1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <rtl/math.h>
#include <o3tl/safeint.hxx>
#include <osl/diagnose.h>
#include <rtl/character.hxx>
#include <rtl/math.hxx>
#include <algorithm>
#include <cassert>
#include <cfenv>
#include <cmath>
#include <float.h>
#include <limits>
#include <limits.h>
#include <math.h>
#include <memory>
#include <stdlib.h>
#include "strtmpl.hxx"
#include <dtoa.h>
constexpr int minExp = -323, maxExp = 308;
constexpr double n10s[] = {
1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316, 1e-315, 1e-314, 1e-313, 1e-312,
1e-311, 1e-310, 1e-309, 1e-308, 1e-307, 1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300,
1e-299, 1e-298, 1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289, 1e-288,
1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280, 1e-279, 1e-278, 1e-277, 1e-276,
1e-275, 1e-274, 1e-273, 1e-272, 1e-271, 1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264,
1e-263, 1e-262, 1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253, 1e-252,
1e-251, 1e-250, 1e-249, 1e-248, 1e-247, 1e-246, 1e-245, 1e-244, 1e-243, 1e-242, 1e-241, 1e-240,
1e-239, 1e-238, 1e-237, 1e-236, 1e-235, 1e-234, 1e-233, 1e-232, 1e-231, 1e-230, 1e-229, 1e-228,
1e-227, 1e-226, 1e-225, 1e-224, 1e-223, 1e-222, 1e-221, 1e-220, 1e-219, 1e-218, 1e-217, 1e-216,
1e-215, 1e-214, 1e-213, 1e-212, 1e-211, 1e-210, 1e-209, 1e-208, 1e-207, 1e-206, 1e-205, 1e-204,
1e-203, 1e-202, 1e-201, 1e-200, 1e-199, 1e-198, 1e-197, 1e-196, 1e-195, 1e-194, 1e-193, 1e-192,
1e-191, 1e-190, 1e-189, 1e-188, 1e-187, 1e-186, 1e-185, 1e-184, 1e-183, 1e-182, 1e-181, 1e-180,
1e-179, 1e-178, 1e-177, 1e-176, 1e-175, 1e-174, 1e-173, 1e-172, 1e-171, 1e-170, 1e-169, 1e-168,
1e-167, 1e-166, 1e-165, 1e-164, 1e-163, 1e-162, 1e-161, 1e-160, 1e-159, 1e-158, 1e-157, 1e-156,
1e-155, 1e-154, 1e-153, 1e-152, 1e-151, 1e-150, 1e-149, 1e-148, 1e-147, 1e-146, 1e-145, 1e-144,
1e-143, 1e-142, 1e-141, 1e-140, 1e-139, 1e-138, 1e-137, 1e-136, 1e-135, 1e-134, 1e-133, 1e-132,
1e-131, 1e-130, 1e-129, 1e-128, 1e-127, 1e-126, 1e-125, 1e-124, 1e-123, 1e-122, 1e-121, 1e-120,
1e-119, 1e-118, 1e-117, 1e-116, 1e-115, 1e-114, 1e-113, 1e-112, 1e-111, 1e-110, 1e-109, 1e-108,
1e-107, 1e-106, 1e-105, 1e-104, 1e-103, 1e-102, 1e-101, 1e-100, 1e-99, 1e-98, 1e-97, 1e-96,
1e-95, 1e-94, 1e-93, 1e-92, 1e-91, 1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84,
1e-83, 1e-82, 1e-81, 1e-80, 1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73, 1e-72,
1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64, 1e-63, 1e-62, 1e-61, 1e-60,
1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48,
1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40, 1e-39, 1e-38, 1e-37, 1e-36,
1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28, 1e-27, 1e-26, 1e-25, 1e-24,
1e-23, 1e-22, 1e-21, 1e-20, 1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12,
1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0,
1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12,
1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24,
1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36,
1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48,
1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59, 1e60,
1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69, 1e70, 1e71, 1e72,
1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79, 1e80, 1e81, 1e82, 1e83, 1e84,
1e85, 1e86, 1e87, 1e88, 1e89, 1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96,
1e97, 1e98, 1e99, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108,
1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120,
1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132,
1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144,
1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156,
1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168,
1e169, 1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180,
1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190, 1e191, 1e192,
1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199, 1e200, 1e201, 1e202, 1e203, 1e204,
1e205, 1e206, 1e207, 1e208, 1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216,
1e217, 1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228,
1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239, 1e240,
1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252,
1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262, 1e263, 1e264,
1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276,
1e277, 1e278, 1e279, 1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288,
1e289, 1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299, 1e300,
1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308,
};
static_assert(SAL_N_ELEMENTS(n10s) == maxExp - minExp + 1);
// return pow(10.0,nExp) optimized for exponents in the interval [-323,308] (i.e., incl. denormals)
static double getN10Exp(int nExp)
{
if (nExp < minExp || nExp > maxExp)
return pow(10.0, static_cast<double>(nExp)); // will return 0 or INF with IEEE 754
return n10s[nExp - minExp];
}
namespace {
/** If value (passed as absolute value) is an integer representable as double,
which we handle explicitly at some places.
*/
bool isRepresentableInteger(double fAbsValue)
{
assert(fAbsValue >= 0.0);
const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1;
if (fAbsValue <= static_cast< double >(kMaxInt))
{
sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue);
// Check the integer range again because double comparison may yield
// true within the precision range.
// XXX loplugin:fpcomparison complains about floating-point comparison
// for static_cast<double>(nInt) == fAbsValue, though we actually want
// this here.
if (nInt > kMaxInt)
return false;
double fInt = static_cast< double >(nInt);
return !(fInt < fAbsValue) && !(fInt > fAbsValue);
}
return false;
}
// Returns 1-based index of least significant bit in a number, or zero if number is zero
int findFirstSetBit(unsigned n)
{
#if defined _WIN32
unsigned long pos;
unsigned char bNonZero = _BitScanForward(&pos, n);
return (bNonZero == 0) ? 0 : pos + 1;
#else
return __builtin_ffs(n);
#endif
}
/** Returns number of binary bits for fractional part of the number
Expects a proper non-negative double value, not +-INF, not NAN
*/
int getBitsInFracPart(double fAbsValue)
{
assert(std::isfinite(fAbsValue) && fAbsValue >= 0.0);
if (fAbsValue == 0.0)
return 0;
auto pValParts = reinterpret_cast< const sal_math_Double * >(&fAbsValue);
int nExponent = pValParts->inf_parts.exponent - 1023;
if (nExponent >= 52)
return 0; // All bits in fraction are in integer part of the number
int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo);
if (nLeastSignificant == 0)
{
nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi);
if (nLeastSignificant == 0)
nLeastSignificant = 53; // the implied leading 1 is the least significant
else
nLeastSignificant += 32;
}
int nFracSignificant = 53 - nLeastSignificant;
int nBitsInFracPart = nFracSignificant - nExponent;
return std::max(nBitsInFracPart, 0);
}
}
void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult,
sal_Int32 * pResultCapacity,
sal_Int32 nResultOffset, double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
char cDecSeparator,
sal_Int32 const * pGroups,
char cGroupSeparator,
sal_Bool bEraseTrailingDecZeros)
SAL_THROW_EXTERN_C()
{
rtl::str::doubleToString(
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
}
void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult,
sal_Int32 * pResultCapacity,
sal_Int32 nResultOffset, double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Unicode cDecSeparator,
sal_Int32 const * pGroups,
sal_Unicode cGroupSeparator,
sal_Bool bEraseTrailingDecZeros)
SAL_THROW_EXTERN_C()
{
rtl::str::doubleToString(
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
}
namespace {
template< typename CharT >
double stringToDouble(CharT const * pBegin, CharT const * pEnd,
CharT cDecSeparator, CharT cGroupSeparator,
rtl_math_ConversionStatus * pStatus,
CharT const ** pParsedEnd)
{
double fVal = 0.0;
rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;
CharT const * p0 = pBegin;
while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t')))
{
++p0;
}
bool bSign;
bool explicitSign = false;
if (p0 != pEnd && *p0 == CharT('-'))
{
bSign = true;
explicitSign = true;
++p0;
}
else
{
bSign = false;
if (p0 != pEnd && *p0 == CharT('+'))
{
explicitSign = true;
++p0;
}
}
CharT const * p = p0;
bool bDone = false;
// #i112652# XMLSchema-2
if ((pEnd - p) >= 3)
{
if (!explicitSign && (CharT('N') == p[0]) && (CharT('a') == p[1])
&& (CharT('N') == p[2]))
{
p += 3;
fVal = std::numeric_limits<double>::quiet_NaN();
bDone = true;
}
else if ((CharT('I') == p[0]) && (CharT('N') == p[1])
&& (CharT('F') == p[2]))
{
p += 3;
fVal = HUGE_VAL;
eStatus = rtl_math_ConversionStatus_OutOfRange;
bDone = true;
}
}
if (!bDone) // do not recognize e.g. NaN1.23
{
std::unique_ptr<char[]> bufInHeap;
std::unique_ptr<const CharT * []> bufInHeapMap;
constexpr int bufOnStackSize = 256;
char bufOnStack[bufOnStackSize];
const CharT* bufOnStackMap[bufOnStackSize];
char* buf = bufOnStack;
const CharT** bufmap = bufOnStackMap;
int bufpos = 0;
const size_t bufsize = pEnd - p + (bSign ? 2 : 1);
if (bufsize > bufOnStackSize)
{
bufInHeap = std::make_unique<char[]>(bufsize);
bufInHeapMap = std::make_unique<const CharT*[]>(bufsize);
buf = bufInHeap.get();
bufmap = bufInHeapMap.get();
}
if (bSign)
{
buf[0] = '-';
bufmap[0] = p; // yes, this may be the same pointer as for the next mapping
bufpos = 1;
}
// Put first zero to buffer for strings like "-0"
if (p != pEnd && *p == CharT('0'))
{
buf[bufpos] = '0';
bufmap[bufpos] = p;
++bufpos;
++p;
}
// Leading zeros and group separators between digits may be safely
// ignored. p0 < p implies that there was a leading 0 already,
// consecutive group separators may not happen as *(p+1) is checked for
// digit.
while (p != pEnd && (*p == CharT('0') || (*p == cGroupSeparator
&& p0 < p && p+1 < pEnd && rtl::isAsciiDigit(*(p+1)))))
{
++p;
}
// integer part of mantissa
for (; p != pEnd; ++p)
{
CharT c = *p;
if (rtl::isAsciiDigit(c))
{
buf[bufpos] = static_cast<char>(c);
bufmap[bufpos] = p;
++bufpos;
}
else if (c != cGroupSeparator)
{
break;
}
else if (p == p0 || (p+1 == pEnd) || !rtl::isAsciiDigit(*(p+1)))
{
// A leading or trailing (not followed by a digit) group
// separator character is not a group separator.
break;
}
}
// fraction part of mantissa
if (p != pEnd && *p == cDecSeparator)
{
buf[bufpos] = '.';
bufmap[bufpos] = p;
++bufpos;
++p;
for (; p != pEnd; ++p)
{
CharT c = *p;
if (!rtl::isAsciiDigit(c))
{
break;
}
buf[bufpos] = static_cast<char>(c);
bufmap[bufpos] = p;
++bufpos;
}
}
// Exponent
if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e')))
{
buf[bufpos] = 'E';
bufmap[bufpos] = p;
++bufpos;
++p;
if (p != pEnd && *p == CharT('-'))
{
buf[bufpos] = '-';
bufmap[bufpos] = p;
++bufpos;
++p;
}
else if (p != pEnd && *p == CharT('+'))
++p;
for (; p != pEnd; ++p)
{
CharT c = *p;
if (!rtl::isAsciiDigit(c))
break;
buf[bufpos] = static_cast<char>(c);
bufmap[bufpos] = p;
++bufpos;
}
}
else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#')
&& p[-1] == cDecSeparator && p[-2] == CharT('1'))
{
if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N')
&& p[3] == CharT('F'))
{
// "1.#INF", "+1.#INF", "-1.#INF"
p += 4;
fVal = HUGE_VAL;
eStatus = rtl_math_ConversionStatus_OutOfRange;
// Eat any further digits:
while (p != pEnd && rtl::isAsciiDigit(*p))
++p;
bDone = true;
}
else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A')
&& p[3] == CharT('N'))
{
// "1.#NAN", "+1.#NAN", "-1.#NAN"
p += 4;
fVal = std::copysign(std::numeric_limits<double>::quiet_NaN(), bSign ? -1.0 : 1.0);
bSign = false; // don't negate again
// Eat any further digits:
while (p != pEnd && rtl::isAsciiDigit(*p))
{
++p;
}
bDone = true;
}
}
if (!bDone)
{
buf[bufpos] = '\0';
bufmap[bufpos] = p;
char* pCharParseEnd;
errno = 0;
fVal = strtod_nolocale(buf, &pCharParseEnd);
if (errno == ERANGE)
{
// Check for the dreaded rounded to 15 digits max value
// 1.79769313486232e+308 for 1.7976931348623157e+308 we wrote
// everywhere, accept with or without plus sign in exponent.
const char* b = buf;
if (b[0] == '-')
++b;
if (((pCharParseEnd - b == 21) || (pCharParseEnd - b == 20))
&& !strncmp( b, "1.79769313486232", 16)
&& (b[16] == 'e' || b[16] == 'E')
&& (((pCharParseEnd - b == 21) && !strncmp( b+17, "+308", 4))
|| ((pCharParseEnd - b == 20) && !strncmp( b+17, "308", 3))))
{
fVal = (buf < b) ? -DBL_MAX : DBL_MAX;
}
else
{
eStatus = rtl_math_ConversionStatus_OutOfRange;
}
}
p = bufmap[pCharParseEnd - buf];
bSign = false;
}
}
// overflow also if more than DBL_MAX_10_EXP digits without decimal
// separator, or 0. and more than DBL_MIN_10_EXP digits, ...
bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
if (bHuge)
eStatus = rtl_math_ConversionStatus_OutOfRange;
if (bSign)
fVal = -fVal;
if (pStatus)
*pStatus = eStatus;
if (pParsedEnd)
*pParsedEnd = p == p0 ? pBegin : p;
return fVal;
}
}
double SAL_CALL rtl_math_stringToDouble(char const * pBegin,
char const * pEnd,
char cDecSeparator,
char cGroupSeparator,
rtl_math_ConversionStatus * pStatus,
char const ** pParsedEnd)
SAL_THROW_EXTERN_C()
{
return stringToDouble(
reinterpret_cast<unsigned char const *>(pBegin),
reinterpret_cast<unsigned char const *>(pEnd),
static_cast<unsigned char>(cDecSeparator),
static_cast<unsigned char>(cGroupSeparator), pStatus,
reinterpret_cast<unsigned char const **>(pParsedEnd));
}
double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin,
sal_Unicode const * pEnd,
sal_Unicode cDecSeparator,
sal_Unicode cGroupSeparator,
rtl_math_ConversionStatus * pStatus,
sal_Unicode const ** pParsedEnd)
SAL_THROW_EXTERN_C()
{
return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
pParsedEnd);
}
double SAL_CALL rtl_math_round(double fValue, int nDecPlaces,
enum rtl_math_RoundingMode eMode)
SAL_THROW_EXTERN_C()
{
if (!std::isfinite(fValue))
return fValue;
if (fValue == 0.0)
return fValue;
if (nDecPlaces == 0)
{
switch (eMode)
{
case rtl_math_RoundingMode_Corrected:
return std::round(fValue);
case rtl_math_RoundingMode_HalfEven:
if (const int oldMode = std::fegetround(); std::fesetround(FE_TONEAREST) == 0)
{
fValue = std::nearbyint(fValue);
std::fesetround(oldMode);
return fValue;
}
break;
default:
break;
}
}
const double fOrigValue = fValue;
// sign adjustment
bool bSign = std::signbit( fValue );
if (bSign)
fValue = -fValue;
// Rounding to decimals between integer distance precision (gaps) does not
// make sense, do not even try to multiply/divide and introduce inaccuracy.
// For same reasons, do not attempt to round integers to decimals.
if (nDecPlaces >= 0
&& (fValue >= 0x1p52
|| isRepresentableInteger(fValue)))
return fOrigValue;
double fFac = 0;
if (nDecPlaces != 0)
{
if (nDecPlaces > 0)
{
// Determine how many decimals are representable in the precision.
// Anything greater 2^52 and 0.0 was already ruled out above.
// Theoretically 0.5, 0.25, 0.125, 0.0625, 0.03125, ...
const sal_math_Double* pd = reinterpret_cast<const sal_math_Double*>(&fValue);
const sal_Int32 nDec = 52 - (pd->parts.exponent - 1023);
if (nDec <= 0)
{
assert(!"Shouldn't this had been caught already as large number?");
return fOrigValue;
}
if (nDec < nDecPlaces)
nDecPlaces = nDec;
}
// Avoid 1e-5 (1.0000000000000001e-05) and such inaccurate fractional
// factors that later when dividing back spoil things. For negative
// decimals divide first with the inverse, then multiply the rounded
// value back.
fFac = getN10Exp(abs(nDecPlaces));
if (fFac == 0.0 || (nDecPlaces < 0 && !std::isfinite(fFac)))
// Underflow, rounding to that many integer positions would be 0.
return 0.0;
if (!std::isfinite(fFac))
// Overflow with very small values and high number of decimals.
return fOrigValue;
if (nDecPlaces < 0)
fValue /= fFac;
else
fValue *= fFac;
if (!std::isfinite(fValue))
return fOrigValue;
}
// Round only if not already in distance precision gaps of integers, where
// for [2^52,2^53) adding 0.5 would even yield the next representable
// integer.
if (fValue < 0x1p52)
{
switch ( eMode )
{
case rtl_math_RoundingMode_Corrected :
fValue = rtl::math::approxFloor(fValue + 0.5);
break;
case rtl_math_RoundingMode_Down:
fValue = rtl::math::approxFloor(fValue);
break;
case rtl_math_RoundingMode_Up:
fValue = rtl::math::approxCeil(fValue);
break;
case rtl_math_RoundingMode_Floor:
fValue = bSign ? rtl::math::approxCeil(fValue)
: rtl::math::approxFloor( fValue );
break;
case rtl_math_RoundingMode_Ceiling:
fValue = bSign ? rtl::math::approxFloor(fValue)
: rtl::math::approxCeil(fValue);
break;
case rtl_math_RoundingMode_HalfDown :
{
double f = floor(fValue);
fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue);
}
break;
case rtl_math_RoundingMode_HalfUp:
{
double f = floor(fValue);
fValue = ((fValue - f) < 0.5) ? f : ceil(fValue);
}
break;
case rtl_math_RoundingMode_HalfEven:
#if defined FLT_ROUNDS
/*
Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
DBL_EPSILON is the smallest fractional number which can be represented,
its reciprocal is therefore the smallest number that cannot have a
fractional part. Once you add this reciprocal to `x', its fractional part
is stripped off. Simply subtracting the reciprocal back out returns `x'
without its fractional component.
Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
who placed it into public domain.
volatile: prevent compiler from being too smart
*/
if (FLT_ROUNDS == 1)
{
volatile double x = fValue + 1.0 / DBL_EPSILON;
fValue = x - 1.0 / DBL_EPSILON;
}
else
#endif // FLT_ROUNDS
{
double f = floor(fValue);
if ((fValue - f) != 0.5)
{
fValue = floor( fValue + 0.5 );
}
else
{
double g = f / 2.0;
fValue = (g == floor( g )) ? f : (f + 1.0);
}
}
break;
default:
OSL_ASSERT(false);
break;
}
}
if (nDecPlaces != 0)
{
if (nDecPlaces < 0)
fValue *= fFac;
else
fValue /= fFac;
}
if (!std::isfinite(fValue))
return fOrigValue;
return bSign ? -fValue : fValue;
}
double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
{
return fValue * getN10Exp(nExp);
}
double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C()
{
const double fBigInt = 0x1p41; // 2^41 -> only 11 bits left for fractional part, fine as decimal
if (fValue == 0.0 || fValue == HUGE_VAL || !std::isfinite( fValue) || fValue > fBigInt)
{
// We don't handle these conditions. Bail out.
return fValue;
}
double fOrigValue = fValue;
bool bSign = std::signbit(fValue);
if (bSign)
fValue = -fValue;
// If the value is either integer representable as double,
// or only has small number of bits in fraction part, then we need not do any approximation
if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11)
return fOrigValue;
int nExp = static_cast< int >(floor(log10(fValue)));
nExp = 14 - nExp;
double fExpValue = getN10Exp(abs(nExp));
if (nExp < 0)
fValue /= fExpValue;
else
fValue *= fExpValue;
// If the original value was near DBL_MIN we got an overflow. Restore and
// bail out.
if (!std::isfinite(fValue))
return fOrigValue;
fValue = std::round(fValue);
if (nExp < 0)
fValue *= fExpValue;
else
fValue /= fExpValue;
// If the original value was near DBL_MAX we got an overflow. Restore and
// bail out.
if (!std::isfinite(fValue))
return fOrigValue;
return bSign ? -fValue : fValue;
}
bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C()
{
static const double e48 = 0x1p-48;
static const double e44 = 0x1p-44;
if (a == b)
return true;
if (a == 0.0 || b == 0.0)
return false;
const double d = fabs(a - b);
if (!std::isfinite(d))
return false; // Nan or Inf involved
a = fabs(a);
if (d > (a * e44))
return false;
b = fabs(b);
if (d > (b * e44))
return false;
if (isRepresentableInteger(d) && isRepresentableInteger(a) && isRepresentableInteger(b))
return false; // special case for representable integers.
return (d < a * e48 && d < b * e48);
}
double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C()
{
return expm1(fValue);
}
double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C()
{
#ifdef __APPLE__
if (fValue == -0.0)
return fValue; // macOS 10.8 libc returns 0.0 for -0.0
#endif
return log1p(fValue);
}
double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C()
{
return ::atanh(fValue);
}
/** Parent error function (erf) */
double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C()
{
return erf(x);
}
/** Parent complementary error function (erfc) */
double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C()
{
return erfc(x);
}
/** improved accuracy of asinh for |x| large and for x near zero
@see #i97605#
*/
double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C()
{
if ( fX == 0.0 )
return 0.0;
double fSign = 1.0;
if ( fX < 0.0 )
{
fX = - fX;
fSign = -1.0;
}
if ( fX < 0.125 )
return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX)));
if ( fX < 1.25e7 )
return fSign * log( fX + sqrt( 1.0 + fX*fX));
return fSign * log( 2.0*fX);
}
/** improved accuracy of acosh for x large and for x near 1
@see #i97605#
*/
double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C()
{
volatile double fZ = fX - 1.0;
if (fX < 1.0)
return std::numeric_limits<double>::quiet_NaN();
if ( fX == 1.0 )
return 0.0;
if ( fX < 1.1 )
return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ));
if ( fX < 1.25e7 )
return log( fX + sqrt( fX*fX - 1.0));
return log( 2.0*fX);
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|