1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <algorithm>
#include <vector>
#include <bezierclip.hxx>
/* Implements the theta function from Sedgewick: Algorithms in XXX, chapter 24 */
template <class PointType> double theta( const PointType& p1, const PointType& p2 )
{
typename PointType::value_type dx, dy, ax, ay;
double t;
dx = p2.x - p1.x; ax = absval( dx );
dy = p2.y - p1.y; ay = absval( dy );
t = (ax+ay == 0) ? 0 : (double) dy/(ax+ay);
if( dx < 0 )
t = 2-t;
else if( dy < 0 )
t = 4+t;
return t*90.0;
}
/* Model of LessThanComparable for theta sort.
* Uses the theta function from Sedgewick: Algorithms in XXX, chapter 24
*/
template <class PointType> class ThetaCompare
{
public:
explicit ThetaCompare( const PointType& rRefPoint ) : maRefPoint( rRefPoint ) {}
bool operator() ( const PointType& p1, const PointType& p2 )
{
// return true, if p1 precedes p2 in the angle relative to maRefPoint
return theta(maRefPoint, p1) < theta(maRefPoint, p2);
}
double operator() ( const PointType& p ) const
{
return theta(maRefPoint, p);
}
private:
PointType maRefPoint;
};
/* Implementation of the predicate 'counter-clockwise' for three points, from Sedgewick: Algorithms in XXX, chapter 24 */
template <class PointType, class CmpFunctor> typename PointType::value_type ccw( const PointType& p0, const PointType& p1, const PointType& p2, CmpFunctor& thetaCmp )
{
typename PointType::value_type dx1, dx2, dy1, dy2;
typename PointType::value_type theta0( thetaCmp(p0) );
typename PointType::value_type theta1( thetaCmp(p1) );
typename PointType::value_type theta2( thetaCmp(p2) );
#if 0
if( theta0 == theta1 ||
theta0 == theta2 ||
theta1 == theta2 )
{
// cannot reliably compare, as at least two points are
// theta-equal. See bug description below
return 0;
}
#endif
dx1 = p1.x - p0.x; dy1 = p1.y - p0.y;
dx2 = p2.x - p0.x; dy2 = p2.y - p0.y;
if( dx1*dy2 > dy1*dx2 )
return +1;
if( dx1*dy2 < dy1*dx2 )
return -1;
if( (dx1*dx2 < 0) || (dy1*dy2 < 0) )
return -1;
if( (dx1*dx1 + dy1*dy1) < (dx2*dx2 + dy2*dy2) )
return +1;
return 0;
}
/*
Bug
===
Sometimes, the resulting polygon is not the convex hull (see below
for an edge configuration to reproduce that problem)
Problem analysis:
=================
The root cause of this bug is the fact that the second part of
the algorithm (the 'wrapping' of the point set) relies on the
previous theta sorting. Namely, it is required that the
generated point ordering, when interpreted as a polygon, is not
self-intersecting. This property, although, cannot be
guaranteed due to limited floating point accuracy. For example,
for two points very close together, and at the same time very
far away from the theta reference point p1, can appear on the
same theta value (because floating point accuracy is limited),
although on different rays to p1 when inspected locally.
Example:
/
P3 /
|\ /
| /
|/ \
P2 \
\
...____________\
P1
Here, P2 and P3 are theta-equal relative to P1, but the local
ccw measure always says 'left turn'. Thus, the convex hull is
wrong at this place.
Solution:
=========
If two points are theta-equal and checked via ccw, ccw must
also classify them as 'equal'. Thus, the second stage of the
convex hull algorithm sorts the first one out, effectively
reducing a cluster of theta-equal points to only one. This
single point can then be treated correctly.
*/
/* Implementation of Graham's convex hull algorithm, see Sedgewick: Algorithms in XXX, chapter 25 */
Polygon2D convexHull( const Polygon2D& rPoly )
{
const Polygon2D::size_type N( rPoly.size() );
Polygon2D result( N + 1 );
std::copy(rPoly.begin(), rPoly.end(), result.begin()+1 );
Polygon2D::size_type min, i;
// determine safe point on hull (smallest y value)
for( min=1, i=2; i<=N; ++i )
{
if( result[i].y < result[min].y )
min = i;
}
// determine safe point on hull (largest x value)
for( i=1; i<=N; ++i )
{
if( result[i].y == result[min].y &&
result[i].x > result[min].x )
{
min = i;
}
}
// TODO: add inner elimination optimization from Sedgewick: Algorithms in XXX, chapter 25
// TODO: use radix sort instead of std::sort(), calc theta only once and store
// setup first point and sort
std::swap( result[1], result[min] );
ThetaCompare<Point2D> cmpFunc(result[1]);
std::sort( result.begin()+1, result.end(), cmpFunc );
// setup sentinel
result[0] = result[N];
// generate convex hull
Polygon2D::size_type M;
for( M=3, i=4; i<=N; ++i )
{
while( ccw(result[M], result[M-1], result[i], cmpFunc) >= 0 )
--M;
++M;
std::swap( result[M], result[i] );
}
// copy range [1,M] to output
return Polygon2D( result.begin()+1, result.begin()+M+1 );
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|