summaryrefslogtreecommitdiffstats
path: root/slideshow/source/engine/activities/simplecontinuousactivitybase.cxx
blob: 01cb3b75007b207becf655418a0fb7821987cb30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */


// must be first

#include "simplecontinuousactivitybase.hxx"

#include <sal/log.hxx>

namespace slideshow::internal
{
        SimpleContinuousActivityBase::SimpleContinuousActivityBase(
            const ActivityParameters& rParms ) :
            ActivityBase( rParms ),
            maTimer( rParms.mrActivitiesQueue.getTimer() ),
            mnMinSimpleDuration( rParms.mnMinDuration ),
            mnMinNumberOfFrames( rParms.mnMinNumberOfFrames ),
            mnCurrPerformCalls( 0 )
        {
        }

        void SimpleContinuousActivityBase::startAnimation()
        {
            // init timer. We measure animation time only when we're
            // actually started.
            maTimer.reset();
        }

        double SimpleContinuousActivityBase::calcTimeLag() const
        {
            ActivityBase::calcTimeLag();
            if (! isActive())
                return 0.0;

            // retrieve locally elapsed time
            const double nCurrElapsedTime( maTimer.getElapsedTime() );

            // log time
            SAL_INFO("slideshow.verbose", "SimpleContinuousActivityBase::calcTimeLag(): "
                     "next step is based on time: " << nCurrElapsedTime );

            // go to great length to ensure a proper animation
            // run. Since we don't know how often we will be called
            // here, try to spread the animator calls uniquely over
            // the [0,1] parameter range. Be aware of the fact that
            // perform will be called at least mnMinNumberOfTurns
            // times.

            // fraction of time elapsed (clamp to 1.0 for zero-length
            // animations)
            const double nFractionElapsedTime(
                mnMinSimpleDuration != 0.0 ?
                nCurrElapsedTime / mnMinSimpleDuration :
                1.0 );

            // fraction of minimum calls performed
            const double nFractionRequiredCalls(
                double(mnCurrPerformCalls) / mnMinNumberOfFrames );

            // okay, so now, the decision is easy:

            // If the fraction of time elapsed is smaller than the
            // number of calls required to be performed, then we calc
            // the position on the animation range according to
            // elapsed time. That is, we're so to say ahead of time.

            // In contrary, if the fraction of time elapsed is larger,
            // then we're lagging, and we thus calc the position on
            // the animation time line according to the fraction of
            // calls performed. Thus, the animation is forced to slow
            // down, and take the required minimal number of steps,
            // sufficiently equally distributed across the animation
            // time line.
            if( nFractionElapsedTime < nFractionRequiredCalls )
            {
                SAL_INFO("slideshow.verbose", "SimpleContinuousActivityBase::calcTimeLag(): t=" <<
                         nFractionElapsedTime <<
                         " is based on time");
                return 0.0;
            }
            else
            {
                SAL_INFO("slideshow.verbose", "SimpleContinuousActivityBase::perform(): t=" <<
                         nFractionRequiredCalls <<
                         " is based on number of calls");

                // lag global time, so all other animations lag, too:
                return ((nFractionElapsedTime - nFractionRequiredCalls)
                        * mnMinSimpleDuration);
            }
        }

        bool SimpleContinuousActivityBase::perform()
        {
            // call base class, for start() calls and end handling
            if( !ActivityBase::perform() )
                return false; // done, we're ended


            // get relative animation position
            // ===============================

            const double nCurrElapsedTime( maTimer.getElapsedTime() );
            // clamp to 1.0 for zero animation duration
            double nT( mnMinSimpleDuration != 0.0 ?
                       nCurrElapsedTime / mnMinSimpleDuration :
                       1.0 );


            // one of the stop criteria reached?
            // =================================

            // will be set to true below, if one of the termination criteria
            // matched.
            bool bActivityEnding( false );

            if( isRepeatCountValid() )
            {
                // Finite duration
                // ===============

                // When we've autoreverse on, the repeat count
                // doubles
                const double nRepeatCount( getRepeatCount() );
                const double nEffectiveRepeat( isAutoReverse() ?
                                               2.0*nRepeatCount :
                                               nRepeatCount );

                // time (or frame count) elapsed?
                if( nEffectiveRepeat <= nT )
                {
                    // okee. done for now. Will not exit right here,
                    // to give animation the chance to render the last
                    // frame below
                    bActivityEnding = true;

                    // clamp animation to max permissible value
                    nT = nEffectiveRepeat;
                }
            }


            // need to do auto-reverse?
            // ========================

            double nRepeats;
            double nRelativeSimpleTime;

            // TODO(Q3): Refactor this mess
            if( isAutoReverse() )
            {
                // divert active duration into repeat and
                // fractional part.
                const double nFractionalActiveDuration( modf(nT, &nRepeats) );

                // for auto-reverse, map ranges [1,2), [3,4), ...
                // to ranges [0,1), [1,2), etc.
                if( static_cast<int>(nRepeats) % 2 )
                {
                    // we're in an odd range, reverse sweep
                    nRelativeSimpleTime = 1.0 - nFractionalActiveDuration;
                }
                else
                {
                    // we're in an even range, pass on as is
                    nRelativeSimpleTime = nFractionalActiveDuration;
                }

                // effective repeat count for autoreverse is half of
                // the input time's value (each run of an autoreverse
                // cycle is half of a repeat)
                nRepeats /= 2;
            }
            else
            {
                // determine repeat
                // ================

                // calc simple time and number of repeats from nT
                // Now, that's easy, since the fractional part of
                // nT gives the relative simple time, and the
                // integer part the number of full repeats:
                nRelativeSimpleTime = modf(nT, &nRepeats);

                // clamp repeats to max permissible value (maRepeats.getValue() - 1.0)
                if( isRepeatCountValid() &&
                    nRepeats >= getRepeatCount() )
                {
                    // Note that this code here only gets
                    // triggered if maRepeats.getValue() is an
                    // _integer_. Otherwise, nRepeats will never
                    // reach nor exceed
                    // maRepeats.getValue(). Thus, the code below
                    // does not need to handle cases of fractional
                    // repeats, and can always assume that a full
                    // animation run has ended (with
                    // nRelativeSimpleTime=1.0 for
                    // non-autoreversed activities).

                    // with modf, nRelativeSimpleTime will never
                    // become 1.0, since nRepeats is incremented and
                    // nRelativeSimpleTime set to 0.0 then.

                    // For the animation to reach its final value,
                    // nRepeats must although become
                    // maRepeats.getValue()-1.0, and
                    // nRelativeSimpleTime=1.0.
                    nRelativeSimpleTime = 1.0;
                    nRepeats -= 1.0;
                }
            }

            // actually perform something
            // ==========================

            simplePerform( nRelativeSimpleTime,
                           // nRepeats is already integer-valued
                           static_cast<sal_uInt32>( nRepeats ) );


            // delayed endActivity() call from end condition check
            // below. Issued after the simplePerform() call above, to
            // give animations the chance to correctly reach the
            // animation end value, without spurious bail-outs because
            // of isActive() returning false.
            if( bActivityEnding )
                endActivity();

            // one more frame successfully performed
            ++mnCurrPerformCalls;

            return isActive();
        }
}

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */