall\n\t" "nop\n\t" "add %%l1, 4, %%l1\n\t" "ld [%%l1], %%o1\n\t" "subcc %%l0, 1, %%l0\n\t" "be .LdoCall\n\t" "nop\n\t" "add %%l1, 4, %%l1\n\t" "ld [%%l1], %%o2\n\t" "subcc %%l0, 1, %%l0\n\t" "be .LdoCall\n\t" "nop\n\t" "add %%l1, 4, %%l1\n\t" "ld [%%l1], %%o3\n\t" "subcc %%l0, 1, %%l0\n\t" "be .LdoCall\n\t" "nop\n\t" "add %%l1, 4, %%l1\n\t" "ld [%%l1], %%o4\n\t" "subcc %%l0, 1, %%l0\n\t" "be .LdoCall\n\t" "nop\n\t" "add %%l1, 4, %%l1\n\t" "ld [%%l1], %%o5\n" ".LdoCall:\n\t" "ld [%%i0], %%l0\n\t" // get vtable ptr "sll %%i1, 2, %%l6\n\t" // "add %%l6, 8, %%l6\n\t" "add %%l6, %%l0, %%l0\n\t" // // vtable has 8byte wide entries, // // upper half contains 2 half words, of which the first // // is the this ptr patch ! // // first entry is (or __tf) // "ldsh [%%l0], %%l6\n\t" // load this ptr patch // "add %%l6, %%o0, %%o0\n\t" // patch this ptr // "add %%l0, 4, %%l0\n\t" // get virtual function ptr "ld [%%l0], %%l0\n\t" "ld [%%i4], %%l2\n\t" "subcc %%l2, %%g0, %%l2\n\t" "bne .LcomplexCall\n\t" "nop\n\t" "call %%l0\n\t" "nop\n\t" "ba .LcallReturned\n\t" "nop\n" ".LcomplexCall:\n\t" "call %%l0\n\t" "nop\n\t" "unimp\n" ".LcallReturned:\n\t" "mov %%l3, %%sp\n\t" // readjust stack so that our locals are where they belong "st %%o0, %0\n\t" // save possible return registers into our locals "st %%o1, %1\n\t" "std %%f0, %2\n\t" "st %%f0, %3\n\t" // restore registers "ldd [%%l7], %%l0\n\t" "add %%l7, 8, %%l7\n\t" "ldd [%%l7], %%l2\n\t" "add %%l7, 8, %%l7\n\t" "ldd [%%l7], %%l4\n\t" "add %%l7, 8, %%l7\n\t" "ldd [%%l7], %%o0\n\t" "add %%l7, 8, %%l7\n\t" "ldd [%%l7], %%o2\n\t" "add %%l7, 8, %%l7\n\t" "ldd [%%l7], %%o4\n\t" "add %%l7, 8, %%l7\n\t" "ldd [%%l7], %%l6\n\t" : "=m"(o0), "=m"(o1), "=m"(f0d), "=m"(f0f), : "r"(&saveReg[0]) : "memory" ); switch( eReturnType ) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: ((long*)pRegisterReturn)[1] = o1; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: ((long*)pRegisterReturn)[0] = o0; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *(unsigned short*)pRegisterReturn = (unsigned short)o0; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *(unsigned char*)pRegisterReturn = (unsigned char)o0; break; case typelib_TypeClass_FLOAT: *(float*)pRegisterReturn = f0f; break; case typelib_TypeClass_DOUBLE: *(double*)pRegisterReturn = f0d; break; } } static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: complex ret ptr, this, values|ptr ... char * pCppStack = (char *)alloca( (nParams+2) * sizeof(sal_Int64) ); char * pCppStackStart = pCppStack; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); assert(pReturnTypeDescr); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion if (pReturnTypeDescr) { if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr )) { pCppReturn = pUnoReturn; // direct way for simple types *(void**)pCppStack = NULL; } else { // complex return via ptr pCppReturn = *(void **)pCppStack = (bridges::cpp_uno::shared::relatesToInterfaceType(pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ) : pUnoReturn); // direct way } pCppStack += sizeof(void*); } // push this void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI()) + aVtableSlot.offset; *(void**)pCppStack = pAdjustedThisPtr; pCppStack += sizeof( void* ); // stack space static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!"); // args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { pCppArgs[ nPos ] = CPPU_CURRENT_NAMESPACE::adjustPointer(pCppStack, pParamTypeDescr ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_DOUBLE: static_assert(sizeof (double) == sizeof (sal_Int64), "boo"); *reinterpret_cast< sal_Int32 * >(pCppStack) = *reinterpret_cast< sal_Int32 const * >(pUnoArgs[ nPos ]); pCppStack += sizeof (sal_Int32); *reinterpret_cast< sal_Int32 * >(pCppStack) = *(reinterpret_cast< sal_Int32 const * >(pUnoArgs[ nPos ] ) + 1); break; default: uno_copyAndConvertData( pCppArgs[nPos], pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { *(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } } pCppStack += sizeof(sal_Int32); // standard parameter length } try { int nStackLongs = (pCppStack - pCppStackStart)/sizeof(sal_Int32); assert( !( (pCppStack - pCppStackStart ) & 3) && "UNALIGNED STACK !!! (Please DO panic"); if( nStackLongs & 1 ) // stack has to be 8 byte aligned nStackLongs++; try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr->eTypeClass, (sal_Int32 *)pCppStackStart, nStackLongs); } catch (css::uno::Exception &) { throw; } catch (std::exception & e) { throw css::uno::RuntimeException( "C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": " + o3tl::runtimeToOUString(e.what())); } catch (...) { throw css::uno::RuntimeException("C++ code threw unknown exception"); } // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch( ... ) { // get exception CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno()); // temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges::cpp_uno::shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { #if defined BRIDGES_DEBUG OString cstr( OUStringToOString( pMemberDescr->pTypeName, RTL_TEXTENCODING_ASCII_US ) ); fprintf( stderr, "received dispatch( %s )\n", cstr.getStr() ); #endif // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI); typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; // get, then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( "illegal member type description!", ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */